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On the one-dimensional wave propagation
in inhomogeneous elastic layer
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Abstract. The standard approach to the wave propagation in an inhomogeneous elastic layer leads to the displacement in a form of a
product of a function of space and a harmonic function of time. This product represents the standing, and not the running wave. The part
depending on the space variable is governed by the linear ordinary second order differential equation. In order to calculate the propagation
speed in the present paper the inhomogeneous material is separated by a plane into two parts. Between the two inhomogeneous parts the
virtual homogeneous elastic extra layer is added. The elasticity modulus and the mass density of the extra layer have the same values as
the inhomogeneous material on the separation plane. In further calculations the extra layer is assumed to be infinitesimally thin. The virtual
layer allows to decompose the motion into two waves: a wave running to the right and a wave running to the left. Energy conservation

equation is derived.

1. Introduction

The one-dimensional time-dependent displacement in the ho-
mogeneous linear elastic layer is expressed by a simple formu-
la. In this formula the propagation speed is explicitly present
and the motion of the discontinuity surface separating the
disturbed and undisturbed regions may be easily defined. In
contrast to this the expression for a displacement in the inho-
mogeneous elastic layer has entirely different form in which
the propagation speed is not explicitly present. In connection
with this fact the analysis of wave propagation in inhomoge-
neous layer demands special treatment. In the present paper
such treatment is proposed and discussed. Preliminary analy-
sis of the problem has been given in [1]. Standard approach
in acoustics is based on replacement the inhomogeneous ma-
terial by material piecewise homogeneous, cf. e.g. [2].

2. Inhomogeneous region

The inhomogeneous elastic layer of density p(x) and elastic
modulus E(x) is situated between = = 0 and « = h, where h
is fixed. Consider a one-dimensional time-dependent motion
of this layer. The longitudinal displacement u is the function
of time ¢ and spatial variable z, u = u(z,t). The function
u(x,t) satisfies the linear differential equation of motion

A ol R

It is assumed, that F(z) and p(z) for each x are not equal
zero. The displacement is expected in the form

u(zx,t) = v(z) exp iwt. )

Here w denotes the circular frequency. The actual displace-
ment is the real part of the complex-valued u(x,t). In accord
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with the partial differential equation (1) the function v(x) sat-
isfies the ordinary differential equation

d dv(x)
dx {E(z) dz

} +w?p(x)v(z) = 0. 3)

Denote the two linearly independent real solutions of (3)
by a(x) and S(z), respectively. They satisfy the differential
equations

% [E(x) d(jzf)] +w?p(z)a(z) = 0, )
a [, db) @

s [E(ﬂw] +wp(x)B(x) = 0.
Therefore in the inhomogeneous material (for 0 < z < h)
the displacement u(x,t) is given by the expression

u(z,t) = Aa(x) exp iwt + Bf(x) exp iwt, 5)

where A and B are complex-valued constants. Note that the
wave speeds are not explicitly present in this expression.

Assume that at the left and the right side of the inhomoge-
neous region two different homogeneous regions are situated,
cf Fig. 1.

In the homogeneous region for x < 0 the elastic mod-
ulus and the density are constant p(x) = py = const,
E(z) = Ey = const. In the homogeneous region for x > h
there is p(x) = p2 = const, E(x) = Es = const. On the
boundaries x = 0 and x = h the elastic modulus and the den-
sity are assumed to have no jump. The equations of motion
for the homogeneous regions are respectively

0u(z,t) 0u(z,t)
a2z 0T a2

Eo for x <0, (6)
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Fig. 1. Homogeneous and inhomogeneous regions

The following complex-valued displacements u(x, t)

u(z,t) = Agexpiw <t — :—0) + By expiw <t + %) , (8)

x—h , x—h
+ Boexpiw |t +
C2 C2
(€))
satisfy the equations of motion in the homogeneous regions

for z < 0 and = > h, respectively. In (8) and (9)

Ey E,
Co=([— C2=4]—,
Po P2

are the propagation speeds in the homogeneous regions z < 0
and x > h, respectively. The actual displacements equals the
real part of the complex-valued functions u(z, t), as given by
(8) and (9). The expressions in (8) and (9) have the form of
sinusoidal waves propagating to the left and to the right. The
term proportional to Ay represents the incident wave coming
from the left, and the term proportional to By represents the
incident wave coming from the right. The term proportional
to Ay represents the transmitted wave running to the right,
and the term proportional to By represents the transmitted
wave running to the left. Further we assume that Ay and By
are given in advance. The propagation speeds cy and co, are
explicitly present in the formula for the displacement.

In each region the stress equals E(x)0u(z,t)/0x. The ac-
tual stress is the real part of this complex-valued expression.
At the separation plane x = 0 both the displacement u and
the stress must be continuous. Since the values of the elastic
modulus E(z) have the same value on both sides of z = 0,
the continuity relations reduce to

u(z,t) = Agexpiw (t —

(10)

Ag + Bo = Aa (0) + BB (0),
(1

iy iwpda(0) +Bdi(0).

Co Co dx T
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The above relations allow to express the amplitudes (A4, B) in
the inhomogeneous region by the amplitudes (Ag, By). There
is

A= { [ ] Ao+ [ - ] o}
B:MLO{_ [a/o-l-i—jao] Ag — {a/o—i—jao By ¢,
(12)
where
My = aofBy — Boay, (13)
a0 =a(0), fo=p(0), af = dc;fco), 0= d@f). (14)

Since o(x) and 3(x) are linearly independent in general there
is My # 0. The case My = 0 demands special treatment.

In accord with (5) for the inhomogeneous region
0 < z < h the displacement is given by the expression

u(x,t) = Mio {+ [56 + i—jﬂo] Ag + [56 - i—jﬂo] Bo}

a(x) exp iwt,

1 w w
+— —a’+—a]A—[a’——a]B}
M() { |: 0 Co 0 0 0 Co 0 0
B(x) exp iwt.
5)

The constants A5 and Bs present in the expression (9) for
the displacement in the homogeneous region = > h may be
expressed by Ag and By . The coresponding formulae are not
necessary for further calculations, therefore they are not quot-
ed here. The expression (15) does not expose the fact, that
the displacement u(x,t) is a propagating wave, or more ex-
actly: sum of two sinusoidal propagating vaves. Their speeds
and amplitudes are not known. Entirely different approach
must be applied to the motion of propagating, time-dependent
discontinuity surface. However in the present paper only the
sinusoidal waves are treated.

The displacement (15) has a form of a product of two
functions: a function of spatial variable = and a function of
time ¢, therefore a form of a standing wave. On the other hand,
a possibility of separation of the motion into a wave running
to the right and a wave running to the left in each material, at
least for some inhomogeneities, is evident. The propagation
speed ¢ for 0 < = < h must be a function of z, ¢ = ¢(z).
This speed is not present in (15). Deriving a separation valid
for the inhomogeneous material is the purpose of the further
analysis in the present paper. Note that for the homogeneous
material the separation is trivial.
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3. Virtual homogeneous layer

Consider now the more involved case, when without chang-
ing the properties of the material the homogeneous layer of
thickness d is added at * = s. This is a virtual layer not
present in the real system. Its thickness d is arbitrary, and
in particular case d may tend to zero. It is assumed that the
density of the virtual layer coincides with the density of the
inhomogeneous layer at z = s. Similarly the elastic modulus
of the virtual layer coincides with the elastic modulus of the
inhomogeneous layer at x = s. The only purpose of adding
the virtual layer is to make possible the discussion of wave
propagation in the inhomogeneous region and to calculate the
propagation speed ¢(x) in the inhomogeneous layer.

The extra layer divides the inhomogeneous region into two
parts, cf. Fig. 2. All amplitudes corresponding to the above
situation have the superscript *. In the homogeneous region
x < 0 the density p(x) and the elastic modulus E(x) are con-
stant. There propagate two waves expressed by the two terms
of the relation

z S> + B{ expiw <t+ z S) .
Co Co
1
In general the two amplitudes Af; and B are complex valued.
For convenience in the expression was written x-s instead of
z. This is equivalent to a change of the amplitudes. In the

inhomogeneous region 0 < x < s the displacement is given
by the formula

u = Af expiw <t

u = A} a(z)expiwt + B B(x) exp iwt, (17)

where the functions a(x) and () are the two linearly in-
dependent real solutions satisfying the differential equation
(3), and A} and Bj are two arbitrary complex constants. The
subscript L has been added, since the amplitudes are in gen-
eral different from A, B used in Chapter 1. In the region
s+ d < x < h+ d the amplitudes will have the values A%},
and By, differing from A} and B and from A, B.

E, p
d
E@), px)
hed X
AT: 0 s A’; s+d H A;
* 3
B Ata(x)+B B) Bg Ape{x-d+BrBx-d) B,

Fig. 2. System with the virtual homogeneous layer

Since on the plane x = 0 both the displacement and the
stress are continuous at x = 0 the amplitudes must satisfy the
algebraic relations

IE.g. the inhomogeneity F(x) = ﬁ, w2p(z) = =)

;2 leads to the equation

A7 a(0) + B13(0) = Aj + By,

. . ‘18
AL/ (0) + BiA(0) = — 2 ar + “pr. (1%
Co Co

Note that the two linearly independent solutions «(x) and
B(x) of (4) for each inhomogeneity and given frequency w
always exist. For each case their numerical approximation may
be calculated, for some particular inhomogeneities the analyt-
ical forms of a(x) and ((x) are known. If these forms are
known, then the amplitudes of the waves in the extra layer
are known functions of the amplitudes of the waves in the re-
gion z < 0'. Using the shorthand notation (14) the following
expressions are obtained

1 W W
A= — sl A+ |8 — 2| B
L= M {+ [ﬁo + o 50} o+ [ﬁo o 50] 0}7
. 1 iw . iw .
BL = —0 {— |:O¢6 + gao] AO — |:046 — ga0:| BO} .

(19)
The parameter M is defined by (13).

The virtual layer s < x < x + d is homogeneous. There
propagate two waves with known propagation speed cg, which
is the propagation speed in the virtual layer. The first wave is
running to the right, the second to the left. The displacement
is

u=A§ expiw (t x—s) + B expiw (tJr $_8> )
cs Cs
(20)

E(s)
p(s)

The complex-valued A%, B% are the amplitudes of both
waves, respectively. Concentrate on the separation plane x =
5. On this plane both the displacement and the stress are con-
tinuous. Since the elasticity modulus E'(x) has the same value
at both sides of x = s the amplitudes satisfy the algebraic
equations

cs = ey

Ara(s) + Br(s) = Ag + B,

. . -
Aol(s)+ Bif(s) = —ar 4 Wpe 3P
Ccs Ccs

The above equations allow to express the amplitudes A%, Bg
by the amplitudes A}, B}

Cs Cs
2A*:[ ——’]A* [ f—’}B*,
s as iwas Lt |Ps iwﬂs L
* Cs * CS *
2B :{ — } { — }B .
S O[S‘i’leéS L+ ﬂs+2wﬂs L

Taking into account the formulae (19) and chaining the results
the following expressions for the amplitudes are obtained

(23)

d?v(z) _
dx2

2z  dv(z) + 2

241 do 12+lv(a:) = 0 quoted in [3] as Eq. 2.227.

Its two independent solutions are a(z) = x, 3(x) = 22 — land functions «(0), 3(0), o/ (0), 3'(0) in (18) are known.
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* ¢s
2Mo A = {~[af s — fhars] + = [ — Ghols]

- E[Oéoﬁs — Boas] +
co

C
S [0 — ﬁoafg]} 45
Co

+{~latfs — Bhas] + = [ap 85 — Ghak]

+W [aoBs — Poas| — c—[aoﬁs ﬁoa/s]} By,
0 0 (24)
2MoBs = {~la s — fhaas) — a8 — Byols]
% 0Bs — foors] — ool — ﬁoa’s]} A
Co Co
+{~latfs — Bhas] — = [ah B — Ghak
+l—w[aoﬁs — Boas] + C—S[Oéoﬁfg - ﬁoa/s]} B;.
Co Co

The complex-valued A%, BE have been expressed by the the
amplitudes of the waves running in the homogeneous region
2 < 0. Note that the formulae are valid for any thickness d.

The expression (20) represents the waves in the homoge-
neous region s < x < s + d. The wave of amplitude A% is
running to the right, and the wave of amplitude BY is running
to the left. They have the same speeds, defined by the relation
(21). It is obvious, that the amplitudes depend on the ampli-
tudes in the region x < 0. Note, that the expressions for the
amplitudes A, B contain the values of the functions o(x)
and (z) and their derivatives o’ () and 3'(x) at = s.

The actual displacement equals the real part of the
complex-valued wu(x,t). Pass to the calculation of the real
products AgA_g, BgB_g equal to the squared real amplitudes.
In accord with (23) and (24) we have

AT =
2
{ [(ai)ﬁs — Boas) — Z—j(aoﬁfg - ﬁoa's)}
2
(aofBs — Poars) + C;S(%ﬁ/s - 560/5)] } AGAG
w 2
+ { apfs — Byas) + l—o(aoﬁs - 506@)]

2
.C BT
+ OZOBS OQS) +1 Cj (04065 BOO‘S):| } AOBO

+ (apfs — Byars) —

2
is(%ﬂs 50045)} }A_SBS
0

cs
w
. 2
+ { aoﬁs - 50045) + cj (04055 50CY5)]

o3
B
+ { { offis — Bhors) — i~ (0ofis - ﬂoas)] 2
<
k

2
+ | —(aofs — Boas) — %(aoﬁs 560419)] } BSB_SQ,
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AM{B5BE =

2
{ [(04653 — Boars) — i—j(aoﬁé - ﬁoa's)]

2
(aofBs — Poas) + %S(af)ﬁiq - ﬁéa/s)} } AAG

2
+ [imoﬁs — Boas) — (s — ﬁaagﬂ } BBy,
CO w

(25)
There follows the identity
Mg[A5 Ay — B5By) =
¢
oo 1= (aofs = Boals)(at s — fhas) (26)

+(apBs — Boe's)(anfBs — Boas) } [A5* — Bg?).

The expression in the bracket at the right-hand side may be
simplified to the form

—(aoBs — o) (g fs — Byas) 27
+(ap By — Byds)(wPBs — Boas) = MM,
where in analogy with (13)
Ms = asfy — Bsa, (28)

was defined. Since a(x) and ((z) are linearly independent
in general there is Mg # 0. The singular cases My = 0 and
Mg = 0 are not treated here. There follows the identity

1

i [A575 - BiBg) = - (4347 - BiBG) . @9
4. Energy flux
Define the function
dp(z) da(x)
Mz) = ala) =2 - Ba) = (30)
Bull. Pol. Ac.: Tech. 55(4) 2007
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Since «(z) and S(z) are two linearly independent real solu-
tions of a differential equation M (x) is not identically zero.
Obviously My = M(0) and Mg = M(s). Consider the re-
lation between M (x) and E(x) which is essential in further
analysis. Differentiating (30) with respect to = we obtain

- d*B(x) d*a(z)
Cdr = o(z) dx? ~ Bl=) dx?

From (4) there follow the expressions for the second deriva-
tives of a(z) and [(x)

dM(x)

€19

d*a(x) 1 [dE(z) da(z) Solrals

de2 E(x) { ar  dr plz)al )}’ 32
d*B(x) 1 [dE(z)dB(z) 5
dz?  E(x) { ar de ¢ p(z)ﬂ(z)] '

Substitute (32) into (31) to obtain

(33)

Finally

1 dM(z) 1 dE(z)

M(z) dx :_E(z) dr (34

After integration of the above equation there follows

M(z) = X const. (35)

1
E(x)
Therefore, the identity (27) may be written in the form

Eg

- E J— I
o (A4S = B3BE] = 2 [ 47 - BB

Co

(36)

Analyse the above relation. Denote by o 49 and o g the stress-
es corresponding respectively to the wave running to the right
and to the wave running to the left in the region x < 0.
The elastic energy densities L 49, Lpo of unit cross-section,
per unit length in space corresponding to the waves (8) run-
ning in the homogeneous region are given by the elementary
formulae

0A00 A0 T0A00 A0
2F) ’ 2F, '’

where Ey denotes the elastic modulus for the homogeneous
region z < 0. The stress o(x) is proportional to the strain
o(z) = E(x)0u/0x. For the wave running to the right and
the wave running to the left we have respectively

Lag =

BO = 37

040z, t) = —EO%AO exp iw (t - %) ,

. (38)
opolz,t) = +E0EB0 exp iw <t + 3) .
Co Co
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Analogous formulae hold for the stress corresponding to the
waves running to the right and left in the region s < = < s+d

xr— S
Ccs ’

w
oas(x,t) = *ESgAfg exp iw (t —

. (39)
iw T —Ss
opg(x,t) = +Es— Bgexpiw (t + ) .
Cs Ccs
There follows
012120/10/40 UJ21201302§8
Lao= — Y 202070 40
A0 QC% ) B0 QCgEQ ) ( )
wiEg A% A% Ww2EsBLB%
[ae = — 28598 — 2 oSS 41
AS 20% 3 BS 20% ( )

Calculate in turn the elastic energy of the layers. The wave of
amplitude Ay carries some energy. Denote by ) 40 the ener-
gy of the layer thickness equal to the distance cg travelled by
this wave in the region x < 0 in the unit time. The energy
®po is the energy of the thickness equal to the distance cg
travelled by the wave of amplitude By in the same region in
unit time. Similarly calculate the elastic energies Qas, @ Bs
of a length equal to the distance cg travelled by the wave in
the unit time in the region x > s. Since the distance travelled
by the vaves in unit time in region z < 0 and s < z < s +d
equals respectively ¢y and cg, the energy densities (40) and
(41) must be multiplied by cg and cg, respectively. Therefore

2E0AoAg 2EyByB,
QAO:w7 QBO:w7 (42)
2co 2¢p
wiEg A% A% w?EsB:BY%
Qus = 55, Qps =55 @3
cg 2cg
Comparison with (36) proves that
Qa0 —Qpo = Qas — @Bs. (44)

Therefore the relation (29) expresses the conservation of elas-
tic energy of the waves. The total energy Q) 40 — Qo travel-
ling to the right in the region x < 0 equals the total energy
Qas —Qpg travelling to the right in the region s < x > s+d.

5. Infinitesimally thin extra layer

We base on the expressions derived in Section 2 for the am-
plitudes A%, B% in the virtual layer. According to the calcu-
lations of Section 2 these amplitudes do not depend on the
layer thicknesss d. Analyse the right inhomogeneous region
s+d < x < h+d. The continuity of displacement and stress
at © = s + d, cf. Fig 2 lead to the relations

d d
A% expiw <—> + B expiw (—) =
Ccs Ccs

ra(s) + BrA(s) ,

, . (45)
w |, . d w_, , d
——Ajexpiw | —— | + —Bgexpiw | — | =
Cs Cs Cs Cs
AR/ (s) + BRf'(s).
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The amplitudes A§, B§ are known functions of the ampli-
tudes Ay, By, which are given in advance. The above relations
allow to calculate the amplitudes A%,, B}, for each d. It must
be noted that the extra layer was artificially introduced with
the only purpose to discover the meaning to the displacement
in the inhomogeneous region. The extra layer will fulfill its
duty for each d. Especially simple formulae are obtained if
the thickness d is infinitesimal. Therefore instead of arbitrary
d we assume d — 0. In such situation relations (45) reduce
to

As + By = Aga(s) + BrA(s) ,

; ; 46
LW g ) 4 B s) . O
Ccs Ccs

Note that (46) holds not only for d — 0, but also for the more
general situation

d
w— = 2.
cs

(47)

corresponding to the finite thickness of the extra layer.
The left-hand side of the system of Eqs. (46) coincides
with the right-hand side of the system (22). Therefore,

(Ar — A1) als) + (Br — B) B(s) =0,
(A — A7)/ (s) + (By - By) B(5) = 0.
The values a(s), 5(s), &/(s), §'(s) are known, and the am-

plitudes A}, B}, must be calculated. Since «(§), A(s) are
linearly independent there is

(48)

AR = AL, Br=Bj. (49)

The amplitudes in the left and the right regions are the same.
The presence of the infinitesimal extra layer does not influ-
ence the time-dependent displacement. When calculating the
displacement in the homogeneous region = > h we face the
same situation as in Chapter 2. The formulae (23) and (24)
may be used again, but instead of = s must be taken z = h.
The following expressions for A3, B3 are obtained

" c
2Mo A3 = { ~lafBh — Boen] + [, — oo,

iw

— —[owofn — Boan] + C—h[%ﬂ;z - 5004%]} Ap
Co Co

+ {~labh — Byon] + [, — Bha]
w

+— o [aoBn — Boan] — Z—O[Oéoﬂh

Ch
[0y, — Bho]

600[;1] BS’
(50)
2MoB; = {—[agﬁh — Bhan] —

*E[Oéoﬂh — Boan] — C—[Oéoﬂh 50042]} A
Co Co
+ {~labh — Byon] = [, — Bha]

iw

+—[aoBn — Boan] + C—h[aoﬂﬁz - 5004%]} Bg.
Co Co
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The complex-valued A3, B; are the amplitudes of the two
waves running to the right and to the left, respectively, in the
homogeneous region x > h.

Pass to the calculation of the two products AZA_;‘L B;;B_;;
The first is equal to the squared real amplitude of the wave
running to the right. The second is equal to the squared real
amplitude of the wave running to the left. In accord with (23)
and (24) we have

AMGAZ A =
Ch, 2
{ [(Oé/oﬂh — Boan) — a(aoﬂﬁ - ﬁoaﬁl)}
ﬂ
Co

2
(a0 fBh — Booun) + %(0/05;1 - 56‘%)] } AGAG

2
+ [ aoBhn — Byon) + Z—O(Oéoﬁh - 50%)]

Ch

2
+ B, — Bpay,) + i Zo(aoﬁh 50042)] }ASB_S

Ch ’

2
- ~ Bhap) — i (o - ﬁ%aZ)] }11383

U
Ch / ’ 2
+ [ Oéoﬂh - ﬂoah) + a(aoﬂh - 6004}1)]

[:
B

+ { [ o Bn — Boan) — Z%(aoﬁh - ﬁoah)] 2
|

2
*L@ﬁhﬂww‘ﬂ%%%%ﬂ}%ﬁy
0 w
AMZB; B =
2
{ [(a’oﬁh — Boom) — Z—Z(aoﬁg = ﬁoaﬁl)}

w
Co

2
(a0 fh — Pooun) + i}—h(aﬁﬁh ﬁoah)] } AGAG

2
+ [ oBn — Boan) + z—o(aoﬁh - ﬁoah)]

ch

2
ch =
+ (apBy, — Boo,) +i 0 (Oéoﬂh 5004?1)] }AOBO

2
C C N
+ h aoﬂh oah) Co (0405;1 5004;1)] }ASBS

w
Ch / ’ ?
+ [ aoBh — Boan) + 5(0‘05;1 - 500%)]

+

-

{

b
+{[%mo%>z§wwhﬂwﬂ2

|

{

e

2
C +BF
o) — Lt B BB,
(51)
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