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On the one-dimensional wave propagation

in inhomogeneous elastic layer
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Abstract. The standard approach to the wave propagation in an inhomogeneous elastic layer leads to the displacement in a form of a

product of a function of space and a harmonic function of time. This product represents the standing, and not the running wave. The part

depending on the space variable is governed by the linear ordinary second order differential equation. In order to calculate the propagation

speed in the present paper the inhomogeneous material is separated by a plane into two parts. Between the two inhomogeneous parts the

virtual homogeneous elastic extra layer is added. The elasticity modulus and the mass density of the extra layer have the same values as

the inhomogeneous material on the separation plane. In further calculations the extra layer is assumed to be infinitesimally thin. The virtual

layer allows to decompose the motion into two waves: a wave running to the right and a wave running to the left. Energy conservation

equation is derived.

1. Introduction

The one-dimensional time-dependent displacement in the ho-

mogeneous linear elastic layer is expressed by a simple formu-

la. In this formula the propagation speed is explicitly present

and the motion of the discontinuity surface separating the

disturbed and undisturbed regions may be easily defined. In

contrast to this the expression for a displacement in the inho-

mogeneous elastic layer has entirely different form in which

the propagation speed is not explicitly present. In connection

with this fact the analysis of wave propagation in inhomoge-

neous layer demands special treatment. In the present paper

such treatment is proposed and discussed. Preliminary analy-

sis of the problem has been given in [1]. Standard approach

in acoustics is based on replacement the inhomogeneous ma-

terial by material piecewise homogeneous, cf. e.g. [2].

2. Inhomogeneous region

The inhomogeneous elastic layer of density ρ(x) and elastic

modulus E(x) is situated between x = 0 and x = h, where h
is fixed. Consider a one-dimensional time-dependent motion

of this layer. The longitudinal displacement u is the function

of time t and spatial variable x, u = u(x, t). The function

u(x, t) satisfies the linear differential equation of motion

∂

∂x

[

E(x)
∂u(x, t)

∂x

]

= ρ(x)
∂2u(x, t)

∂t2
. (1)

It is assumed, that E(x) and ρ(x) for each x are not equal

zero. The displacement is expected in the form

u(x, t) = v(x) exp iωt. (2)

Here ω denotes the circular frequency. The actual displace-

ment is the real part of the complex-valued u(x, t). In accord

with the partial differential equation (1) the function v(x) sat-

isfies the ordinary differential equation

d

dx

[

E(x)
dv(x)

dx

]

+ ω2ρ(x)v(x) = 0. (3)

Denote the two linearly independent real solutions of (3)

by α(x) and β(x), respectively. They satisfy the differential

equations

d

dx

[

E(x)
dα(x)

dx

]

+ ω2ρ(x)α(x) = 0,

d

dx

[

E(x)
dβ(x)

dx

]

+ ω2ρ(x)β(x) = 0.

(4)

Therefore in the inhomogeneous material (for 0 < x < h)

the displacement u(x, t) is given by the expression

u(x, t) = Aα(x) exp iωt + Bβ(x) exp iωt, (5)

where A and B are complex-valued constants. Note that the

wave speeds are not explicitly present in this expression.

Assume that at the left and the right side of the inhomoge-

neous region two different homogeneous regions are situated,

cf Fig. 1.

In the homogeneous region for x < 0 the elastic mod-

ulus and the density are constant ρ(x) = ρ0 = const,
E(x) = E0 = const. In the homogeneous region for x > h
there is ρ(x) = ρ2 = const, E(x) = E2 = const. On the

boundaries x = 0 and x = h the elastic modulus and the den-

sity are assumed to have no jump. The equations of motion

for the homogeneous regions are respectively

E0

∂2u(x, t)

∂x2
= ρ0

∂2u(x, t)

∂t2
for x < 0, (6)
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E2

∂2u(x, t)

∂x2
= ρ2

∂2u(x, t)

∂t2
for x > h, (7)

Fig. 1. Homogeneous and inhomogeneous regions

The following complex-valued displacements u(x, t)

u(x, t) = A0 exp iω

(

t −
x

c0

)

+ B0 exp iω

(

t +
x

c0

)

, (8)

u(x, t) = A2 exp iω

(

t −
x − h

c2

)

+B2 exp iω

(

t +
x − h

c2

)

(9)

satisfy the equations of motion in the homogeneous regions

for x < 0 and x > h, respectively. In (8) and (9)

c0 =

√

E0

ρ0

, c2 =

√

E2

ρ2

, (10)

are the propagation speeds in the homogeneous regions x < 0
and x > h, respectively. The actual displacements equals the

real part of the complex-valued functions u(x, t), as given by

(8) and (9). The expressions in (8) and (9) have the form of

sinusoidal waves propagating to the left and to the right. The

term proportional to A0 represents the incident wave coming

from the left, and the term proportional to B2 represents the

incident wave coming from the right. The term proportional

to A2 represents the transmitted wave running to the right,

and the term proportional to B0 represents the transmitted

wave running to the left. Further we assume that A0 and B0

are given in advance. The propagation speeds c0 and c2, are

explicitly present in the formula for the displacement.

In each region the stress equals E(x)∂u(x, t)/∂x. The ac-

tual stress is the real part of this complex-valued expression.

At the separation plane x = 0 both the displacement u and

the stress must be continuous. Since the values of the elastic

modulus E(x) have the same value on both sides of x = 0,

the continuity relations reduce to

A0 + B0 = Aα (0) + Bβ (0) ,

−
iω

c0

A0 +
iω

c0

B0 = A
dα (0)

dx
+ B

dβ (0)

dx
.

(11)

The above relations allow to express the amplitudes (A, B) in

the inhomogeneous region by the amplitudes (A0, B0). There

is

A =
1

M0

{

+

[

β′

0
+

iω

c0

β0

]

A0 +

[

β′

0
−

iω

c0

β0

]

B0

}

,

B =
1

M0

{

−

[

α′

0
+

iω

c0

α0

]

A0 −

[

α′

0
−

iω

c0

α0

]

B0

}

,

(12)

where

M0 = α0β
′

0
− β0α

′

0
, (13)

α0 = α (0) , β0 = β (0) , α′

0
=

dα (0)

dx
, β′

0
=

dβ (0)

dx
. (14)

Since α(x) and β(x) are linearly independent in general there

is M0 6= 0. The case M0 = 0 demands special treatment.

In accord with (5) for the inhomogeneous region

0 < x < h the displacement is given by the expression

u(x, t) =
1

M0

{

+

[

β′

0
+

iω

c0

β0

]

A0 +

[

β′

0
−

iω

c0

β0

]

B0

}

α(x) exp iωt,

+
1

M0

{

−

[

α′

0
+

iω

c0

α0

]

A0 −

[

α′

0
−

iω

c0

α0

]

B0

}

β(x) exp iωt.
(15)

The constants A2 and B2 present in the expression (9) for

the displacement in the homogeneous region x > h may be

expressed by A0 and B0 . The coresponding formulae are not

necessary for further calculations, therefore they are not quot-

ed here. The expression (15) does not expose the fact, that

the displacement u(x, t) is a propagating wave, or more ex-

actly: sum of two sinusoidal propagating vaves. Their speeds

and amplitudes are not known. Entirely different approach

must be applied to the motion of propagating, time-dependent

discontinuity surface. However in the present paper only the

sinusoidal waves are treated.

The displacement (15) has a form of a product of two

functions: a function of spatial variable x and a function of

time t, therefore a form of a standing wave. On the other hand,

a possibility of separation of the motion into a wave running

to the right and a wave running to the left in each material, at

least for some inhomogeneities, is evident. The propagation

speed c for 0 < x < h must be a function of x, c = c(x).
This speed is not present in (15). Deriving a separation valid

for the inhomogeneous material is the purpose of the further

analysis in the present paper. Note that for the homogeneous

material the separation is trivial.
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3. Virtual homogeneous layer

Consider now the more involved case, when without chang-

ing the properties of the material the homogeneous layer of

thickness d is added at x = s. This is a virtual layer not

present in the real system. Its thickness d is arbitrary, and

in particular case d may tend to zero. It is assumed that the

density of the virtual layer coincides with the density of the

inhomogeneous layer at x = s. Similarly the elastic modulus

of the virtual layer coincides with the elastic modulus of the

inhomogeneous layer at x = s. The only purpose of adding

the virtual layer is to make possible the discussion of wave

propagation in the inhomogeneous region and to calculate the

propagation speed c(x) in the inhomogeneous layer.

The extra layer divides the inhomogeneous region into two

parts, cf. Fig. 2. All amplitudes corresponding to the above

situation have the superscript ∗. In the homogeneous region

x < 0 the density ρ(x) and the elastic modulus E(x) are con-

stant. There propagate two waves expressed by the two terms

of the relation

u = A∗

0
exp iω

(

t −
x − s

c0

)

+ B∗

0
exp iω

(

t +
x − s

c0

)

.

(16)

In general the two amplitudes A∗

0
and B∗

0
are complex valued.

For convenience in the expression was written x-s instead of

x. This is equivalent to a change of the amplitudes. In the

inhomogeneous region 0 < x < s the displacement is given

by the formula

u = A∗

Lα(x) exp iωt + B∗

Lβ(x) exp iωt, (17)

where the functions α(x) and β(x) are the two linearly in-

dependent real solutions satisfying the differential equation

(3), and A∗

L
and B∗

L
are two arbitrary complex constants. The

subscript L has been added, since the amplitudes are in gen-

eral different from A, B used in Chapter 1. In the region

s + d < x < h + d the amplitudes will have the values A∗

R

and B∗

R
differing from A∗

L
and B∗

L
and from A, B.

Fig. 2. System with the virtual homogeneous layer

Since on the plane x = 0 both the displacement and the

stress are continuous at x = 0 the amplitudes must satisfy the

algebraic relations

A∗

Lα(0) + B∗

Lβ(0) = A∗

0
+ B∗

0
,

A∗

Lα′(0) + B∗

Lβ′(0) = −
iω

c0

A∗

0
+

iω

c0

B∗

0
.

(18)

Note that the two linearly independent solutions α(x) and

β(x) of (4) for each inhomogeneity and given frequency ω
always exist. For each case their numerical approximation may

be calculated, for some particular inhomogeneities the analyt-

ical forms of α(x) and β(x) are known. If these forms are

known, then the amplitudes of the waves in the extra layer

are known functions of the amplitudes of the waves in the re-

gion x < 01. Using the shorthand notation (14) the following

expressions are obtained

A∗

L =
1

M0

{

+

[

β′

0
+

iω

c0

β0

]

A∗

0
+

[

β′

0
−

iω

c0

β0

]

B∗

0

}

,

B∗

L =
1

M0

{

−

[

α′

0
+

iω

c0

α0

]

A∗

0
−

[

α′

0
−

iω

c0

α0

]

B∗

0

}

.

(19)

The parameter M0 is defined by (13).

The virtual layer s < x < x + d is homogeneous. There

propagate two waves with known propagation speed cs, which

is the propagation speed in the virtual layer. The first wave is

running to the right, the second to the left. The displacement

is

u = A∗

S exp iω

(

t −
x − s

cS

)

+ B∗

S exp iω

(

t +
x − s

cS

)

.

(20)

cS =

√

E(s)

ρ(s)
. (21)

The complex-valued A∗

S
, B∗

S
are the amplitudes of both

waves, respectively. Concentrate on the separation plane x =
s. On this plane both the displacement and the stress are con-

tinuous. Since the elasticity modulus E(x) has the same value

at both sides of x = s the amplitudes satisfy the algebraic

equations

A∗

Lα(s) + B∗

L(s) = A∗

S + B∗

S ,

A∗

Lα′(s) + B∗

Lβ′(s) = −
iω

cS

A∗

S +
iω

cS

B∗

S .
(22)

The above equations allow to express the amplitudes A∗

S
, B∗

S

by the amplitudes A∗

L
, B∗

L

2A∗

S =
[

αS −
cS

iω
α′

S

]

A∗

L +
[

βS −
cS

iω
β′

S

]

B∗

L,

2B∗

S =
[

αS +
cS

iω
α′

S

]

A∗

L +
[

βS +
cS

iω
β′

S

]

B∗

L.
(23)

Taking into account the formulae (19) and chaining the results

the following expressions for the amplitudes are obtained

1E.g. the inhomogeneity E(x) = 1
x2+1

, ω2ρ(x) = 2

(x2+1)2
leads to the equation

d
2
v(x)

dx2
−

2x

x2+1
dv(x)

dx
+ 2

x2+1
v(x) = 0 quoted in [3] as Eq. 2.227.

Its two independent solutions are α(x) = x, β(x) = x2
− 1and functions α(0), β(0), α′(0), β′(0) in (18) are known.
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2M0A
∗

S =
{

−[α′

0
βS − β′

0
αS ] +

cS

iω
[α′

0
β′

S − β′

0
α′

S ]

−
iω

c0

[α0βS − β0αS ] +
cS

c0

[α0β
′

S − β0α
′

S ]

}

A∗

0

+
{

−[α′

0
βS − β′

0
αS ] +

cS

iω
[α′

0
β′

S − β′

0
α′

S ]

+
iω

c0

[α0βS − β0αS ] −
cS

c0

[α0β
′

S − β0α
′

S ]

}

B∗

0
,

2M0B
∗

S =
{

−[α′

0
βS − β′

0
αS ] −

cS

iω
[α′

0
β′

S − β′

0
α′

S ]

−
iω

c0

[α0βS − β0αS ] −
cS

c0

[α0β
′

S − β0α
′

S ]

}

A∗

0

+
{

−[α′

0
βS − β′

0
αS ] −

cS

iω
[α′

0
β′

S − β′

0
α′

S ]

+
iω

c0

[α0βS − β0αS ] +
cS

c0

[α0β
′

S − β0α
′

S ]

}

B∗

0
.

(24)

The complex-valued A∗

S
, B∗

S
have been expressed by the the

amplitudes of the waves running in the homogeneous region

x < 0. Note that the formulae are valid for any thickness d.

The expression (20) represents the waves in the homoge-

neous region s < x < s + d. The wave of amplitude A∗

S
is

running to the right, and the wave of amplitude B∗

S
is running

to the left. They have the same speeds, defined by the relation

(21). It is obvious, that the amplitudes depend on the ampli-

tudes in the region x < 0. Note, that the expressions for the

amplitudes A∗

S
, B∗

S
contain the values of the functions α(x)

and β(x) and their derivatives α′(x) and β′(x) at x = s.

The actual displacement equals the real part of the

complex-valued u(x, t). Pass to the calculation of the real

products A∗

S
A∗

S
, B∗

S
B∗

S
, equal to the squared real amplitudes.

In accord with (23) and (24) we have

4M2

0
A∗

SA∗

S
=

{

[

(α′

0
βS − β′

0
αS) −

cS

c0

(α0β
′

S − β0α
′

S)

]2

+

[

ω

c0

(α0βS − β0αS) +
cS

ω
(α′

0
β′

S − β′

0
α′

S)

]2
}

A∗

0
A∗

0

+

{

[

(α′

0
βS − β′

0
αS) + i

ω

c0

(α0βS − β0αS)

]2

+

[

cS

ω
(α′

0
β′

S − β′

0
α′

S) + i
cS

c0

(α0β
′

S − β0α
′

S)

]2
}

A∗

0
B∗

0

+

{

[

(α′

0
βS − β′

0
αS) − i

ω

c0

(α0βS − β0αS)

]2

+

[

cS

ω
(α′

0
β′

S − β′

0
α′

S) − i
cS

c0

(α0β
′

S − β0α
′

S)

]2
}

A∗

0
B∗

0

+

{

[

(α′

0
βS − β′

0
αS) +

cS

c0

(α0β
′

S − β0α
′

S)

]2

+

[

ω

c0

(α0βS − β0αS) −
cS

ω
(α′

0
β′

S − β′

0
α′

S)

]2
}

B∗

0
B∗

0

2

,

4M2

0
B∗

SB∗

S
=

{

[

(α′

0
βS − β′

0
αS) −

cS

c0

(α0β
′

S − β0α
′

S)

]2

+

[

ω

c0

(α0βS − β0αS) +
cS

ω
(α′

0
β′

S − β′

0
α′

S)

]2
}

A∗

0
A∗

0

+

{

[

(α′

0
βS − β′

0
αS) + i

ω

c0

(α0βS − β0αS)

]2

+

[

cS

ω
(α′

0
β′

S − β′

0
α′

S) + i
cS

c0

(α0β
′

S − β0α
′

S)

]2
}

A∗

0
B∗

0

+

{

[

(α′

0
βS − β′

0
αS) − i

ω

c0

(α0βS − β0αS)

]2

+

[

cS

ω
(α′

0
β′

S − β′

0
α′

S) − i
cS

c0

(α0β
′

S − β0α
′

S)

]2
}

A∗

0
B∗

0

+

{

[

(α′

0
βS − β′

0
αS) +

cS

c0

(α0β
′

S − β0α
′

S)

]2

+

[

ω

c0

(α0βS − β0αS) −
cS

ω
(α′

0
β′

S − β′

0
α′

S)

]2
}

B∗

0
B∗

0

2

,

(25)

There follows the identity

M2

0
[A∗

SA∗

S
− B∗

SB∗

S
] =

cS

c0

{−(α0β
′

S − β0α
′

S)(α′

0
βS − β′

0
αS)

+(α′

0
β′

S − β′

0
α′

S)(α0βS − β0αS)} [A∗

0

2 − B∗

0

2].

(26)

The expression in the bracket at the right-hand side may be

simplified to the form

−(α0β
′

S − β0α
′

S)(α′

0
βS − β′

0
αS)

+(α′

0
β′

S − β′

0
α′

S)(α0βS − β0αS) = M0MS,
(27)

where in analogy with (13)

MS = αSβ′

S − βSα′

S , (28)

was defined. Since α(x) and β(x) are linearly independent

in general there is MS 6= 0. The singular cases M0 = 0 and

MS = 0 are not treated here. There follows the identity

1

cSMS

[

A∗

SA∗

S
− B∗

SB∗

S

]

=
1

c0M0

[

A∗

0
A∗

0
− B∗

0
B∗

0

]

. (29)

4. Energy flux

Define the function

M(x) = α(x)
dβ(x)

dx
− β(x)

dα(x)

dx
. (30)
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Since α(x) and β(x) are two linearly independent real solu-

tions of a differential equation M(x) is not identically zero.

Obviously M0 = M(0) and MS = M(s). Consider the re-

lation between M(x) and E(x) which is essential in further

analysis. Differentiating (30) with respect to x we obtain

dM(x)

dx
= α(x)

d2β(x)

dx2
− β(x)

d2α(x)

dx2
. (31)

From (4) there follow the expressions for the second deriva-

tives of α(x) and β(x)

d2α(x)

dx2
= −

1

E(x)

[

dE(x)

dx

dα(x)

dx
+ ω2ρ(x)α(x)

]

,

d2β(x)

dx2
= −

1

E(x)

[

dE(x)

dx

dβ(x)

dx
+ ω2ρ(x)β(x)

]

.

(32)

Substitute (32) into (31) to obtain

dM(x)

dx
= −α(x)

1

E(x)

dE(x)

dx

dβ(x)

dx

+β(x)
1

E(x)

dE(x)

dx

dα(x)

dx
= −

1

E(x)

dE(x)

dx
M(x).

(33)

Finally

1

M(x)

dM(x)

dx
= −

1

E(x)

dE(x)

dx
. (34)

After integration of the above equation there follows

M(x) =
1

E(x)
× const. (35)

Therefore, the identity (27) may be written in the form

ES

cS

[

A∗

SA∗

S
− B∗

SB∗

S

]

=
E0

c0

[

A∗

0
A∗

0
− B∗

0
B∗

0

]

. (36)

Analyse the above relation. Denote by σA0 and σB0 the stress-

es corresponding respectively to the wave running to the right

and to the wave running to the left in the region x < 0.

The elastic energy densities LA0, LB0 of unit cross-section,

per unit length in space corresponding to the waves (8) run-

ning in the homogeneous region are given by the elementary

formulae

LA0 =
σA0σA0

2E0

, LB0 =
σA0σA0

2E0

, (37)

where E0 denotes the elastic modulus for the homogeneous

region x < 0. The stress σ(x) is proportional to the strain

σ(x) = E(x)∂u/∂x. For the wave running to the right and

the wave running to the left we have respectively

σA0
(x, t) = −E0

iω

c0

A0 exp iω

(

t −
x

c0

)

,

σB0
(x, t) = +E0

iω

c0

B0 exp iω

(

t +
x

c0

)

.

(38)

Analogous formulae hold for the stress corresponding to the

waves running to the right and left in the region s < x < s+d

σAS(x, t) = −ES

iω

cS

A∗

S exp iω

(

t −
x − s

cS

)

,

σBS(x, t) = +ES

iω

cS

B∗

S exp iω

(

t +
x − s

cS

)

.

(39)

There follows

LA0 =
ω2E0A0A0

2c2

0

, LB0 =
ω2E0B0B0

2c2

0
E0

, (40)

LAS =
ω2ESA∗

S
A∗

S

2c2

S

, LBS =
ω2ESB∗

S
B∗

S

2c2

S

. (41)

Calculate in turn the elastic energy of the layers. The wave of

amplitude A0 carries some energy. Denote by QA0 the ener-

gy of the layer thickness equal to the distance c0 travelled by

this wave in the region x < 0 in the unit time. The energy

QB0 is the energy of the thickness equal to the distance c0

travelled by the wave of amplitude B0 in the same region in

unit time. Similarly calculate the elastic energies QAS , QBS

of a length equal to the distance cS travelled by the wave in

the unit time in the region x > s. Since the distance travelled

by the vaves in unit time in region x < 0 and s < x < s + d
equals respectively c0 and cS , the energy densities (40) and

(41) must be multiplied by c0 and cS , respectively. Therefore

QA0 =
ω2E0A0A0

2c0

, QB0 =
ω2E0B0B0

2c0

, (42)

QAS =
ω2ESA∗

S
A∗

S

2c
S

, QBS =
ω2ESB∗

S
B∗

S

2c
S

. (43)

Comparison with (36) proves that

QA0 − QB0 = QAS − QBS . (44)

Therefore the relation (29) expresses the conservation of elas-

tic energy of the waves. The total energy QA0 − QB0 travel-

ling to the right in the region x < 0 equals the total energy

QAS−QBS travelling to the right in the region s < x > s+d.

5. Infinitesimally thin extra layer

We base on the expressions derived in Section 2 for the am-

plitudes A∗

S
, B∗

S
in the virtual layer. According to the calcu-

lations of Section 2 these amplitudes do not depend on the

layer thicknesss d. Analyse the right inhomogeneous region

s+ d < x < h+ d. The continuity of displacement and stress

at x = s + d, cf. Fig 2 lead to the relations

A∗

S exp iω

(

−
d

cS

)

+ B∗

S exp iω

(

d

cS

)

=

A∗

Rα(s) + B∗

Rβ(s) ,

−
iω

cS

A∗

S exp iω

(

−
d

cS

)

+
iω

cS

B∗

S exp iω

(

d

cS

)

=

A∗

Rα′(s) + B∗

Rβ′(s).

(45)
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The amplitudes A∗

S
, B∗

S
are known functions of the ampli-

tudes A0, B0, which are given in advance. The above relations

allow to calculate the amplitudes A∗

R
, B∗

R
for each d. It must

be noted that the extra layer was artificially introduced with

the only purpose to discover the meaning to the displacement

in the inhomogeneous region. The extra layer will fulfill its

duty for each d. Especially simple formulae are obtained if

the thickness d is infinitesimal. Therefore instead of arbitrary

d we assume d → 0. In such situation relations (45) reduce

to

A∗

S + B∗

S = A∗

Rα(s) + B∗

Rβ(s) ,

−
iω

cS

A∗

S +
iω

cS

B∗

S = A∗

Rα′(s) + B∗

Rβ′(s) .
(46)

Note that (46) holds not only for d → 0, but also for the more

general situation

ω
d

cS

= 2π. (47)

corresponding to the finite thickness of the extra layer.

The left-hand side of the system of Eqs. (46) coincides

with the right-hand side of the system (22). Therefore,

(A∗

R − A∗

L) α(s) + (B∗

R − B∗

L)β(s) = 0 ,

(A∗

R − A∗

L)α′(s) + (B∗

R − B∗

L) β′(s) = 0.
(48)

The values α(s), β(s), α′(s), β′(s) are known, and the am-

plitudes A∗

R
, B∗

R
must be calculated. Since α(ξ), β(s) are

linearly independent there is

A∗

R = A∗

L, B∗

R = B∗

L. (49)

The amplitudes in the left and the right regions are the same.

The presence of the infinitesimal extra layer does not influ-

ence the time-dependent displacement. When calculating the

displacement in the homogeneous region x > h we face the

same situation as in Chapter 2. The formulae (23) and (24)

may be used again, but instead of x = s must be taken x = h.

The following expressions for A∗

2
, B∗

2
are obtained

2M0A
∗

2
=

{

−[α′

0
βh − β′

0
αh] +

ch

iω
[α′

0
β′

h − β′

0
α′

h]

−
iω

c0

[α0βh − β0αh] +
ch

c0

[α0β
′

h − β0α
′

h]

}

A∗

0

+
{

−[α′

0
βh − β′

0
αh] +

ch

iω
[α′

0
β′

h − β′

0
α′

h]

+
iω

c0

[α0βh − β0αh] −
ch

c0

[α0β
′

h − β0α
′

h]

}

B∗

0
,

2M0B
∗

2
=

{

−[α′

0
βh − β′

0
αh] −

ch

iω
[α′

0
β′

h − β′

0
α′

h]

−
iω

c0

[α0βh − β0αh] −
ch

c0

[α0β
′

h − β0α
′

h]

}

A∗

0

+
{

−[α′

0
βh − β′

0
αh] −

ch

iω
[α′

0
β′

h − β′

0
α′

h]

+
iω

c0

[α0βh − β0αh] +
ch

c0

[α0β
′

h − β0α
′

h]

}

B∗

0
.

(50)

The complex-valued A∗

2
, B∗

2
are the amplitudes of the two

waves running to the right and to the left, respectively, in the

homogeneous region x > h.

Pass to the calculation of the two products A∗

h
A∗

h
, B∗

h
B∗

h
.

The first is equal to the squared real amplitude of the wave

running to the right. The second is equal to the squared real

amplitude of the wave running to the left. In accord with (23)

and (24) we have

4M2

0
A∗

2
A∗

2
=

{

[

(α′

0
βh − β′

0
αh) −

ch

c0

(α0β
′

h − β0α
′

h)

]2

+

[

ω

c0

(α0βh − β0αh) +
ch

ω
(α′

0
β′

h − β′

0
α′

h)

]2
}

A∗

0
A∗

0

+

{

[

(α′

0
βh − β′

0
αh) + i

ω

c0

(α0βh − β0αh)

]2

+

[

ch

ω
(α′

0
β′

h − β′

0
α′

h) + i
ch

c0

(α0β
′

h − β0α
′

h)

]2
}

A∗

0
B∗

0

+

{

[

(α′

0
βh − β′

0
αh) − i

ω

c0

(α0βh − β0αh)

]2

+

[

ch

ω
(α′

0
β′

h − β′

0
α′

h) − i
ch

c0

(α0β
′

h − β0α
′

h)

]2
}

A∗

0
B∗

0

+

{

[

(α′

0
βh − β′

0
αh) +

ch

c0

(α0β
′

h − β0α
′

h)

]2

+

[

ω

c0

(α0βh − β0αh) −
ch

ω
(α′

0
β′

h − β′

0
α′

h)

]2
}

B∗

0
B∗

0
,

4M2

0
B∗

hB∗

h
=

{

[

(α′

0
βh − β′

0
αh) −

ch

c0

(α0β
′

h − β0α
′

h)

]2

+

[

ω

c0

(α0βh − β0αh) +
ch

ω
(α′

0
β′

h − β′

0
α′

h)

]2
}

A∗

0
A∗

0

+

{

[

(α′

0
βh − β′

0
αh) + i

ω

c0

(α0βh − β0αh)

]2

+

[

ch

ω
(α′

0
β′

h − β′

0
α′

h) + i
ch

c0

(α0β
′

h − β0α
′

h)

]2
}

A∗

0
B∗

0

+

{

[

(α′

0
βh − β′

0
αh) − i

ω

c0

(α0βh − β0αh)

]2

+

[

ch

ω
(α′

0
β′

h − β′

0
α′

h) − i
ch

c0

(α0β
′

h − β0α
′

h)

]2
}

A∗

0
B∗

0

+

{

[

(α′

0
βh − β′

0
αh) +

ch

c0

(α0β
′

h − β0α
′

h)

]2

+

[

ω

c0

(α0βh − β0αh) −
ch

ω
(α′

0
β′

h − β′

0
α′

h)

]2
}

B∗

0
B∗

0
.

(51)
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The above products express the power of the transmitted

waves.

REFERENCES

[1] Z. Wesołowski, “Wave reflection on a continuous transition

zone between two homogeneous materials”, Acta Mechanica

105, 119–131 (1994).

[2] S. Kaliski, Vibrations and Waves, vol III, PWN, Warszawa,

1986, (in Polish).

[3] E. Kamke, Differentialgleichungen, Akademische Verlagsge-

sellschaft, Leipzig, 1943.

Bull. Pol. Ac.: Tech. 55(4) 2007 403


