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Abstract. Dissipative Particle Dynamics (DPD) is a simulation method at mesoscopic scales that bridges the gap between molecular dynamic
and continuum hydrodynamics. It can simulate efficiently complex liquids and dense suspensions using only a few thousands of virtual
particles and at speed-up factors of more than one hundred thousands compared to Molecular Dynamics. Lowe’s approach provides a power
alternative to the usual DPD integrating schemes. Here, we demonstrate the details and potential of Lowe’s scheme. We compute viscosit
diffusivity and Schmidt number values and we present comparison of wormlike chain models under shear with experimental and Brownian
Dynamics results foh-phage DNA.
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1. Multiscale modelling The particles interact with each other through a set of pre-
scribed (conservative and stochastic) and velocity-dependent
TheMolecular Dynamics (MD) methodis suitable forsimulatingorces [4,5]. Specifically, there are three types of forces acting
very small volumes of liquid flow, with linear dimensions of theon each dissipative particle: (a) a purely repulsive conserva-
order of 100 nm or less and for time intervals of several tens @f/e force, (b) a dissipative force that reduces velocity differ-
nanoseconds. It can deal effectively with nano-domains anddsices between the particles, and (c) a stochastic force directed
perhapsthe only accurate approachinsimulating flowsinvolvingong the line connecting the centers of the particles. The last
very high shear where the continuum or the Newtoniafwo forces effectively implement a thermostat so that thermal
hypothesis may not be valid. For length scales less thamyuilibrium is achieved. Correspondingly, the amplitude of
approximately ten molecules the continuum hypothesis brealigese forces is dictated by the fluctuation-dissipation theorem
down for liquids [1], and MD should be employed to simulatg5] that ensures that in thermodynamic equilibrium the system
the atomistic behaviour of such a system. For larger systemgill have a canonical distribution. All three forces are modu-
however, multiscale approaches that rely on the efficiency @dted by a weight function which specifies the range of interac-
continuum-based discretizations have to be employed. To thign or cut-off radius-. between the particles and renders the
end, the coupling of MD to Navier-Stokes equations can extengteraction local.
the range of applicability of both approaches and provide a A conceptual picture then of DPD is that of soft micro-
unifying description of liquid flows from nano-scales to largeispheres randomly moving around but following a preferred di-
scales. Such efforthas been underway by many research gropgistion dictated by the conservative forces. DPD can be inter-
(e.g. Nie et al., 2004 [2], and references therein); however, thgeted as a Lagrangian discretization of the equations of fluc-
proposed algorithms are rather complicated and not fullyjating hydrodynamics as the particles simultaneously follow
satisfactory. Analternative, potentiallyverypowerfulandsimplgne classical hydrodynamic flow while exhibiting thermal fluc-

approach, is a method developed in the mid 1990s primarily #yations. The consistency of the fluctuations is governed by the
Europe: the dissipative particle dynamics (MD) method. It hagrinciples of statistical mechanics.

features of both the MD and the lattice Boltzmann method
(LBM) [3], and can be thought of as a coarse-grained version .
MD, but it employs dissipative and stochastic forces to accou%‘ Complex fluids
for the eliminated degrees of freedom. The initial model wageveral complex fluid systems in industrial and biological ap-
proposed by Hoogerbrugge & Koelman [4] as a simulatioplications (DNA chains, polymer gels, lubrication) are char-
method to avoid the artifacts associated with traditional LBl\écterized by inherent time and |ength scales that range from
simulations while capturing spatio-temporal hydrodynamighe atomistic level to a millimeter and beyond, often spanning
scales much larger than those achievable with MD. several orders of magnitude. Traditional molecular dynamics
The dissipative particle dynamics (DPD) model consisttechniques attack the problem at the microscopic level, while
of particles which correspond to coarse-grained entities, thesntinuum models may fail to capture smaller interactions be-
representing molecular clusters rather than individual atomsause they resort to averaging techniques or pre-defined as-
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sociation rules. Dilute polymer solutions are a typical examig. 2 that is a soft, repulsive-only interaction. A linear ap-
ple, since individual polymer chains form a group of moleculeproximation of this is as follows [7]F§; = a;;(1 —r;;)e;; for
large by atomic standards but still governed by forces similar tg; < r. = 1 and is otherwise zero. Unlike the hard Lennard-
intermolecular ones. Therefore, they form large repeated unitsnes potential which is unbounded-at 0, the soft potential
exhibiting slow dynamics with possibly non-linear interaction@mployed in DPD has a finite valug; atr = 0. To find the
(Fig. 1). value ofa;; we follow the process laid out by Groot & Warren
[7] and Groot & Rabone [8], i.e., we match the dimensionless
compressibility of the DPD system with that of the MD sys-

tem, namely
R
kpTopp | Oporp ] T )
_ 1 |:(9PMD:| |:8pMD] — Ny Yo
ksTvp [Opopo] [ 9pvp |+ "
(9P) o

wherep is the number densityy,,, = is the coarse-

(ap)DPD
graining parameterkp is the Boltzmann constant afdthe

temperature of the system. We note that “DPD” refers to sim-
ulation and that in MD we hav&/,,, = 1. Then, from an em-
pirical equation of state for DPD fluids, Groot & Warren [7]
obtaina;; = a through

apppD
kpTopp
By matching the diffusion constanDgpp) in the DPD

The DPD method is very attractive for the computer simsimulation with that of waterQyate) We find the DPD time
ulation of polymer solutions, since by employing bead-springcale as
representations of the polymer chains we can formulate and — Ny Dopor?
compare a variety of realistic conservative inter-bead forces. Duater
We focus on using the basic DPD framework in order to forhjs time scale and the soft potential explain why the DPD
mulate, implement and compare different models for polymefiethod is several orders of magnitude faster than straightfor-
chains in dilute solutions. In order to appreciate the potefyard MD. With respect to the latter, the soft potential removes
tial and computational complexity of DPD, in the following the “caging effect” of an atom so that the diffusivity of atoms
section we summarize the governing equations for simple afglincreased by a factor of 1000, depending on the thermostat.
complex fluids, and subsequently we present Lowe’s schemge note that Lowe'’s [9] approach, which employs an Andersen

Fig. 1. Polymer chains (tethered spheres) suspended in a solvent of n‘1|DpD ~1+0.2
DPD particles (smaller dots)

o<Nsl/3.

and physical results. thermostat, does not decrease the Peclet number. The effect of
) the time scale is to decrease the corresponding CPU time in
3. The DPD equations proportion to the coarse-graining parametgy; hence the to-

The system consists of particles having equal mass (for sim-tal speed-up with respect to MD 1900 x N, x N,/” for a

plicity) m, positionsr;, and velocitiess;. The aforementioned given system volume. Thus, fdv,, = 5 and10 the speed-up
three types of forces exerted on a particley particle;j are factoris 73,000 and 464,000, respectively!

given by The time evolution of DPD particles is described by New-
Ffj = F(C)(Tij)em ton’s law
c d r
F, = —qw(ryy) (w;; - eij)eq;, dr = wst du, = FiOL T FISt F\/ﬁ

oy
Fi; = ow"(rij)ijeij, . L .
h dth whereF§ =3, Fy; is the total conservative force acting on
Wni(ta:,erif r: g -ll-lﬁ] N ruim_turj ' Tinj d: d|r;j |rr?1?n tthe particlei; F¢ andF! are defined similarly. The random force,
unit vectore;; = =;- The parameters ando determine the , ioh represents Brownian motion, appears with a factor of

strength of the dissipative and random forces, respectively, thes i the velocity increment. The dissipative and random
&;; are symmetric Gaussian random variables with zero Meqyces, characterized by strength(r;;) andw” (r;;) respec-

SV p b . )
and unit variance, and” andw" are weight functions. tively, are coupled through the fluctuation-dissipation theorem
All forces act within a sphere of radiug, which defines [5] as follows:

the length scale of the system. By averaging the Lennard-Jones

potentials or the corresponding molecular field over the rapidly wh(ry) = [wT(rij)f = max{(1 — @)2, 0}
fluctuating motions of atoms over short time intervals, an ef- e
fective average potential [6] is obtained of the form shown in 0% = 2vkpT.

396 Bull. Pol. Ac.: Tech. 53(4) 2005



N

www.czasopisma.pan.pl P N www.journals.pan.pl

S

Simulation ofA-phage DNA in microchannels using dissipative particle dynamics

10
—— Leonard-Jones potential
— = Averaged potential
81 m— Cut-off radius |
IS
=6 N 1
~
~
T O Y R R f
h=1
3
=
o
7 S N N i

Distance r

by Groot and Warren [7]. Lowe’s algorithm, on the other hand,
introduced in 1999 [9,11] is a scheme based on the Ander-
sen thermostat [12] with the particle velocities corrected every
timestep using the Maxwell velocity distribution. In absence of
conservative forces, which are integrated in the velocity-Verlet
manner, the scheme is shown to be independent of the cho-
sen timestep\¢ [11]. The core operation in Lowe’s method
involves re-equilibration of the particle momenta at one step
with an updated inter-particle relative velocity drawn from a
Gaussian distribution.

The method conserves momentum and introduces an extra
parametef so that in the limiting case df x At ~ 1 thermal-
ization/dissipation occurs every time-step. Peters [13] recently
introduced a modification of Lowe’s scheme by keeping the
centroid velocity of a particle-pair unchanged before and after
the re-equilibration. This results in an attractive scheme, still

Fig. 2. Lennard-Jones potential and the soft-repulsive potential whighdependent of the chosen time-step (as opposed to the Ver-

results after averaging

4. Lowe's scheme

let approach) that also discretizes the originab equations.
Here we outline the basic Lowe scheme in Table 1. The fun-
damental difference between Lowe’s and the velocity-Verlet

The most widely used DPD integrating scheme is the velocityscheme is that dissipative and random forces are not explictly
Verlet algorithm [10] — a popular version of which is outlinedcalculated in the former.

Table 1
Overview of the traditional Lowe’s approach for a polymer system

I': thermalization parameter

2
> r, —r, +(At)u, + SLFe © SOLVENT
i 7 i 2 7
> 1, 1, + (A, + S0 [FC+ F7] . POLYMER
= r
> Vi, F¢ rs : SOLVENT, POLYMER
p
> Vi FP(rp) : POLYMER
> u,, — u,, + 5L |Fe+ f‘f} : SOLVENT
> u,, — uy, + 2L [(FC+FP) + (ff + 17‘1’)} : POLYMER
» VN, distinct pairsi, j such that,, <. . SOLVENT, POLYMER
e Generate a Gaussign with = 0,02 =1
_ 2kgT
e Formul -e, =& /T
e Generate a uniform distribution,
Ife,, <IxAt <1
24, =e, (0 —u,)-e,;
% . i3 () ]
u, —u, +A,
u «—u, — A,
J J ]
> F¢e— f‘f : SOLVENT, POLYMER
> FP«—F? : POLYMER
> Analyzer
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5. The wormlike chain so that whem\* = 1 no correction is applied. The tables in

Unlike the MD equations, the DPD equations are stochasti¢®] suggest a high, medium and zero correction for the low-
and nonlinear since the dissipative force depends on the veldgICe; half-extension and high-force regions respectively. We
ity. The conservative forces present in the usual DPD equéd® One step further to introduce a linear fit to the suggested
tions can be tailored in such a way so as to describe a vafiorection values foiV-bead chains:

ety of i.nt.eractions -e.g. Lennqrd—Jones (I.“])’ Hookean d_umb- A (10— 2) x 0022 x (N —1)+1, if N <20

ells, Finitely Extensible Non-Linear Elastic (FENE) springs

and van der Waals forces — as long as they are derivable from)\* ~ (1.0 — 2) x 0.025 x (N — 1) +1, if N > 20,

a given potential/ (r;;). . . _ .

Figure 1 shows polymeric chains moving freely in a pppvhere0 < 2 < 1 is the instantaneous fractional extension
solvent of N particles. These chains consist of beads (DPBf the whole molecule in the stretching direction. The above
particles) subject to the standard DPD forces: soft repulsi@Pressions approximate fairly accurately the values given in
(conservative), dissipative and random. In addition to thedd9] and are implemented in all instances /sf > 2 for the
forces, they are subject to intra-polymer forces, arising frofylarko-Siggia spring force in this work.
different combinations of spring laws between consecutive
beads on a chain (bonded interactions) and possibly excludéd Shear response of wormlike chains
volume repulsions (hon-bonded interactions). o ) . ,

Polymer models of biological importance (DNA proteins)The results presented in this section aim to simulate the re-
have been known to be governed by stiff interactions. ThePonse ofA-phage DNA molecules under steady shear, and
worm-like chain [14-16] can be thought of as a continuouS®MPare the DPD results with corresponding results from
curve in three-dimensional space. Of importance is the pepyoWnian Dynamics (BD) and experimental data. The worm-
sistence length,,, which is a measure of the chain’s stiffnesg k€ chain (WLC) described in section 5 is used for all DNA
and is the average length over which the orientation of a curgdmulations and Underhill & Doyle’s [19] persistence length
segment does not change (“persists”). We will focus on thig\») cqrrfact|on alway§ applies to our results faf > 2.
bead-spring representation of the model, which approximatgé’”Ch'atS [20] correction for the dumbbell case produced sta-

a portion of the worm-like chain with a force law given by thefistically similar results to the original Marko-Siggia (M-S)
Marko-Siggia [17] expression model. Since the,, correction studies in [19] were done with

the M-S formula, we do not use Bouchiat’s version.

rFl = kpTr 1 1 + R} DNA molecules under steady shear have been extensively
A 41— R)? 4 studied in experimental [21] and computational [22,23] works.
where In 1999, Smith et al. [21] performed a benchmark study of
|7 — 7| r _ A-DNA molecules in uniform shear flow of shear rates<
R= Tome  Lome ' — 2,3,4,... M 4.01 employing a~ 50 um gap in solvents with viscosities

) _ _ 1= 60,220 cP. These stained bacteriophage molecules have
and Lgpring is the maximum allowed length for each chaing contour lengthl, ~ 21 um and longest relaxation times of
(spring) segment. The expression is accurate for large valugs s (in the60 P solution) andL9 s (in the220 P solution).
of the ratioLgpring /A, and exactas — 0 0rr — Lepring: A typical molecule contains roughly 400 persistence lengths

The Marko-Siggia spring law is an averaged quantity, l03nq hence can be considered flexible. Using DPD we investi-
cally approximating flexible rods. The derivation of the for'gated the dynamics of a single WLC. The moving boundaries

mula accounts for coarse-graining microscopic elements Ofe‘(t‘y — 0,y = L, are modeled using Lees-Edwards boundary
=0,y =1L,

long chain (such as bead-rod), by use of statistical mechani¢$nditions [24]: particles leaving the domaimat= 0, L, are
However, in order to use the Marko-Siggia law in molecule$ yyanced/retarded by an increment®f = U,t, —U,t re-

with more than two beads (dumbbells), some authors [18] agpectively in the: —direction, where is the time elapsed from
count for the different stiffness of the beaded counterparts ky, appropriate origin of times arid, denotes twice the shear
altering the persistence lenghi of the sub-chains. Detailed \g|acity of each boundary. Moreover, the velocity of the par-
analysis of such arguments [19] has shown that it is possibig|e is increased/decreased by, —U,, accounting for both

to minimize the errors arising by the mtrod_uctlon of beads anglq imposed boundary condition and the velocity discontinu-
sub-chains. Throughout this work we will adopt the analyyy petween the two walls. This correction is essential, since
sis presented in [19] for stainedphage DNA molecules as- yhe gissipative forces depend on the relative pairwise veloc-
sumed to havel, = 21.1 um (fully extended length) and ities. The rest of the boundaries are treated periodically for

Ap = 0.053 um (persistence length). The correction we willy| the solvent DPD particles. To avoid unphysical period-
apply will linearly approximate the ratio of effective to trueicity artifacts, polymer beads only undergo an elastic colli-
persistence length, for three different regions of the extensiogy, in the y-direction: (u, v, w)sEAD — (U, —V, W)BEAD
low fp_rce, half-exte.nded spripg and high-force regimes. Morg, 4 ry — 14 — (At)uppap. Different chain sizes were ac-
specifically, we define the ratio commodated by storing the polymer coordinates without map-
Vo Ap [EFFECTIVEH ping them back in the original domain. This allowed the intra-
- Ap [TRUE] polymer forces to be calculated properly, while the collective

398 Bull. Pol. Ac.: Tech. 53(4) 2005



www.czasopisma.pan.pl P N www.journals.pan.pl

N
<

Simulation ofA-phage DNA in microchannels using dissipative particle dynamics

solvent-solvent and polymer-solvent interactions were calcd-~ Dynamics: diffusion and viscosity

lated with the mapped (periodic) images. The effect of the o ) . ) ,

simulation box sizel, x L, x L. for the presented results The characterization of the simulated fluid in DPD is of major
x Y z

was investigated and proved to be negligible. For the resufffiPortance for the understanding of the strengths and weak-
shown, a periodic box of dimensioth8 x 20 x 5 was used in a

nesses of the method. In this section we examine fundamental

fluid of 4000 DPD particles. The conservative force amplitugduantities, such as kinematic viscosity= 4/p and diffusion

was fixed toa;; = 75 kgT/p, asin [7]. coefﬁmentDTland the.lr dependence on the specific parameters
In order to properly simulata-phage DNA molecules un- ©f €ach DPD integrating scheme.

der steady shear, we define the dimensionless Weissenberg

number of the flow as¥e = 47, for a shear rateg.. Here,

7 is the polymer’s longest relaxation time, which is com-

—
=
=}

%0
=

€

puted by fitting an exponential analytical curve to the aver-5 0.5 [« =" A
age mean-square extension; this is not necessarily the end-ta:— : : : ‘ e
end value. This approach provides a relaxation time nearly’ o 4. ... .. A o I
the same (withinl0%) with that obtained by fitting the late- 2=
time tail of the mean-square radius of gyrati(oﬁf). Figure = ‘ P Lo s e s ‘
3 shows the fitted results. The calculated mean-square exter-"3 | ' - V‘y““l’e‘A . r ig) |
sion of an initially 30%-extended chain was fitted wittt) = = DPD vcr-lmj 5 1m 1% . NQ;?
(v?), + ;%e~"/7 to obtain the chain relaxation time Here, 202~ E~ T erlet: 5 beads (7 ~205)
2’ Lo 2 . . A I o CERE DPD Verlet: 10 beads (7 ~31.2)
z;* is the initial stretch andz), is the equilibrium value. £ o PD Verlet: 2 beads (- 518
Equating the area under both curves fixed the free parameteref , ; | o = = erlet: 20 beads (7 ~51.8)
X L £ 0.1 A BD: 20 beads (Hur et al. 7 ~51.8)
the fit. Figure 4 shows the calculated average molecular (maxs . ) )
& B Experiment (Smith et al. 1999)

imum projected) extension and the experimental data [21] vergE ‘ ‘ ‘ : : : : : : :
susWe, with varying bead numbers and corresponding relax- 0 0 10 20 30 40 50 60 70 SO 90
ation times. The asymptotic value f20 beads £ 0.51) is in We = U,mp/L,

agreement with the corresponding one (0.47) from BD calcu-

lations [22]. Remarkably, the results for the average extensidif- 4- Mean WLC fractional extension versiise compared to BD

are not so sensitive to coarse-graining, i.e. the number of bed@g] 21d DNA experiments [21] data. The results presented use Groot

used for constank, in the tested range. The self—consistenc;‘/g‘ Warren's [7] velocity-Verlet ¢ = 3) and Lowe schemes'(= 4.5)

of the parameters was verified from the equilibrium mean-

square end-to-end distance of a 2-bead dumbbell, computed asThe peculiar velocity; of particle: is defined asi; =
(S?) ~ 8.56, in close agreement with the theoretical value of; — (x), whereu(x) is the stream velocity at position For
8.92 given by [16](S?) = 2L A, (1 — %(1 — e~ L=w/X)),  asystem ofV particles of massn; each, we define the/s-

While most curves presented in Fig. 4 employ the widely us%%ormﬂ?;‘[azn;]()f the stress tensor through the Irving-Kirkwood

velocity-Verlet scheme for time integration, we have also in

cluded results for 2 beads using Lowe’s method Witk 4.5. 1 N N N
We will revisit the topic but we digress in the next sectionto S,3 = T I L. <Z MU Uig + Z ZrijaFij,@> ;
discuss diffusion and the effect of Schmidt numifer)(in the THEYTE \ =1 i=1 j>i
DPD simulations. (2)
‘ whereF;;z is the 8-component of the net force acting on par-
160 | R S ticle ¢ due to particlej, andr;;, is the a-component of their
— DPD. 5 beads relative position vector. It is interesting to note here that equa-
140 ¢ \ | — — Analytic, r =456 | © | tion [2] is directly applicable in its current form to the velocity-
120 oy Verlet method but not Lowe’s scheme, which lacks explicit cal-
100 culation of dissipative/random forces. To this end, we propose
2N a modification of Eq. 2 to incorporate the velocity re-equilibra-
v 80y tions A ; in Lowe’s scheme interpreted as an additional force
60 | term:
40 1 N
20 e =T T TT. <memm5
=1 3)
07‘ L " R . L N N N N A (
= = 173
0 50 100 150 200 %?216300 350 400 450 500 +szm Fijp+ sziTz’ja A”t >,
i=1 j>i i=1 j>i

Fig. 3. Decay of the average mean-square exten$ﬁﬁr) and the _ . _ ' o .
corresponding exponential fit for a wormlike chain of 5 beads in svhereAt is the simulation timestep. The dynamic viscogity
Newtonian solvent using Lowe’s methoH & 4.5) of the fluid is determined under shear through the total shear
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stressS,, (« is the direction of the shear agdhe wall-normal 10 .
direction) through ot =
Swy _ % 8r " .
q./ ) Ly ] 7 I -’ .
and therefore the kinematic viscosityris= £ = “Lelulz, 6l .
Here,7 is not to be confused with the dissipative force coeffi- _ . -
cienty. =5T .
In this work we will, however, use a different approach 4 . E
for calculating the viscosity. Backer et al. [26] suggested the sk "
periodic Poiseuille flow method, which consists of simply su- .
perimposing a constant forgg, —g.. in thex-direction for all 2r . .
particlesi with r; > L, /2, r; < L,/2 respectively. Then, 1+ .
for a periodic simulation box of length, in they—direction, . L L
number density, velocity profileU (y) in the z-direction and 0.1 -0.08-0.06-0.04-0.02 0 0.02 0.04 0.06 0.08 0.1
dynamic viscosity. the following formula holds: U, profile
5 - .
Lyy2 o (=2 m  DPD data
pgl;l(mi) = fy /y_o U(y)dy 457 ——  Parabolic fit
Regarding the Poiseuille profile method, it is interesting to
note that: 357
1. It eliminates possible artificial side-effects from impo- 6F

sition of other types of boundary conditions, since it results in -,
a fully periodic flow with all the advantages spatial periodicity =
has to offer combined with a Poiseuille profile. 27
2. Both opposite Poiseuille profiles can be used to obtain | 5|
better ensemble averages.

3. Backer et al. [26] have demonstrated that it is more r

accurate than other already existing methods. 0.5F
4. Our studies for both velocity-Verlet and Lowe’s methods . . . . , , , , ,
indicate a negligible disagreement 6(10~*) between the -0.1 -0.08-0.06-0.04-0.02 0 0.02 0.04 0.06 0.08 0.1

computed viscosity values via the shear stress and Poiseuille U, profile

flow methods, rendering both methods equivalent for all pragsig, 5. Sample dual parabolic (up) and reflected and fitted (down)
tical purposes. profiles
Figure 5 shows such a profile with the corresponding av-
eraged one, together with the parabolic least-squares fit. The This type of definition of a transport coefficient (such as
area under the right curve can be calculated either by directfyr) through an integral of a correlation function is a Green-
integrating the fitted quadratic or by standard integration ruleKubo relation [1]. Dy may also be calculated through the
All results presented here use analytic integration of the fitte@ean-square displacement of eawtp particle. In practice,
quadratic. the initial valueu|;— is reset during a simulation numerous
The velocity autocorrelation functiovAF) can reveal in- times in order to collect meaningful ensemble averages that
formation for the underlying nature of a dynamical proces$an be easily integrated. If the timestep is relatively small
We construct it as follows: Given an appropriate origin of time(d¢ ~ 0.01) the integral can be accurately calculated using
we denote the value of all three components of the veloci#§ standard trapezoidal or midpoint rule.

vector asu|—g = {u|—g, v|4—0, w|s—o}. The velocity compo- The fundamental differences between the velocity-Verlet
nents at an arbitrary instaft< ¢ = T are recorded, and the and Lowe’s scheme manifest themselves in the values of the
scalar quantity diffusion coefficientDr, the viscosityr and eventually the

Schmidt numbeSc = yore characterizing the simulated fluid.

Groot & Warren [7] had shown that the velocity-Verlet method

p for a number densityy = 3 and a dissipation amplitude

i . v = 6.75 produced Schmidt number values close to those

is the VAF; for short, we writ", (t) = (u;(0) - u;(t)). The pregicted by the theory, but extremely small compared to real

VAF provides valuable information about the system’s undeiijs (three orders of magnitude smaller). Our calculations

lying frequencies, and when it decays to zere as co, itcan (ot shown here) reveal that fore [1, 5.5] the Schmidt num-

be integrated to calculate the diffusion coefficiéni: ber for the velocity-Verlet method does not exceed the value

t=o0 of 3, see [27]. It is worth mentioning that the Schmidt num-

Dr = 3 /t Cult)  dt. ber for the velocity-Verlet method is estimated [28,7] to follow

1 N
Cu|t:T = N Zu\tzo : u|t:T

400 Bull. Pol. Ac.: Tech. 53(4) 2005
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Sc ~ + + (2myprt)?/70875kpT. This expression makes it cosityrv = mpl'r? /75m can be used to show that the Schmidt
clear that the corresponding achievable values are not in thamber

same order of magnitude as Lowe’s scheme for comparable VISCOSITY v owplrd)sm 1 T2

CPU requirements. =

T DIFFUSVITY  Dr  kgTrp/m A2 kgl

7.1. The Schmidt number for Lowe’s scheme(dt =
0.001,0.01). In order to investigate the effect of Lowe’s - Lowe a; =0 (6 = 0.01)

thermalization parametdt on the fluid, we comput®r, v 2 21

and Sc for a wide range of values. Figure 6 shows the com-2 ;| §1g S
puted diffusion coefficient, viscosity and Schmidt numberé“é \ f S S S
for a 4000-particle fluid, in d0 x 10 x 10 sized box with = .05 % 4t

a time-stepét = 0.01 and a conservative force coefficient 5 —— § ol A
a;j = 75kpT/p. For the viscosity calculations we apply a “5: 00 50 10 60 80 % 06 2‘0 4‘0 60 éo
constant force of magnitudg. = 1, as previously described, T T

to obtain a periodic Poiseuille profile. Groot & Warren [7]
correctly argue that the velocity-Verlet scheme produces unr
alistic values forSc. The calculated value ¢fc = 1.00+0.03
for o = 3.67, p = 3 provided in [7] is in reasonable agreement
with the one we computesSg ~ 1.3 for o = 3.5, p = 4) [27].

We investigate the described system for Lowe’s scheme
and its dependence on the paramétefTo this end, we per-
form one series of simulations witht = 0.001 and one with

0t = 0.01. However," is varied so thal" x dt & [1,1000] x Fig. 7. Diffusion coefficientDr (upper left), kinematic viscosity

0.001 = [0.001, 1] andI" x 6t € [1,100] x 0.01 = [0.01, 1], ypper right), and Schmidt numbsk: (lower) plotted againsE for

respectively. Lowe’s scheme withi;; = 0 anddt = 0.01. The Schmidt number is
0O(10%). HerekpT = 1

1

o
o
(=)

For

midt number v

Sch
o

0 10 20 30 4OF 50 60 70 80 90

Lowe (6t = 0.01)

&
225
E 0.25 2
g Z 20t ;
S 02 sl “ 0 Lowe (6t = 0.001) N
& . . 3 . .25
Z015( | il 2 £
8 ‘ L 10l- = Z
= 0.1 510 £ 02 g
E 005 R g 5 £ 015 =
A 0 ot =
0 20 40 60 80 100 0 20 40 60 80 100 g 0.05 g
r r e <
& & 0 é
%2000 A 0 200 400F600 800 1000 0 200 400F600 800 1000
g1500’ o ><105
g S 25T
21000f I ‘
+ — — ~I2
= 3]
g 500F - SN ) SRR
< 3
o] 0 ; N
r 05t
Fig. 6. Diffusion coefficientDr (upper left), kinematic viscosity 2 : : . . ri . . . . .
(upper right), and Schmidt numbét: (lower) plotted against' for . 0~ 100200 300 400 "80 600700 5 E00 =900 11000
Lowe’s scheme withit = 0.01. The Schmidt number i©(10%). ) o . . o )
HereksT = 1 Fig. 8. Diffusion coefficientDr (upper left), kinematic viscosity

(upper right), and Schmidt numbéte (lower) plotted against for

For an ideal dissipative gas, Lowe’s thermostat is governégfe's scheme witht :HO'OO; ;h_e Schmidt number i©)(10°).
by two distinct timescales, as shown in [9]; a typical time erekpl =1
it takes a particle to travel a distancgwith a given velocity,
and a typical time,, it takes the velocity correlations to decay.
Assuming the latter to be dependent onlylgrwe have

Lowe, in his original paper [9] derives the above scaling,
and our results in both figures 6,8 verify this trend to be true
for I values satisfying < I" x §t < 0.5. We anticipate the

mr2 1 t kT disagreement for large values to improve if indeed an ideal
= =, hh=s = A=_—= 53 gas @,; = 0) is simulated; in our simulations;; = 75k5T/ p.
kgT r t1 mrzl’ ; . L
Indeed, an ideal gas calculation of the above quantities was car-

Hence, under the assumption that the velocity correlations déed out and the quadratic dependence of the Schmidt number
cay intime istp ~ 1/T", Lowe’s scaling for the kinematic vis- onI' whena;; = 0 is more pronounced — the results are shown
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in Fig. 7. Lowe’s method shows great potential in addressingD simulations and experiments was achieved. The advan-
the issue of realisti®c values, since for the examined rangetages of the method become apparent when one computes the
of parameters the maximus reaches values @(10°), i.e.  diffusion and viscosity of Lowe’s fluid, which give realistic
five orders of magnitude larger than those of velocity-VerletSchmidt number values, adjustable through one paranheter
Figures 6 and 8 show the dependence of the compitedr  in the scheme. By determining an appropriate Schmidt num-
andSconT. ber and the corresponding value forwe revisited the prob-

Here we note that the diffusion coefficient scalesldB  lem of chains subject to wormlike forcing under shear and we
and it is approximately independent of the size of the timestapcovered a much closer agreement with the experimental data.
despite the fact that the productx At controls the thermal- The results presented in this work were generated using a
ization process in Lowe’s method. Figure 9 shows that theerial, custom-developed code, written in the C/C++ program-
relaxation time for a 5-bead WLC scales roughly~ad” for ming language. Most simulations were performed on a single-
Lowe’s method. Intuition supports this, since viscosity scaleSPU Intel 3.40GHz workstation with 2GB available physical
linearly withT" as well. memory, and the wall-clock execution time ranging from 30
minutes to 5 days. The pairwise force calculations were done
using a linked cell list [29] to reduce the computational cost
o of neighbor searching. The overall computational method is
parallelizable under the same conditions standard Molecular
Dynamics codes are.
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I'=4.5,22and 45.0 Fig. 10. Time-averaged mean fractional extension of a 5-beaded
The Schmidt number results presented in Fig. 6 motivate tlermlike chain under shear verslie for ' = 4.5 (Sc ~ 35),
re-calculation of the mean fractional extension of a wormliké' = 22 (Sc ~ 690) andI’ = 45 (Sc ~ 2574). HerekgT = 0.2.
chain molecule under shear. More specifically, since the pAn empirical approximate formulawould k& =~ 1.4x T'?, in agree-
rametef controls the Schmidt number, and all the calculations ment with Lowe’s arguments [9]
in section 6 were done with = 4.5 (Sc ~ 35), we repeat oné RerereNCES
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