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Abstract. The problem of the design of a perfect reduced-order unknown-input observer for standard systems is formulated and solved. The
procedure of designing the observer using well-known canonical form is proposed and illustrated with a numerical example. Necessary and
sufficient conditions for the solvability of the procedure are given.
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1. Introduction

The problem of observer design for standard systems with
unknown inputs has received considerable attention in the
last two decades [1–6]. This problem is of great importance
in theory and practice, since there are many situations
where part of inputs or disturbances are inaccessible.

Recently, a great deal of work has been devoted to
the observer design for descriptor systems [7–9], but only
in few works the problem of the design of unknown-input
observer for descriptor systems [10,11] was considered.
Many practical systems can be described by descriptor
models, and the fault diagnosis of these systems may be
based on the unknown input observer design. Descriptor
systems give many not obvious opportunities, one of
which is a recently developed new concept of perfect
observers [12]. The idea has been extended for standard
linear systems [13], singular 2-D linear systems [14] and
functional observers [15]. Recently [16] the problem of
perfect unknown-input observer for singular systems has
been formulated and solved.

In this paper the concept of a perfect reduced-order
unknown-input observer is extended for standard systems
or in other words the concept of a perfect observer for
standard linear systems [17] is extended for unknown
inputs.

2. Problem formulation

Let Rn×m be the set of n × m real matrices and Rn =
R

n×1 .
Consider the continuous-time linear system

ẋ = Ax+Bu+Dv

y = Cx
(1)

where ẋ = dx
dt , x ∈ Rn is the state vector, u ∈ Rq — input

vector, v ∈ Rm — unknown input (disturbance) vector,
y ∈ Rp — output vector and A ∈ Rn×n , B ∈ Rn×q ,
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D ∈ Rn×m , C ∈ Rp×n . The initial condition for (1) is
given by x0.

It is assumed that rankC = p < n. It is not a strong
assumption, because we can always eliminate linearly
dependent outputs or in case rankC = n find x from
y using x = C−1y. For the same reasons it is assumed
rankD = m.

We are looking for an r order observer of the form

E1ż = Fz +Gu+Hy

x̂ = Pz +Qy
(2)

that for t > 0 reconstructs exactly semi-state vector x
without knowledge of v, where z ∈ Rr is observer state
vector, x̂ is the estimate of x, E1, F ∈ Rr×r , detE1 = 0,
G ∈ R

r×q , H ∈ R
r×p , P ∈ R

n×r and Q ∈ R
n×p . The

initial condition for (2) is given by x̄0 and in general is
different from x0.

Let e ∈ Rr be the observer error and

e = z − Tx (3)

where T ∈ Rr×n . Differentiating (3) with respect to time
and using (1) and (2) we get

E1ė = E1ż − E1T ẋ

= Fz +Gu+HCx− E1TAx− E1TBu− E1TDv

= Fz − FTx+ FTx+HCx+Gu− E1TAx

− E1TBu− E1TDv

= F (z − Tx) + (FT − E1TA+HC)x+

+ (G− E1TB)u− E1TDv

If

E1TB = G (4)

FT − E1TA+HC = 0 (5)

E1TD = 0 (6)

then

E1ė = Fe. (7)

Note that

x̂− x = Pz +QCx− x

= Pz +QCx+ PTx− PTx− x
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= P (z − Tx) + (QC + PT − Inx

= P (z − Tx) = Pe

if

PT +QC = [P Q ]
[
T
C

]
= In. (8)

It is possible to show [17], that if

det(E1s− F ) = α �= 0, (9)

where α does not depend on s, then error e is equal to
zero for all t > 0.

Problem. Given matrices A, B, C, D. Find E1, F ,
G, H , T , P , Q such, that (4), (5), (6), (7) and (8) are
satisfied.

3. The main result

The condition (5) can be rewritten as

[F H ]
[
T
C

]
= E1TA.

If rankF = r then from Sylvester inequality we get
r+ n− (r + p) � rankE1TA, and because detE1 = 0 the
conclusion is r > n− p.

Due to the fact, that rankE1TD = 0 we get rankE1T
+m − n � 0 and rankE1T � n − m. From this we get
rankE1 � n−m. Hence we have p � m.

Lemma 1. There exists pair (L,R) of nonsingular
matrices that allow us to transform the matrices of the
given system (1) to the forms

LAR = Ã =
[
A1 A2

A3 A4

]
, (10)

CR = C̃ = [ 0 Ip ] ,

LD = D̃ =
[
D1

D2

]
,

where A1 ∈ R(n−p)×(n−p) , A2 ∈ R(n−p)×p , A3 ∈ Rp×(n−p) ,

A4 ∈ Rp×p , D1 = [ In−p 0 ] ∈ R(n−p)×m , D2 =
[
0 Im+p−n

0 0

]

∈ Rp×m if and only if rankC = p and rankD = m and
p 6 m.

P r o o f . There exists a nonsingular matrix R1, such
that CR1 = [C1 C2 ], where C2 ∈ Rp×p and rankC2 = p,
if and only if rankC = p. Then

CR = CR1R2 = [C1 C2 ]
[

In−p 0
−C−1

2 C1 C−1
2

]

= [ 0 Ip ] .

Using similar method with

L2 =
[

D̂−1
1 0

−D̂−1
1 D̂2 In−m

]

and proper division into blocks we get the forms of D1

and D2. The form of Ã is the consequence of use of above
transformations.

The state vector of the system in the canonical form
(10) is given by x̃ = R−1x.

Using the fact that p < n we can conclude that
rankD2 is not full.

Let r = 2n−m− p. Let us choose E1 and F in forms

E1 =
[
In−p 0
0 0n−m

]
, F =

[
0 In−p

αIn−m 0

]
. (11)

It is easy to check [17] that such choice satisfies the
condition (9).

Let

T =
[
T1 T2

T3 T4

]

where T1 ∈ R(n−m)×(n−p) , T2 ∈ R(n−m)×(p) ,
T3 ∈ R(n−p)×(n−p) , T4 ∈ R(n−p)×(p) and

X = FT − E1T Ã. (12)

It is possible to find H from the equation HC = −X if
and only if

rank C̃ = rank
[
X
C̃

]
. (13)

From (13) it follows that all entries of the first n − p
columns of X must be equal to 0.

Let T = [tij ]; i = 1, . . . , r; j = 1, . . . , n and Ã = [aij ];
i = 1, . . . , n; j = 1, . . . , n. Using (11) and (12) we get

X =
[

0 In−p

αIn−m 0

] 

t11 . . . t1,n

...
. . .

...
tr,1 . . . tr,n




−




t11 . . . t1,n

...
. . .

...
tn−p,1 . . . tn−p,n

0 . . . 0
...

. . .
...

0 . . . 0






a1,1 . . . a1,n

...
. . .

...
an,1 . . . an,n




=




tn−m+1,1 . . . tn−m+1,n

...
. . .

...
t2n−m−p,1 . . . t2n−m−p,n

αt11 . . . αt1,n

...
. . .

...
αtn−m,1 . . . αtn−m,n




−




c1,1 . . . c1,n

...
. . .

...
cn−p,1 . . . cn−p,n

0 . . . 0
...

. . .
...

0 . . . 0




(14)

where ci,j =
∑n

k=1 ti,kak,j .
Because α �= 0, to satisfy (13) and the condition, that

first n − p columns of X must be equal to 0, we need
ti,j = 0 for i = 1, . . . , n −m and j = 1, . . . , n − p, which
is equal to T1 = 0, what implies rankD2 < m (what is
satisfied due to the canonical form).
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From the equation (8) it comes that

rank
[
T
C

]
= rank


T1 T2

T3 T4

0 Ip


 = n. (15)

If T1 = 0 then we need rankT3 = n− p.
Let

T̄2 =




t1,n−p+1 . . . t1,n

...
. . .

...
tn−p,n−p+1 . . . tn−p,n


 ∈ R

(n−p)×p ,

so it is T2 without last p − m rows. What we need
is tn−m+i,j = ci,j =

∑n
l=1 ti,lal,j =

∑n
l=n−p+1 ti,lal,j for

i, j = 1, . . . , n− p which is equivalent to

T3 = T̄2A3. (16)

If, as we show above, T1 = 0 and we have to satisfy
the condition (15) then we need rank T3 = n − p. If
p < n − p then this cannot be satisfied. If, in opposite
case, p � n − p, then because T̄2 was build on the basis
of the kernels of D and its rows are linearly independent,
then T̄2 has full rank equal to n− p and what we need is
rank A3 = n− p.

In this moment it becomes obvious why we have to
set r = 2n−m− p: it is needed to have rankT3 = n− p.

Let X1 be a matrix constructed from column number
n−p+1, . . . , 2n−m−p of X . BecauseHC = H [ 0 Im ] =
X = [ 0 X1 ] we get

H = X1. (17)

From (7) we have

R = [P Q ]
[
T
C

]
R = [P Q ]

[
TR
C̄

]
.

Due to the fact that R is a nonsingular matrix it does not
change the rank of the matrices it multiplies. So we get

[P Q ] = R

[
TR
C̄

]+

(18)

where + stands for Moore-Penrose’s inverse.
From the above considerations we have:

Procedure.
1. Find nonsingular matrices L and R transforming the

system (1) to the form (10).
2. Choose E1 and F according to (11).
3. Choose T1 = 0 and T2 of rankn−m.
4. Using ti,j found in step 3 and (16) find ti,j (i =
n−m+ 1, . . . , 2n−m− p; j = 1, . . . , n− p).

5. Take any values as ti,j (i = n−m+1, . . . , 2n−m− p;
j = n− p+ 1, . . . , n) and find G using (4) and H from
(17).

6. Find P and Q from the formula (18).
Using (10) we get[

L 0
0 I

] [
Is−A D
C 0

] [
R 0
0 I

]

=


LRs−A1 −A2 D1

−A3 LRs−A4 D2

0 Ip 0


 . (19)

At the beginning we assumed rankD = m. Because of
the canonical forms of D1 and D2, using elementary
operations we can eliminate entries depending on s from
LRs−A1 using D1 and from Is−A4 using Ip. Hence

rank
[
Is−A D
C 0

]
= n+m for all s ∈ C

if and only if rankA3 = n− p.

Another conclusion coming from (19) is that assump-
tion p � n − p needed for the Procedure is satisfied if
p � m because p+m � n.

Therefore we have proved the following theorem:

Theorem . The observer (2) may be constructed
using the Procedure if and only if the conditions

a) p > m,

b) rank
[
Is−A D
C 0

]
= n+m for all s ∈ C ,

are satisfied.

4. Example

Find the perfect reduced-order unknown-input observer
for the system of the form (1) with

A =




−1 0 0 0 0
0 −2 0 0 0
1 0 −3 0 0
0 1 0 −4 0
0 0 1 0 −5


 , B =




0 0
0 0
1 0
0 1
0 0


 ,

D =




1 0
0 1
0 0
0 0
0 0


 , C =


 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 .

The given system is in the canonical form. It is easy
to check that it satisfies the conditions of the Theorem.
Number of disturbances is m = 2 and number of outputs
is p = 3 so from (11) we get

E1 =




1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 , F =




0 0 0 1 0
0 0 0 0 1
α 0 0 0 0
0 α 0 0 0
0 0 α 0 0


 .

According to the third step of the Procedure we choose

[T1 T2 ] =



0 0

... 1 0 0

0 0
... 0 1 0

0 0
... 0 0 1


 .
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Using (16) we get all other entries of matrix T

T =




0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0


 . (20)

Using (20) and (12) we obtain

X =




0 0 −3 0 0
0 0 0 −4 0
0 0 −α 0 0
0 0 0 −α 0
0 0 0 0 −α


 . (21)

Using (17) and (21) we get

H =




−3 0 0
0 −4 0

−α 0 0
0 −α 0
0 −α 0


 .

Using (4) and (20) we obtain

G =




1 0
0 1
0 0
0 0
0 0


 .

Using (18) and (20) we get

P =




0 0 0 1 0
0 0 0 0 1
0.5 0 0 0 0
0 0.5 0 0 0
0 0 0.5 0 0


 and Q =




0 0 0
0 0 0
0.5 0 0
0 0.5 0
0 0 0.5


 .

5. Simulations

Simulations were prepared in Matlab and Simulink. Al-
though they are the most sophisticated software available,
they cannot deal with simulations of all singular systems
[18]. However, the choice of the form of the observer (11)
allows us to transform the system (2) into


ż1
...

żn−p


 =



zn−m+1

...
z2n−p−m


 +G1u+H1y

0 = F̂




z1
...

zn−m


 +G2u+H2y

where F̂ = αIn−m, G =
[
G1

G2

]
, G1 ∈ R(n−p)×q and

H =
[
H1

H2

]
, H1 ∈ R

(n−p)×p . Because F̂ is square and

nonsingular, we can find z1, . . . , zn−m from


z1
...

zn−m


 = −F̂−1 (G2u+H2y)

and using the derivative of just found z1, . . . , zn−m find
the rest of the vector z with


zn−m+1

...
z2n−p−m


 =




ż1
...

żn−p


 −G1u−H1y.

The realization of ideal derivative mentioned above is the
only problem with simulations in Matlab, but by reducing
the solver step size we can make this error negligible.

Then, for the observer constructed in Section 5, with
initial conditions x0 = [ 1 2 3 −1 −2 ]T and for α =
10, we get:

Fig. 1. The state vector of the given system

Fig. 2. The estimates (the outputs of the observer)

The Figs. 2–4 show that at t = 0, the state variables
of the observer change their values impulsively due to
the difference between the initial conditions of the system
and the observer. This is also the reason for the huge
error of the estimation at t = 0. But, as it is for perfect
observers, for t > 0 we have error equal almost 0 (due to
the numerical realization of the ideal derivative) — as it
can be seen on the Fig. 5.
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Fig. 3. The error of the estimation of the first state variable

Fig. 4. The error of the estimation of the second state variable

Fig. 5. The error of the estimation of the state variable number 3-5

It is important to notice that choice of α does not
influence the result.

6. Conclusions and open problems

The problem of the design of a perfect reduced-order
unknown-input observer for standard systems has been

formulated and solved. The procedure of designing the
observer using well-known canonical form has been pro-
posed. Necessary and sufficient conditions for the solv-
ability of the procedure were given. The method was
illustrated by a numerical example and by the plots of
the system states, observer outputs and errors.

Necessary and sufficient conditions for the existence of
the observer are the most important open problem. Other
open problems are extensions of the considerations for
2D systems and for the perfect functional reduced-order
unknown-input observers.
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