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Microchannels flow modelling with the micropolar fluid theory
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Abstract. The aim of this paper is to study the applicability of the theory of micropolar fluids to modelling and calculating flows in mi-
crochannels depending on the geometrical dimension of the flow field. First, it will be shown that if the characteristic linear dimension of the
flow becomes appropriately large, the equations describing the micropolar fluid flow can be transformed into Navier-Stokes equations. Next,
Poiseuille flows in a microchannel is studied in detail. In particular, the maximal cross-sectional size of the channel for which the micropolar
effects of the fluid flow become important will be established. The experimentally determined values of rheological constants of the fluid have
been used in calculations.
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1. Introduction

The last decade has been characterized by a rapid growth
of interest in microflows [1], mainly due to the minia-
turization of flow devices used for manipulating fluids
in micromachines. Microchannels belong to the most es-
sential part of such systems. At present, the smallest,
standardized, mass-produced microchannels have width
h = 0.1 µm. It is expected that they will soon reach
a dimension of h = 0.02 µm [2]. Successful design of
microfluidic devices involving microchannels with such
small dimensions requires new methods for predicting the
characteristics of a flow in them.

Numerous experimental results indicate that the clas-
sical continuum approach is not applicable to describe
micro- and nano- flows. If the characteristic linear dimen-
sion of the flow field is small enough, then the measured
hydrodynamic data is different from that predicted by
Navier-Stokes equations [1–5]. Discrepancies concern flow
characteristics, such as: volume flow rate, average veloc-
ity, pressure drop and Darcy friction factor. It seems that
for such flows the most reliable predictions may be ob-
tained from calculations at the molecular level: Direct
Monte Carlo simulations for gases and Molecular Dy-
namic simulation for liquids. However there exists an
extension of Navier-Stokes approach, the micropolar fluid
theory [6, 7] which augments the classical continuum fluid
mechanics by incorporating the effects of microrotation
of fluid molecules, and whose hydrodynamic predictions
for micro-flows agree quite well with some experimental
results [8–10]. Moreover, molecular dynamic simulations
results show that during the Poiseuilla flow in very narrow
channels the microrotation velocity (missing in the clas-
sical Navier-Stokes theory) exists and those results agree
well enough with that based on the analytical solution of
the micropolar fluid flow.

From that reason it seems that the micropolar fluid
theory could be a useful tool in modelling microflows, but
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first we should establish precisely dimension of the flow
field for which the micropolar modelling can be addressed
to. In this paper we focus on microchannel flows. The
problem arises because some experiments and theoretical
estimations indicate that for microchannel flows of real
fluids the micropolar effects become important when the
width of the channel is comparable to the dimensions of
the fluid molecules. In such a case, it can be expected
that the assumption of continuum medium model is no
longer justified and flows should be modelled on the
molecular level. On the other hand, when the geometrical
dimensions of the flow become sufficiently large, the
experimental results agree well with the Navier-Stokes
hydrodynamic predictions.

Since, so far, there are no experimental methods that
would allow one to measure the velocity profile and
microrotation in narrow channels with diameter equal to
the size of just a few molecules, the only available method
to establish the validity of the micropolar model of a fluid
treated as a continuous medium is to compare the results
of the computer simulation based on molecular modeling
with that based on the analytical solution of micropolar
fluid flow. In [11–15] results of a computer simulation of
plane Poiseuille flow by the Molecular Dynamics method
are presented and compared with analytical solutions.
These comparisons shows that the analytical solutions of
the Poiseuille flow for channel widths not smaller than 10
diameters of the molecule are in a reasonable agreement
with the results of the MD simulation. For narrower
channels the agreement is poor.

Finding answer to the question: what is the limiting
value of diameter of the microchannel below which the
micropolar effects of the fluid flow are important and can
not be neglected is the goal of this paper. For such or
narrower channel the micropolar modelling for Poiseuille
flows is more reliable than by use classical Navier-Stokes
dynamics.
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2. Equations of micropolar fluid flow

Eringen formulated the micropolar fluid theory in 1966
[6] as an extension of the Navier-Stokes model of classical
hydrodynamics to facilitate the description of the fluids
with complex molecules. The micropolar fluids are usually
defined as isotropic, polar fluids in which deformation of
molecules is neglected. Physically, a micropolar model can
represent fluids whose molecules can rotate independently
of the fluid stream flow and its local vorticity. In other
words, micropolar fluids are the medium whose behaviour
during their flows is affected by the microrotation, i.e.
the local rotational motion of fluid molecules contained
in a given fluid volume element. The occurrence of the
microrotation vector, which differs from the stream flow
vorticity vector ω �= rotV and from the angular velocity
ω �= 1

2 rotV , results in the formation of antisymmetric
stresses and coupled stresses, which consequently result
in an increase in the energy dissipation. In the equations
describing the flow field, there occur two independent
kinematic variables: the velocity V and the microrotation
ω. The vector equation, representing the conservation
law of angular momentum, is added to the classical fluid
dynamics equations.

The constitutive equations for micropolar fluid [6] de-
fine the stress tensor T = {Tij} which is a nonsymmetric
tensor and the couple stress tensor C = {Cij} as follows:

Tij = (−p+ λVk,k)δij + µ(Vi,j + Vj,i)

+ κ(Vj,i − εijkωk) (1)

Cij = αωk,kδij + βωi,j + γωj,i (2)

where the symbols denote: p – pressure, λ, µ, κ – coeffi-
cients of bulk, shear and vortex viscosities, α, β, γ – the
respective coefficients of coupled viscosities, εijk – the
Levi-Civita tensor, δik – the Kronecker delta.

Here, the coefficients satisfy inequalities:

κ > 0, 3λ+ κ+ 2µ > 0, 2µ+ κ > 0

3α+ 2γ > 0, −γ < β < γ, γ > 0.

An alternative form to (1) is [6]:

Tij = (−p+ λVk,k)δij + (µ+ κ/2)(Vi,j + Vj,i)

+ κ(Vj,i − Vi,j) − κεijkωk (3)

and the symmetric part of the stress tensor T in (3) is:

T
[S]
ij = (−p+ λVk,k)δij + (µ+ κ/2)(Vi,j + Vj,i). (4)

This form is just the same as the definition of the stress
tensor of classical hydrodynamics, where µN = µ + κ/2
denotes the dynamic Newtonian viscosity coefficient.

If we assume that the specific internal energy of
the fluid is proportional to its temperature and that
Fourier law holds, then, for the flow of a micropolar
incompressible fluid with constant material coefficients,
the flow equations can be uncoupled from the energy
conservation equation [6, 7, 16] and becomes:

div V = 0 (5)

ρ
dV
dt

= ρf − gradp− (µ+ κ)rotrot V + κ rotω (6)

ρI
dω
dt

= (α+ β + γ) grad div ω − γrotrotω

+ κ rotV − 2κω + ρg (7)

where: ρ – fluid density
ω – microrotation, ω = (ω1, ω2, ω3)
V – velocity, V = (V1, V2, V3)
f – body force per unit mass, f = (f1, f2, f3)
g – body torque per unit mass, g = (g1, g2, g3).

3. Dimensional analysis of the micropolar
fluid flow equations

Our main purpose in this section is to show that if
the characteristic geometrical linear dimension of the
fluid flow field becomes appropriately large, the equations
describing the micropolar fluid flows can be transformed
into Navier-Stokes equations. We shall confine ourselves to
studying a particular form of equations (6)–(7) describing
micropolar fluid flows for which the body torque g = 0,
and the force f = 0. We shall present their nondimensional
form and investigate the effect of the new nondimensional
microstructure parameters, following from a micropolar
fluid model, on the form of the flow equations.

Let us assume that, for a particular flow relevant to
the physical problem to be studied, characteristic – or
reference – quantities of: linear dimension, time, velocity
and density are the quantities denoted with Lc, Tc, U and
p, respectively. Symbols with a prime are used to denote
nondimensional quantities:

V ′ = V/U, t′ = t/Tc, ∇′ = Lc∇,
ω′ = ωLc/U, x′ = x/Lc, p′ = p

(µ+κ)U
Lc

(8)

Applying the standard method of dimensional analysis to
the fluid flow equations (6)–(7) we can write them in the
nondimensional form:

Re
(

1
St
∂V ′

∂t′
+ V ′∇′V ′

)
= −∇′p′ − ∇′ × ∇′ × V ′ + 2N2∇′ × ω′ (9)

Re
I

l2

(
1
St
∂ω′

∂t′
+ V ′∇′ω′

)
= 2L2N2(−2ω′ + ∇′ × V ′)

+ 2(1 −N2)
(
α+ β + γ

γ
∇′∇′ω′ − ∇′ × ∇′ × ω′

)
(10)

In the equations, besides classical counterparts of the
nondimensional numbers: Re – Reynolds and St-Strouhal:

Re =
ULcρ

µ+ κ
St =

UTc

Lc
(11)

there occur new nondimensional parameters N and L:

N =
√

κ

2µN + κ
, L =

Lc

l
, l =

√
γ

4µN
(12)

Parameter L, L > 0 characterizes the relationship be-
tween the geometric dimension of the flow Lc and the
rheologic properties of fluid and is also called measure of
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the relative length of the fluid microstructure. The value
of l reflects the microscopic properties of the fluid [7, 16,
17] (the bigger the molecules the greater the value of the
parameter l). Parameter N , 0 � N � 1 characterizes cou-
pling between the vortex viscosity coefficient κ and the
shear viscosity coefficient µ. Let us observe that the value
of the parameter N for a given fluid is constant, whereas
the value of the parameter L depends explicitly on the
characteristic linear dimension of the flow.

We shall now investigate what is the effect of the
boundary values of these parameters on the form of the
flow equations (9)–(10).

If the value of the parameter N → 0, then the equa-
tions of momentum (9) and angular momentum (10)
become independent of each other and the first one
transforms into a classical Navier-Stokes equation for
Newtonian fluid.

It is in agreement with the result obtained in paper
[18] in which, in aspect of long time behavior micropolar
fluid flows, it was shown that when κ → 0 the velocity field
of the micropolar fluid model converges to the velocity
field of the classical Navier-Stokes model.

If the value of the parameter L → 0, then the stream
velocity rotation ∆′ × V ′ is removed from the right side
of equation (10). This situation can be interpreted as
a description of a fluid flow whose angular acceleration
is not affected by the fluid stream vorticity. In the other
limiting case, for L → ∞, from the angular momentum
equation (10), we obtain the relationship defining the
microrotation vector as equal to one half of the vector of
the fluid stream vorticity:

2ω′ = ∇′ × V ′ (13)

that is to say, to the angular velocity of the fluid volume
element if the element moved as a rigid body. Formula
(13) allows eliminating the microrotation vector from the
angular momentum equation (9), which now, in dimen-
sional variables, takes the form:

ρ
dV
dt

= −∇p− µN ∇ × ∇ × V (14)

This is the Navier-Stokes equation for Newtonian fluids.
The way we obtained this asymptotic form of microp-

olar fluid flow equations unmistakably indicates that the
micropolar effects in the fluid flow description can be
neglected only if the value of L, that is, the character-
istic linear dimension of flow Lc, is sufficiently large, as
l = const for a given fluid. Therefore, together with a de-
crease in the value of Lc there will appear discrepancies
between the solutions obtained through application of the
micropolar and the classical fluid models.

The above result gives an answer to the fundamen-
tal question that appeared during the microflow research:
why the results obtained using the classical hydrodynam-
ics equations, with regard to the flows of the same real
fluid, are in agreement with the experiment on one occa-
sion and disagree with it on another. Besides, it indicates

that for every micropolar fluid flow, if its linear dimension
Lc is sufficiently large, it pays off to carry on the calcula-
tions on the basis of the classical dynamics, Navier-Stokes
equations, which are simpler than those of micropolar
fluid dynamic equations.

An analysis of the effect of nondimensional parameters
on the form of the equations also indicates to what domain
a micropolar fluid theory is suitable to be applied: to flows
which occur in microdevices, defectoscopy, tribology and
living organisms.

4. Analysis of Poiseuille flow modelling in
microchannels

Our aim now is to predict the value of the characteristic
linear dimension Lc of the microchannel flow below which
the micropolar effects of the fluid during the flow appear
and thus the micropolar modelling for Poiseuille flows
is more reliable than when using classical Navier-Stokes
dynamics. It will be done by the comparison of the
volume flow rate calculations based on exact stationary
solutions of the micropolar fluid and the Navier-Stokes
equations of the Poiseuille flow in circular microchannels.
The comparison will be performed for real fluids and in
terms of dimensionless microstructural parameters. For
the flows in circular microchannels the linear dimension
Lc is defined as: Lc = d, d-diameter of the pipe.

Analytical solution of the equation describing the
Poiseuille flows of micropolar fluid in the circular channel
of radius R, in a cylindrical coordinates system (r, θ, z) is
given by the formulae [19]:

Vz(r̃)
V0

= 1 − r̃2 +
2δ

2 + δ
I0(kR)
kRI1(kR)

[
I0(kRr̃)
I0(kR)

− 1
]

(15)

ω(r̃)R
V0

= r̃ − (2ξ + δ)
2 + δ

I1(kRr̃)
I1(kR)

(16)

where: V = (0, 0, Vz(r)) – velocity vector, ω = (0, ω(r), 0)
– microrotation vector and α0 – constant describing
the fluid-wall interaction which appears in the equation
defining boundary conditions for microrotation on the
walls, 0 � α0 � 1 [10, 16, 19], p = p(z) pressure I0, I1 –
are Bessel functions of first kind. The remaining symbols
denote:

δ =
κ(1 − α0)
µN

, k =

√
(2µ+ κ)κ
(µ+ κ)γ

(17)

ξ = 1 − α0, V0 =
R2(−dp/dz)

4µN
, r̃ =

r

R
(18)

Integrating velocity (15) over the cross section of the
channel we obtain the formulae for the volume flow rate
which depends on parameters δ, k and R:

Qm(R)

= QN(R)
{

1 +
2δ

2 + δ
4

(kR)2

[
1 − kRI0(kR)

2I1(kR)

]}
(19)

whereQN (R) denotes the volume flow rate of the classical,
Newtonian fluid with viscosity µN which flows through
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the microchannel of radius R and stands:

QN(R) =
πR4(−dp/dz)

8µN
(20)

The values of the parameters δ and k can be determined
experimentally [10, 19, 20]. For instance, Table 1 gives
the values of the parameters for exemplifying fluids de-
termined for the fluid flows in quartz channels [10]. The
chemical composition of the fluids was given in detail in
[19, 20].

To make visible the usability of micropolar fluid flow
model to the flow calculations in term of the microchannel
radius R, we define the relative volume flow rate Q(R) –
“comparison parmeter” – as a quotient:

Q(R) = Qm(R)/QN(R) (21)

If the value of the relative volume flow rate Q(R) = 1,
it means that values of volume flow rate calculated by
use Navier-Stokes equation and micropolar fluid dynamic
equations are the same. In such situation the flow in
the microchannel of radius R is well described by the
classical model of the fluid, and it pays off to carry on
the calculations on the basis of the classical dynamics,
Navier-Stokes equations, which are simpler than those of
micropolar fluid dynamic.

Fig. 1. Relative volume flow rate Q(R) for water, fluids P1, P2,

E1, δ – linear dimension of water molecule, δ = 3.15 ∗ 10−10 m. [21]

Table 1
Values of parameters δ, and k of some fluids,

(notation after Ref. 10)

fluids k · 10−7, m−1 δ

P1 15.20 0.695

P2 8.75 0.800

water 7.03 1.45

E1 5470.00 1.356

For some real fluids the curves illustrating the depen-
dence of the relative fluid flow rate Q(R) on radius R of
the channel are plotted in Fig. 1. Experimental data from
Table 1 were used for the calculations. Results from Fig. 1
show that, for every fluid beginning from a given chan-
nel diameter, d = 2R, the volume flow rate calculated
using the micropolar fluid model is smaller than that cal-
culated with the use of the classical Newtonian model of
the fluid. The difference does increase with the decrease
in the channel diameter. What is more important, it can
be observed that for every fluid there exists its “own”
limiting channel diameter from which Q values begin to
decrease. The above suggests that the channel diameter
size starting from which it is worthwhile to carry flow
calculations based on the classical fluid model depends
on fluid rheological properties – the values of viscosity
coefficients.

The calculation of Q(R) performed for a real fluid
matches the result obtained in the previous section. The
formulae describing the interrelations between the pa-
rameter groups δ and k and the parameters l and N ,
discussed in the previous section are as follows:

l2 =
δ

(2ξ + δ)k2 (22)

N2 =
δ

(2ξ + δ)
(23)

where ξ = 1 − α0.

Table 2
Values of parameters l, and N of some fluids

l, m. N
Fluid

α0 = 0 α0 = 0.9 α0 = 0 α0 = 0.9

P1 3.34095 · 10−9 5.79745 · 10−9 0.50782 0.88921

P2 6.1088 · 10−9 1.022 · 10−8 0.53432 0.89443

water 9.2614 · 10−9 1.3392 · 10−8 0.6483 0.93744

E1 1.2713 · 10−5 1.867 · 10−5 0.63565 0.93352

Making use of above formulae (22) and (23) it is
possible to calculate the range of the changes of l, and N
values with regard to α0 for the fluids from Table 1. The
calculated values are listed in Table 2. Considering the l
values given in Table 2 and results depicted in Fig. 1, it
can be concluded that the greatest differences between the
two fluid models occur when the value of the parameter
L = d/l satisfies the inequality L < 10. However, one can
also observe that Q(R) = 1 if the value of parameter L
satisfies the inequality L > 1000.
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Fig. 2. Relative volume fluid flow in circular channel as a function of parameters L and N for α0 = 0 i 0.9

Let us now examine the effect of the microstructural
parameters L and N on the relative volume flow rate in
detail. Using formula (23) and (22) to (19) and (21) we
obtain:

Q(L,N, ζ)

=
{

1 +
8N22ζ

(2 + 2N2ζ)(LN)2

[
1 − LNI0(LN)

2I1(LN)

]}
(24)

Results of calculations of relative volume fluid flow rate
Q(L,N, α0) are depicted in Fig. 2.4. It can be observed
that the Q value is strongly affected by the parameters
N and α0. An increase in the value of parameter N (at
constant L and α0 values) brings about a decrease in the
value of Q. Next, an increase in the value of parameter α0

(at constant L and N) increases the Q value. Analysing
the results it can be concluded that for L > 1000 the
value of Q = 1, otherwise Q < 1, which means that there
occur discrepancies in calculations obtained making use
of the two fluid models. For L = 0 (1) and smaller values,
Q(L,N, α0) value is the smallest. Obtained results match
the estimates for real fluids.

To summarise the results obtained in this section we
can state that the channel diameter at which micropolar
effects are small enough to justify carrying out calcu-
lations based on the classical fluid dynamics crucially
depends on the rheological parameters of the fluid and
parameter α0. An effective application of the micropolar
fluid model for calculations depends of on the values of
parameters L, N and α0. For L = 0 (1), there occur max-
imum differences between the results of the calculations
based on the two models. For L > 1000 there are hardly
any differences.

It should be pointed out that the analysis of an effec-
tive application of a micropolar fluid theory to modeling
other microflows (between squeezing plates, between con-
verging spheres) shows exactly the same dependence of
the geometrical range of its applicability on microstruc-
ture parameters L, N [21] as presented here, for flow in
microchannels.

5. Concluding remarks

The analysis presented in the paper shows that the
geometric size of flow field plays a crucial role in the
useful applicability micropolar fluid theory to modelling
microflows.

The general result was established theoretically, which
shows that when the characteristic linear dimension of
the flow field is large enough, the micropolar model can
be reduced to the classical Navier-Stokes equation. This
result was obtained through an application of dimensional
analysis to the set of equations describing the micropolar
fluid flow. It should be pointed out that reasoning of
that type can sometimes lead to an error. This is not
the case here since the classical model is not a singular
perturbation of the micropolar model.

For flow in microchannels the upper limit of usability
of micropolar fluid theory have been established as a result
of comparing volume flow rate of Poiseuille flow based
on the classical and the micropolar fluid mechanics. The
experimentally determined values of rheological constants
of the fluid have been used in calculations.

It was confirmed that the micropolar model is ap-
plicable for small characteristic geometrical dimension of
the flow (i.e. diameter for circular channel flow). Further-
more, the particular value of the diameter of the channel
for which the flow should be modelled using the microp-
olar approach was established. Results indicate that this
“limiting dimension” depends on the rheological proper-
ties of the fluid that can be expressed through defined
here nondimensional microstructure parameters.

For wider microchannels, the flow is quiet well de-
scribed by the classical model of the fluid, and it pays
off to carry on the calculations on the basis of the classi-
cal dynamics, Navier-Stokes equations, which are simpler
than those of micropolar fluid dynamic equations.

The obtained results match some of the earlier ob-
tained experimental estimates.

The lower limit of applicability of the micropolar
fluid theory to modelling microflows as was mentioned
before results from fundamental questions for how small
dimensions of the flow field the micropolar fluid model
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can be treated as continuum medium. This problem was
investigated in other papers in detail [15, 21–23]. Based
on the results it may be concluded that the micropolar
theory is applicable to modelling fluid flows in channels of
width not smaller than 10 diameters of the fluid molecule.
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