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On dual approach to piecewise-linear elasto-plasticity.
Part I: Continuum models
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Abstract. This paper presents revised and extended version of theory proposed in the late 1970-ties by A. Čyras and his co-workers. This
theory, based upon the notion of duality in mathematical programming, allows us to generate variational principles and to investigate existence
and uniqueness of solutions for the broad class of problems of elasticity and plasticity. The paper covers analysis of solids made of linear elastic,
elastic-strain hardening, elastic-perfectly plastic and rigid-perfectly plastic material. The novelty with respect to Čyras’s theory lies in taking
into account loads dispersed over the volume and displacements enforced on the part of surface. A new interpretation of optimum load for
a rigid-perfectly plastic body is also given.
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1. Introduction

Already in late 1960-ties A. Čyras has shown close ties
between the notion of duality in linear programming
(LP) and the static-kinematic theorems for the ultimate
load carrying capacity and optimum design of skeletal
structures made of a rigid-perfectly plastic material [1].
Later this theory was extended by Čyras and his co-
workers for linear elasticity and elastic-perfectly plastic
behaviour. This required the replacement of the basic
formalism by the more general theory of non-linear pro-
gramming (NLP). The book published in 1974 by Čyras,
Karkauskas and the present author comprised a complete
unified model starting with dual variational principles
for solids and ending with discrete descriptions of cer-
tain classes of structures like trusses, frames, plates and
shells [2]. Recently an English translation of this book in
memoriam of A. Čyras was published in Lithuania [3].

Modelling structural behaviour in terms of dual prob-
lems of mathematical programming drew attention of
many authors in the period 1970–1990. Apart of Čyras
and his group, the main contributions were made by G.
Duvaut and J.-L. Lions [4] and B. Noble and M.J. Sewell
[5], who investigated duality at the continuum level, as
well as by G. Maier, who showed in his milestone pa-
per [6] that all discrete models of structures governed
by piecewise-linear constitutive laws can be interpreted
as linear complementarity (LC) problems and converted
into dual pairs of quadratic programming (QP) problems.
A comprehensive state-of-art overview of that time can
be found in [7]. The monograph [8] of the present author
covered applications for skeletal structures. More recently
many new results were obtained by P. Panagiotopou-
los [9].

The aim of the present paper is to extend the approach
proposed by Čyras taking into account a volume loading,
e.g. the self-weight, that was neglected in the original
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theory. A new derivation of the load optimisation problem
for rigid-perfectly plastic solids is also presented. The
formulation of this problem in [2] violated the traction-
displacement complementarity principle.

2. Notation and formulation

Let us consider a deformable solid depicted in Fig. 1.
It occupies a volume V bounded by a surface S. We
choose a fixed Cartesian reference frame x = (x1, x2, x3)
and assume that displacements u = (u1, u2, u3) remain
small. Then, strains ε = (ε11, ε22, ε33, 2ε12, 2ε13, 2ε23) are
defined through a kinematic equation

ε = CVu (1)

Here

CV =




∂/∂x1 0 0
0 ∂/∂x2 0
0 0 ∂/∂x3

∂/∂x2 ∂/∂x1 0
∂/∂x3 0 ∂/∂x1

0 ∂/∂x3 ∂/∂x2


 (2)

is a linear differential operator of kinematics.

Fig. 1. Deformable body under static and kinematic load
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Let volume forces be denoted by g = (g1, g2, g3). Then,
stresses σ = (σ11, σ22, σ33, σ12, σ13, σ23) must satisfy the
equilibrium equation

g = C∗
Vσ (3)

inside the volume V . Here C∗
V (see Eq. (4) at the bottom

of this page) is a linear differential operator of volume
equilibrium. The asterisk * indicates that this operator
is adjoint to the kinematic operator CV. The reason
for replacing the strain and stress tensors by the single-
column matrices ε and σ is that this allows us to use an
uniform matrix notation throughout Part I and Part II of
the present paper.

The equilibrium on the surface S is described by the
equation

t = CT
S σ (5)

where

CT
S =


n1 0 0 n2 n3 0
0 n2 0 n1 0 n3

0 0 n3 0 n1 n2


 , (6)

is a linear algebraic operator (ordinary matrix), obtained
by replacing derivatives in C∗

V by the entries of unit
vector n = (n1, n2, n3) normal to S.

In the sequel we assume that the volume load g0

is always given (the subscript zero will indicate a given
quantity). In particular, we may neglect this kind of
loading taking g0 = 0. We split the surface S of the body
into two parts: ST where the traction t0 is prescribed
and SU where the displacement u0 is given. In order to
exclude a possibility of rigid body motion (ε = 0 under
u �= 0), prescribed displacements must vanish on a part
of SU .

By static load we understand (g0, t0) acting on the
body, whereas by kinematic load we mean displacements
u0 enforced on a part of its surface.

3. Linear-elastic solid

Just for the sake of reference let us recall the known
facts from the theory of linear elasticity. The Hooke’s law
(Fig. 2.a) in our notation reads

σ = Eε (7)

or
ε = E−1σ (8)

where E is an elasticity matrix.

Fig. 2. Models of material: a) linear elastic, b) elastic-strain

hardening, c) elastic-perfectly plastic, d) rigid-perfectly plastic

Table 1 summarises the derivation of dual energy prin-
ciples for a linear-elastic solid. This derivation follows the
template given in Table A3 of the Appendix. By eliminat-
ing strains from the complete set of governing equations,
we obtain the reduced system governed by a self-adjoint
operator. The potential L is chosen in such a way that
its variation with respect to displacements generates the
left-hand side of the first equation of the reduced sys-
tem and its variation with respect to stresses yields the
left-hand side of the second equation. The saddle point
problem corresponds to the free variational principle for
displacements, stresses and tractions. The primal prob-
lem expresses the principle of minimum potential energy
and the dual problem (after the sign of the functional is
changed) — the principle of minimum of a difference be-
tween the complementary energy and the work done by
surface tractions on the prescribed displacements.

C∗
V =


 −∂/∂x1 0 0 −∂/∂x2 −∂/∂x3 0

0 −∂/∂x2 0 −∂/∂x1 0 −∂/∂x3

0 0 −∂/∂x3 0 −∂/∂x1 −∂/∂x2


 (4)
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Table 1
Linear elastic solid under static and kinematic loads

Governing relations:

constitutive σ = Eε, ε = E−1σ in V

kinematics CVu = ε in V

equilibrium C∗
Vσ = g0 in V

CT
S σ = t on S

static boundary conditions t = t0 on ST

kinematic boundary conditions u = u0 on SU

Reduced system of relations in V :

u σ 1

∂Lu C∗
V −g0 = 0

∂Lσ = CV −E−1 = 0

Potential:

L(u,σ, t) = −1
2

∫
V

σT E−1σdV +
∫
V

uT(C∗
Vσ − g0)dV +

∫
ST

uT(CT
S σ − t0)dS +

∫
SU

uT(CT
S σ − t)dS +

∫
SU

uT
0 tdS

Saddle point:
L(u∗,σ∗, t∗) = inf

u
sup
σ,t

L(u,σ, t)

Primal problem: Dual problem:

find inf
u,σ


1
2

∫
V

σTE−1σdV −
∫
V

uTg0dV −
∫
ST

uTt0dS




subject to

CVu − E−1σ = 0 in V

u = u0 on SU

find sup
σ,t


−1

2

∫
V

σT E−1σdV +
∫
SU

tTu0dS




subject to

C∗
Vσ = g0 in V

CT
S σ = t0 on ST

CT
S σ − t = 0 on SU

The classical principles of minimum potential energy
and minimum complementary energy are usually formu-
lated in the presence of static load only. Taking u0 = 0 in
Table 1, we obtain them as the following dual principles:

find inf
u,σ


1
2

∫
V

σTE−σdV −
∫
V

uTg0dV

−
∫
ST

uTt0dS




subject to (9)

CVu − E−1σ = 0 in V

u = 0 on SU ,

find sup
σ,t


−1

2

∫
V

σT E−1σdV




subject to

C∗
Vσ = g0 in V

CT
S σ = t0 on ST

CT
S σ − t = 0 on SU .

(10)

Reactive tractions on the fixed part of the surface do
not contribute to the functionals (they produce no work).
Hence, the constraints on SU can be omitted in (9), if
we are not interested in obtaining reactions t∗ from the
static principle (10).
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If we are interested in purely kinematic type of loading,
then we have to assume g0 = 0 and t0 = 0 in Table 1.
Then the dual principles read:

find inf
u,σ


1
2

∫
V

σTE−1σdV




subject to

CVu − E−1σ = 0 in V

u = u0 on SU .

(11)

find sup
t,σ


−1

2

∫
V

σT E−1σdV +
∫
SU

tTu0dS




subject to

C∗
Vσ = 0 in V

CT
S σ = 0 on ST

CT
S σ − t = 0 on SU .

(12)

Note that modifying this model for unilaterally imposed
displacements is formally simple — unknown tractions on
SU become non-negative:

find inf
u,σ


1
2

∫
V

σTE−1σdV




subject to

CVu − E−1σ = 0 in V

u � u0 on SU ,

(13)

find sup
t,σ


−1

2

∫
V

σT E−1σdV +
∫
SU

tTu0dS




subject to

C∗
Vσ = 0 in V

CT
S σ = 0 on ST

CT
S σ − t = 0, t � 0 on SU .

(14)

This subtle modification has very serious consequences.
Variational models given in Table 1 as well as their
special cases (9)–(10) and (11)–(12) fall into the classical
variational theory. If all constraints are of equality type
and all variables are free in terms of their sign, then
constrained problems can be replaced by unconstrained
problems and their solutions can be found solving systems
of linear equations. This does not apply for unilateral
model (13)–(14): this model falls into the category of
variational inequalities and its derivation is governed by
the LCP-type scheme given in Table A4 of the Appendix.
The appearance of inequality constraints and the presence
of non-negative variables precludes its reduction to any
set of equations.

4. Elastic-strain hardening solid

Let us consider a solid made of material that under
uniaxial test expresses bi-linear behaviour, as shown in

Fig. 2.b. This model can be seen as a simplified description
of elastic-strain hardening material when the possibility
of local unloading is neglected.

We assume a piecewise-linear plastic potential

ϕ = Hλ − NTσ + κ0 (15)

where H is positive definite (l × l)-matrix of strain hard-
ening, vector λ contains l plastic multipliers, the columns
of (6 × l)-matrix N are gradients of the yield surface
and vector κ0 contains l prescribed plastic modulae. The
vanishing value of initial plastic potential

ϕ0 = −NTσ + κ0 = 0 (16)

defines a convex polyhedron that can be inscribed into
a non-linear yield surface. Figure 3 shows an example
of hexagon (l = 6) inscribed into the Huber-Mises yield
surface. The advantage of this approximation is that the
resulting models fall into the class of quadratic program-
ming problems. Numerical solution of QP-problems is
much easier that the solution of general non-linear pro-
gramming problems.

Now the strain can be assumed as a sum of elastic
and plastic components

ε = εE + εP (17)

where εE is defined by Eq. (8) and

εP = Nλ (18)

with additional constraints

ϕ � 0, λ � 0, ϕTλ = 0 (19)

Fig. 3. Smooth and piecewise-linear yield curves
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Fig. 4. Geometric interpretation of strain hardening

The adopted model of strain hardening is shown in
Fig. 4. Plastic modulus κ0i defines the distance of the i-th
initial yield plane from the origin. Plastic strain shifts
this plane to the outward of the yield surface by

∆ϕi =
l∑

j=1

Hijλj (20)

If the strain hardening matrix H is diagonal, then yield
planes move independently. Otherwise, there is mutual
interaction between them.

Due to the presence of inequality constraints and non-
negative variables, the proper template for the derivation
of variational principles is this time Table A4 of the
Appendix. The result of this derivation is given in Ta-
ble 2. Plastic multipliers and displacement play the role
of x-variables of the LCP-problem. Stresses remain y-
variables as they were in linear elasticity. The hardening
matrix is positively definite, the inverse of elasticity ma-
trix taken with minus sign is negative definite. Thus, all
requirements of dual approach are met.

In the primal problem we have to minimise the differ-
ence between the sum of energy dissipated plastically and
stored elastically and the work done by the static loading.
The constraints of this problem ensure kinematic compat-
ibility of strains and displacements. The functional of the
dual problem expresses the difference between internally
dissipated and stored energy and the work done by trac-
tions on prescribed displacements. The constraints ensure
static admissibility and equilibrium of stresses and sur-
face tractions. No reduction to systems of equations is
possible, since we deal with the LC-problem.

For purely static loading the dual model has the
following shape:

find inf
λ,u,σ


1
2

∫
V

λTHλdV +
1
2

∫
V

σTE−1σdV

+
∫
V

λTκ0dV −
∫
V

uTg0dV −
∫
ST

uTt0dS




subject to (21)

CVu − E−1σ − Nλ = 0 in V

λ � 0 in V

u = 0 on SU ,

find sup
λ,σ,t


−1

2

∫
V

λTHλdV − 1
2

∫
V

σT E−1σdV




subject to

−Hλ + NTσ � κ0 in V

C∗
Vσ = g0 in V

CT
S σ = t0 on ST

CT
S σ − t = 0 on SU .

(22)

Again, the constraints on SU can be omitted, when we
are not interested in reactions.

When the loading is purely kinematic, the dual model
reduces to:

find inf
λ,u,σ


1
2

∫
V

λTHλdV +
1
2

∫
V

σTE−1σdV

+
∫
V

λTκ0dV




subject to

CVu − E−1σ − Nλ = 0 in V

λ � 0 in V

u = u0 on SU ,

(23)

find sup
λ,σ,t


−1

2

∫
V

λTHλdV − 1
2

∫
V

σT E−1σdV

+
∫
SU

tTu0dS




subject to

−Hλ + NTσ � κ0 in V

C∗
Vσ = 0 in V

CT
S σ = 0 on ST

CT
S σ − t = 0 on SU .

(24)

This time the energy dissipated and stored in the body
is minimised in the primal variational principle. The
solution of the dual principle is to be found in the class
of self-equilibrated stresses. The solution (λ∗,u∗,σ∗, t∗)
of the dual problems (23)–(24) exists for any u0. Due to
convexity-concavity of the cost functionals this solution
is unique.
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Table 2
Elastic-strain hardening solid under static and kinematic load

Governing relations:

constitutive ε = εE + εP in V

εE = E−1σ, εP = Nλ in V

ϕ = Hλ − NTσ + κ0 in V

ϕ � 0, λ � 0, ϕTλ = 0 in V

kinematics CVu = ε in V

equilibrium CT
Vσ = g0 in V

CT
S σ = t on S

static boundary conditions t = t0 on ST

kinematic boundary conditions u = u0 on SU

Reduced system of relations in V :

λ � 0 u σ 1

∂Lλ = H −NT κ0 � 0

∂Lu = C∗
V −g0 = 0

∂Lσ = −N CV −E−1 = 0

Potential:

L(λ,u,σ, t) =
1
2

∫
V

λTHλdV − 1
2

∫
V

σT E−1σdV −
∫
V

λNTσdV +
∫
V

λTκ0dV +
∫
V

uT(C∗
V σ − g0)dV

+
∫
ST

uT(CT
S σ − t0)dS +

∫
SU

uT(CT
S σ − t)dS +

∫
SU

uT
0 tdS

Saddle point:
L(λ∗,u∗,σ∗, t∗) = inf

λ�0,u
sup
σ,t

L(λ,u,σ, t)

Primal problem: Dual problem:

find inf
λ,u,σ


1
2

∫
V

λTH−1λdV +
1
2

∫
V

σT E−1σdV

+
∫
V

λT κ0dV −
∫
V

uTg0dV −
∫
ST

uTt0dS




subject to

CVu − E−1σ − Nλ = 0 in V

λ � 0 in V

u = u0 on SU

find sup
λ,σ,t


−1

2

∫
V

λT H−1λdV − 1
2

∫
V

σT E−1σdV

+
∫
SU

tTu0dS




subject to

−Hλ + NT σ � κ0 in V

C∗
Vσ = g0 in V

CT
S σ = t0 on ST

CT
S σ − t = 0 on SU
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5. Elastic-perfectly plastic solid

Taking H = 0, we obtain perfectly plastic behaviour.
Figure 2c shows such behaviour for uniaxial stress-strain
state. Now plastic potential keeps its initial value (16)
irrespective of plastic strains.

The stress admissibility conditions do not depend any
more on plastic multipliers and, hence, on plastic strains.
The sole matrix that appears on the diagonal of the
reduced system of governing relations (Table 3) is the
inverse matrix of elasticity. The potential of this system
is strictly concave with respect to stresses due to negative
quadratic term but it is only linear with respect to plastic
multipliers. Hence, we can expect the uniqueness of the
solution with respect to stresses only.

Moreover, we have lost the nice property of the strain-
hardening solid that it is able to carry any loading. In
the case of perfectly plastic material the yield surface
remains fixed and for excessively high load there might
be no statically admissible stress field. This means that
the constraints of the dual problem become contradictory
and the saddle point is not attainable.

For purely static loading the dual variational principles
given in Table 3 take the following form:

find inf
λ,u,σ


1
2

∫
V

σTE−1σdV +
∫
V

λTκ0dV

−
∫
V

uT g0dV −
∫
S

uT t0dS




subject to

CVu − E−1σ−Nλ = 0 in V

λ � 0 in V

u = 0 on SU

(24)

find sup
σ,t


−1

2

∫
V

σT E−1σdV




subject to

NTσ � κ0 in V

CV
∗σ = g0 in V

CT
S σ = t0 on ST

CT
S σ − t = 0 on SU

(25)

and for purely kinematic loading they read as follows:

find inf
λ,u,σ


1
2

∫
V

σTE−1σdV +
∫
V

λTκ0dV




subject to (26)

CVu − E−1σ−Nλ = 0 in V

λ � 0 in V

u = u0 on SU ,

find sup
σ,t


−1

2

∫
V

σT E−1σdV +
∫
SU

tTu0dS




subject to

NTσ � κ0 in V

CV
∗σ = 0 in V

CT
S σ = 0 on ST

CT
S σ − t = 0 on SU .

(27)

Note that the energy dissipated plastically is now linear
with respect to plastic multipliers (the second term in the
functional of the primal problem). Again there is no war-
ranty of the existence of solution, since self-equilibrated
stresses might not be able to remain inside the fixed yield
surface (the first constraint of the dual problem).

6. Rigid-perfectly plastic solid

Neglecting completely elastic strains, i.e. taking E−1 = 0,
we obtain rigid-perfectly plastic model (Fig. 2.d). It is
better now to consider the rates of kinematic variables
λ̇, u̇ instead of their values λ, u, since the plastic flow
becomes unlimited after the stress state reaches the yield
surface.

Table 4 contains the derivation of dual variational
principles for a rigid-perfectly plastic solid subjected si-
multaneously to static and kinematic loading. Looking at
the final result of this derivation, we notice several inter-
esting features. First, the functionals of both dual prob-
lems are linear. Second, the duality reflects kinematic and
static aspects of the problem: the primal variational prin-
ciple contains only kinematic variables and constraints,
whereas the dual one contains solely static variables and
constraints. Hence, we can call them a kinematic varia-
tional principle and a static variational principle. Finally,
the problem of finding response of such solid to a purely
static load would be ill-posed. This is seen clearly from
the functional of the static principle: this functional con-
tains no term associated with g0 or t0. Hence, it would
vanish for u̇0 = 0.

Such result confirms what we know from the theory of
ultimate load carrying capacity. If an arbitrary assigned
static load g0, t0 falls below the ultimate load then the
body remains rigid (λ̇∗ = 0, u̇∗ = 0) and stresses can not
be determined uniquely. If g0, t0 exceeds the ultimate
load then the constraints of the static principle become
contradictory and no solution exists.
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Table 3
Elastic-perfectly plastic solid under static and kinematic load

Governing relations:

constitutive ε = εE + εP in V

εE = E−1σ, εP = Nλ in V

ϕ = −NTσ + κ0 in V

ϕ � 0, λ � 0, ϕTλ = 0 in V

kinematics CVu = ε in V

equilibrium CT
Vσ = g0 in V

CT
S σ = t on S

static boundary conditions t = t0 on ST

kinematic boundary conditions u = u0 on SU

Reduced system of relations in V :

λ � 0 u σ 1

∇Lλ = −NT κ0 � 0

∇Lu = C∗
V −g0 = 0

∇Lσ = −N CV −E−1 = 0

Potential:

L(λ,u,σ, t) = − 1
2

∫
V

σT E−1σdV −
∫
V

λNTσdV +
∫
V

λTκ0dV +
∫
V

uT(C∗
Vσ − g0)dV +

∫
ST

uT(CT
S σ − t0)dS

+
∫
SU

uT(CT
S σ − t)dS +

∫
SU

uT
0 tdS

Saddle point:
L(λ∗,u∗,σ∗, t∗) = inf

λ�0,u
sup
σ,t

L(λ,u,σ, t)

Primal problem: Dual problem:

find inf
λ,u,σ


1
2

∫
V

σTE−1σdV +
∫
V

λT κ0dV

−
∫
V

uTg0dV −
∫
ST

uTt0dS




subject to

CVu − E−1σ − Nλ = 0 in V

λ � 0 in V

u = u0 on SU

find sup
λ,σ,t


−1

2

∫
V

σT E−1σdV +
∫
SU

tTu0dS




subject to

NT σ � κ0 in V

C∗
Vσ = g0 in V

CT
S σ = t0 on ST

CT
S σ − t = 0 on SU
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Table 4
Rigid-perfectly plastic solid under static and kinematic load

Governing relations:

constitutive ε̇P = Nλ̇ in V

ϕ = −NTσ + κ0 in V

ϕ � 0, λ̇ � 0, ϕTλ̇ = 0 in V

kinematics CVu̇ = ε̇ in V

equilibrium CT
Vσ = g0 in V

CT
S σ = t on S

static boundary conditions t = t0 on ST

kinematic boundary conditions u̇ = u̇0 on SU

Reduced system of relations in V :

λ̇ � 0 u̇ σ 1

∇Lλ̇ = −NT κ0 � 0

∇Lu̇ = C∗
V −g0 = 0

∇Lσ = −N CV = 0

Potential:

L(λ̇, u̇,σ, t) = −
∫
V

λ̇NTσdV +
∫
V

λ̇Tκ0dV +
∫
V

u̇T(C∗
Vσ−g0)dV +

∫
ST

u̇T(CT
S σ−t0)dS+

∫
SU

u̇T(CT
S σ−t)dS+

∫
SU

u̇T
0 tdS

Saddle point:
L(λ̇∗, u̇∗,σ∗, t∗) = inf

λ̇�0,u̇
sup
σ,t

L(λ̇, u̇,σ, t)

Primal problem: Dual problem:

find inf
λ�0,u̇



∫
V

λT κ0dV −
∫
V

u̇Tg0dV −
∫
ST

u̇Tt0dS




subject to

CVu̇ − Nλ̇ = 0 in V

λ̇ � 0 in V

u̇ = u̇0 on SU

find sup
σ,t

∫
V

tT u̇0dS

subject to

NT σ � κ0 in V

C∗
Vσ = g0 in V

CT
S σ = t0 on ST

CT
S σ − t = 0 on SU
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7. Optimum ultimate load

Assuming the loading to be purely kinematical, we obtain
the following dual variational principles for the rigid-
perfectly plastic solid:

find inf
λ̇,u̇

∫
V

λ̇Tκ0dV

subject to

CVu̇ − N λ̇ = 0 in V

λ̇ � 0 in V

u̇ = u̇0 on SU ,

(28)

find sup
σ,t

∫
SU

tTu̇0dS

subject to

NTσ � κ0 in V

CV
∗σ = 0 in V

CT
S σ = 0 on ST

CT
S σ − t = 0 on SU .

(29)

These problems of constrained optimisation are varia-
tional counterparts of the linear programming problems:
the extreme points of linear functionals are searched for
over convex domains described by linear constraints.

Interestingly enough, model (28)–(29) can be inter-
preted in terms of optimum ultimate loading. The func-
tional maximised in the static variational principle (29)
can be interpreted twofold:
1. As an expression of the power (work rate) generated

by surface tractions on prescribed displacement rates.
2. As an indicator of “quality” of surface tractions that

bring the body to the state of plastic collapse.
In the latter case, u̇0 is merely a vector field of

given cost coefficients and the problem is formulated
in the following way: “given κ0 in V and u̇0 on SU

find such distribution of surface tractions t∗ on SU that
brings the body to plastic collapse and corresponds to
sup

∫
SU

tTu̇0dS. Since the cost functional can be seen
as a weighted resultant of t, we can say that in the
model (28)–(29) we are looking for the most favourable

Fig. 5. Prescribed displacement and reaction on the surface

of the body

distribution of the surface loading, i.e. for the distribution
under which the body is able to carry maximum resultant
load. In particular, we may assume a unit field of cost
vectors, i.e. ‖u̇0‖ = 1 throughout SU .

An interesting question is whether freely optimised
load will be co-linear with the prescribed displacement
rate. Since the value of scalar product

tTu̇0 = ‖t‖ · ‖u̇0‖ · cosα (30)

is largest for α = 0 (compare Fig. 5), one should expect
such result, at least for an isotropic material. However,
plastic anisotropy may introduce a preferable direction
that differs on SU from the prescribed one. Then the
direction of t∗ need not coincide locally with the direction
of u̇0.

Model (28)–(29) shows us that if we treat tractions
as free variables then we must completely define displace-
ment rates on the surface. If the direction of loading is
given at each point of ST , i.e. if

t = t̃t0 (31)

where t is an unknown load modulus and t̃0 is a given
unit vector of load direction, then the power of loading

Ẇ =
∫
ST

u̇T tdS =
∫
ST

(̃tT
0 u̇)tdS =

∫
ST

v0tdS (32)

becomes linear in t, provided the value of scalar product

v0 = t̃T
0 u̇ (33)

remains given at each point of ST . Therefore, under
prescribed direction of loading, the load-oriented problem
is governed by the following pair of dual variational
principles:

find inf
λ̇,u̇

∫
V

λ̇Tκ0dV

subject to

CVu̇ − Nλ̇ = 0 in V

λ̇ � 0 in V

t̃T
0 u̇ = ν0 on ST

u̇ = 0 on SU

(34)

find sup
σ,t,t

∫
SU

ν0tdS

subject to

NTσ � κ0 in V

CV
∗σ = 0 in V

CT
S σ = t̃t0 on ST

CT
S σ − t = 0 on SU

(35)

Thus, when the direction of loading is given, then it is
sufficient to prescribe ν0 at each point of ST . The simplest
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choice is to take ν0 = 1. This means that we are looking
for the ultimate load with maximum resultant

∫
ST

tdS.
Finally, let us introduce a single-parameter load usu-

ally considered in the ultimate load theory:

t = t◦t̂0 (36)

Here t◦ is an unknown load factor and t̂0 is a prescribed
reference load. Then the power of load

Ẇ =
∫
ST

u̇T tdS = t◦
∫
ST

(̂tT
0 u̇)dS = t◦ν◦ (37)

becomes linear with respect to the unknown load factor
t◦ provided a power of reference load

ν◦ =
∫
ST

t̂T
0 u̇dS (38)

remains prescribed. In particular, we can normalise this
power taking ν◦ = 1. This leads to the well known dual
theorems concerning the ultimate load factor:

find inf
λ̇,u̇

∫
V

λ̇Tκ0dV

subject to

CVu̇ − Nλ̇ = 0 in V

λ̇ � 0 in V∫
ST

t̂T
0 u̇ = 1 on ST

u̇ = 0 on SU ,

(39)

find sup
σ,t◦,t

∫
ST

t◦dS

subject to

NTσ � κ0 in V

CV
∗σ = 0 in V

CT
S σ = t◦t̂0 on ST

CT
S σ − t = 0 on SU .

(40)

Thus, the more we know about the desired distribution
of surface load, the less restrictive are constrains on the
displacement rates in the kinematic principle. Describing
a priori the load up to a scalar factor gives us the most
freedom for the displacement rates. They must merely
produce fixed, e.g. unit, power of loading.

8. Conclusion

Summarising, we may say that only the analysis of linear
elastic body under static and/or kinematic bilateral load-
ing is governed by variational principles in the classical
sense. All other problems lead to variational inequalities
and, thus, are not reducible to systems of linear equations.
The response of linear elastic bodies and elastic-strain
hardening bodies to given load is unique, provided their
constitutive matrices E−1 and H are positive definite.

The response of elastic-perfectly plastic body is unique
only in terms of stresses and elastic strains. Moreover,
the existence of solution is not warranted any more for
arbitrary loading. If no a priori information regarding
surface tractions is given, then the only way to find the
response of a rigid-perfectly plastic body is to prescribe
the displacement rates on its surface. Such problem can
be interpreted also in terms of load optimisation.

If the direction of surface loading is prescribed, then
the ultimate distribution of its modulus can be found,
provided the power of loading is prescribed locally on
the surface. Finally, when surface loading is known up to
a scalar factor, the ultimate value of such factor follows
from well known static and kinematic theorems.

The above mentioned results apply also for plastic
bodies with smooth or piecewise-smooth non-linear yield
surfaces. The critical feature is the convexity of such
surface.

Appendix

Let column matrices x,b ∈ Rm be related by a system of
linear algebraic equations

Ax + b = 0 (A.1)

with symmetric positive definite (m × m)-matrix of coef-
ficients. Then the solution x∗ of this system corresponds
to the minimum point

L(x∗) = min
x

L(x) (A.2)

of the convex function

L(x) =
1
2

xTAx + xTb (A.3)

This function is called a potential of system (A.1),
since differentiating L with respect to x we obtain the left
hand side of (A.1). The necessary and sufficient condition
for x∗ to be minimum of L is that the gradient of L must
vanish at x∗. Obviously, writing down this condition

∇Lx = 0 (A.4)

we recover the initial system of Eq. (A.1).

Bull. Pol. Ac.: Tech. 52(4) 2004 339



A. Borkowski

Table A1
System of linear algebraic equations, its potential and equivalent QP-problems

System of equations:
Axxx + Axyy + bx = 0

Ayxx + Ayyy + by = 0

Potential:

L(x,y) =
1
2

xTAxxx +
1
2

yTAyyy + xTAxyy + bT
x x + bT

y y

Saddle point:
L(x∗,y∗) = min

x
max

y
L(x,y)

Stationarity conditions:
∇Lx = 0

∇Ly = 0

Primal problem: Dual problem:

find min
x,y

{
1
2

xT Axxx − 1
2

yT Ayyy + bT
x x

}
subject to

Ayxx + Ayyy + by = 0

find max
x,y

{
−1
2

xT Axxx +
1
2

yT Ayyy + bT
y y

}
subject to

Axxx + Axyy + bx = 0

If matrix A were negative definite, then L would be
concave and x∗ would correspond to the maximum point
of L. However, we are interested in linear systems that
have slightly more complicated structure. Such system is
written in the first row of Table A1. The overall matrix of
coefficients remains symmetric but it has been subdivided
now into sub-matrices that have different properties: Axx
is positive definite and Ayy is negative definite.

The result is that potential L(x,y) defined in the
second row of Table A1 becomes saddle-shaped: it is
convex with respect to x and concave with respect to y.
The necessary and sufficient conditions

∇Lx = 0

∇Ly = 0
(A.5)

for (x∗,y∗) to be the saddle point of L coincide with
the considered system of equations. Hence, point (x∗,y∗)
corresponds to the solution of this system.

Instead of looking for the saddle point we can solve
a pair of constrained extremum problems, known as the
dual problems. This circumstance is due to the fact that
(x∗,y∗) can be reached in two ways: either by minimising
a certain convex function L′ under constraints ensuring

maximisation of L, or by maximising a certain concave
function L′′ under constraints ensuring minimisation of
L. We expect functions L′ and L′′ to attain their extreme
values at the point (x∗,y∗). This requirement is met by
the Legendre transforms [10]

L′ = L − yT∇Ly

L′′ = L − xT∇Lx.
(A.6)

Taking advantage of them, we may write the dual
problems as:

find min
x,y

L′

subject to

∇Ly = 0

(A.7)

find max
x,y

L′′

subject to

∇Lx = 0.

(A.8)

The last row of Table A1 gives explicit form of such
problems.
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Table A2
Linear complementarity problem, its potential and equivalent QP-problems

LCP-problem:
Axxx + Axyy + bx � 0

Ayxx + Ayyy + by � 0

x � 0,y � 0

xT (Axxx + Axyy + bx) = 0

yT (Ayxx + Ayyy + by) = 0

Potential:

L(x,y) =
1
2

xTAxxx +
1
2

yTAyyy + xTAxyy + bT
x x + bT

y y

Saddle point:
L(x∗,y∗) = min

x�0
max
y�0

L(x,y)

Kuhn-Tucker conditions:
∇Lx � 0

∇Ly � 0

x � 0,y � 0

xT∇Lx = 0, yT∇Ly = 0

Primal problem: Dual problem:

find min
x,y

{
1
2

xT Axxx − 1
2

yT Ayyy + bT
x x

}
subject to

Ayxx + Ayyy + by � 0

x � 0

find max
x,y

{
−1
2

xT Axxx +
1
2

yT Ayyy + bT
y y

}
subject to

Axxx + Axyy + bx = 0

y � 0

Many interesting problems in physics and, in par-
ticular, in mechanics have internal structure of a linear
complementarity problem (LC-problem) shown in the first
row of Table A2. The potential function for this prob-
lem coincides with that for the set of equations discussed
above. The formulation of the saddle point problem seems
to be almost identical: one has merely to take into account
the sign constraints on variables. However, the necessary
and sufficient conditions for (x∗,y∗) to be the saddle
point are completely different:

∇Lx � 0

∇Ly � 0

x � 0,y � 0

xT∇Lx = 0

yT∇Ly = 0.

(A.9)

They are called Kuhn-Tucker conditions.
Legendre transforms (A.6) remain valid for the LC-

problem and the dual problems read:

find min
x,y

L′

subject to

∇Ly � 0

x � 0

(A.10)

find max
x,y

L′′

subject to

∇Lx � 0

y � 0.

(A.11)

The explicit form of those problems is given in the last
row of Table A2.

Until now we dealt with finite-dimensional spaces [11].
The above methodology can be generalised for linear
topological spaces using the notions of variational in-

Bull. Pol. Ac.: Tech. 52(4) 2004 341



A. Borkowski

equalities and convex analysis [12, 13]. Limitations on the
volume of the present paper preclude us from coming into
details. We present, therefore, only the final result — the
infinite-dimensional analogues of the dual models derived
for a certain class of systems of linear partial differential
equations (Table A3) and for LC-problems (Table A4).

For linear differential operators symmetry means self-
adjointness. Therefore, we require Axy and Ayx to be
mutually adjoint. If Axx and Ayy were differential opera-
tors, they should be self-adjoint. In our applications they

happen to be algebraic, which requires the same proper-
ties as for the finite-dimensional case — the symmetry
of both matrices plus positive definiteness of Axx and
negative definiteness of Ayy.

In the stationarity conditions (A.5) simple derivatives
should be replaced by sub-differentials. The result of such
differentiation is a set and we are looking for the smallest
(infimum) or largest element of this set (supremum).
Finally, in order to evaluate the scalar product of two
variables, we need to integrate over proper domain.

Table A3
System of linear partial differential equations, its potential and variational principles

System of equations:
Axxx + Axyy + bx = 0
Ayxx + Ayyy + by = 0

}
in V

boundary conditions on S

Potential:

L(x,y) =
1
2

∫
V

xTAxxxdV +
1
2

∫
V

yTAyyydV +
∫
V

xTAxyydV +
∫
V

bT
x xdV +

∫
V

bT
y ydV

+ boundary terms

Saddle point:
L(x∗,y∗) = inf

x
sup

y
L(x,y)

Primal problem: Dual problem:

find inf
x,y


1
2

∫
V

xTAxxxdV − 1
2

∫
V

yTAyyydV

+
∫
V

bT
x xdV + boundary terms




subject to

Ayxx + Ayyy + by = 0 in V

boundary conditions on S

find sup
x,y


−1

2

∫
V

xTAxxxdV +
1
2

∫
V

yTAyyydV

+
∫
V

bT
y ydV + boundary terms




subject to

Axx + Axyy + bx = 0 in V

boundary conditions on S
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Table A4
Linear complementarity problem, its potential and variational principles

LCP-problem:
Axxx + Axyy + bx � 0
Ayxx + Ayyy + by � 0

x � 0,y � 0∫
V

xT (Axxx + Axyy + bx) dV = 0∫
V

yT (Ayxx + Ayyy + by) dV = 0




in V

boundary conditions on S

Potential:

L(x,y) =
1
2

∫
V

xTAxxxdV +
1
2

∫
V

yTAyyydV +
∫
V

xTAxyydV +
∫
V

bT
x xdV +

∫
V

bT
y ydV + boundary terms

Saddle point:
L(x∗,y∗) = inf

x�0
sup
y�0

L(x,y)

Primal problem: Dual problem:

find inf
x,y


1
2

∫
V

xT AxxxdV − 1
2

∫
V

yT AyyydV

+
∫
V

bT
x xdV




find sup
x,y


−1

2

∫
V

xT AxxxdV +
1
2

∫
V

yT AyyydV

+
∫
V

bT
y ydV




subject to

Ayxx + Ayyy + by � 0
x � 0

}
in V

boundary conditions on S

subject to

Axxx + Axyy + bx � 0
y � 0

}
inV

boundary conditions on S
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