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Streaming electrification of insulating liquid mixtures
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Abstract: Extensive efforts have been made for many years by the power generating industry
to replace conventional solid and liquid insulation with synthetic materials. Those measures
are aimed at increasing the load capacity, improved fire safety and extending transformer
life during exploitation. Modern insulating materials include aramid fibre-based paper and
insulating fluids made of synthetic and natural esters. The paper presents research results
of the electrostatic charging tendency (ECT) of mixtures of fresh and aged mineral oil
Trafo En with synthetic ester Midel 7131 and natural ester Midel 1204. The measurements
were taken in a flow-through system using the pipes made of metal, cellulose and aramid
paper. The influence of the liquid flow velocity, the type of material of the measuring pipe
and the mixture content on the level of the streaming electrification current generation was
determined.
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1. Introduction

The increasing demand for electrical energy has led to an increase in the output of power
transformers. Rapid growth of material engineering has enabled the development of advanced
technologies for manufacturing synthetic liquids and solid materials with increased insulating
performance, allowing an increase of power rating of that equipment while minimising changes
in its size. Such materials include insulating fluids made from organic esters [1–5] and paper based
on aramid fibres [6–11]. Increasing load capacity of transformers while attempting to minimise
their weight and dimensions required, however, changes to be made in the design, involving,
among others, bringing transformer active parts closer. Also the problem of effective waste
heat dissipation has emerged. To intensify cooling of transformer windings, the flow velocity
of cooling fluid was mainly increased. That, however, resulted in increased generation of static
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electricity [12]. The electrification problem was tackled by a work group appointed by CIGRE
12/15-02 [13–15], Massachusetts Institute of Technology (MIT) and Electric Power Research
Institute (EPRI) under the project Static Electrification in Power Transformers [16]. Therefore,
electrification tests were performed on actual transformers [17] and then, on large laboratory
systems modelling their operation [18]. Then, small laboratory systems were introduced [19–27].
The objective of the extensive research was to gain a thorough knowledge of the nature of the
streaming electrification phenomenon and to find efficient means of reducing it. Mineral oils
[12–18, 20–32] and synthetic liquids [33–37], as well as pure hydrocarbons and their mixtures
[38–40] were tested. Among others, the effect of hydrodynamic conditions [41], temperature [14,
33, 37, 42], ageing processes [29, 36, 37, 43, 44] and properties of solid materials [37, 45] were
analysed. The investigation results presented in the paper of streaming electrification of insulating
liquid mixtures are a continuation of the investigations presented in works [37, 47, 49] In this
works streaming electrification of mineral oil Trafo En and ester Midel 7131 in the functions of
speed and time of liquid flow through the pipes made of different materials (cellulose and aramid
paper, copper, aluminum, brass, glass epoxy laminate and carbon fiber) was measured. Also
the influence of temperature and accelerated thermal aging of liquids on electrification current
value was analyzed. The issues studied are important from both, the scientific and practical
point of view. Modern solid-state insulating materials, e.g. aramid paper are characterised by
different physicochemical properties and, in combination with liquid insulating materials, e.g.
mineral oils, esters and their mixtures, they may have substantially different features. Studies of
electrostatic properties of paper and insulating liquid mixtures systems contribute to the materials
science, providing a vast resource of information that can be used in further research and for the
development of modified materials for use in power engineering.

2. Measuring system

Fig. 1 illustrates the general layout of the flow-through system with a pipe for testing the ECT
of insulating fluids.

The electrification process in such system is as follows: fluid at a controlled temperature (from
20◦C to 90◦C), flowing at a specified velocity (from 0.34 to 1.75 m/s) from the top tank (1) through
the pipe (7), is electrified and flows to the isolated bottom tank located in a Faraday cage (3). The
leakage of the excess static charge to the ground is recorded with a Keithley 6517 electrometer (5).
Measuring data is archived and then processed and imaged by a portable computer (4). Fluid flow
velocity through the pipe is controlled by changing the pressure of a gas cushion (with nitrogen)
in the top tank (1). The fluid from the bottom tank is forced up to the top tank by the pump (6).
Fluid flow was cut off with the solenoid valve (8). Measuring parameters (velocity, temperature
and fluid flow time) were controlled automatically by microprocessors in the control box (9). The
pipes used for tests were made of metal, cellulose paper made by Tervakoski, and Nomex® paper
made by Dupont. Their length was 400 mm and diameter 4 mm. ECT experiments (at 20◦C)
were carried out on the samples of insulating liquid mixtures which consisted of fresh and aged
mineral oil combined with synthetic and natural esters in proportions changing every 10%. For
testing purposes mineral oil Trafo En manufactured by Orlen Oil company and synthetic ester
Midel 7131 and natural ester 1204 manufactured by M&I Materials were suggested. A single
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Fig. 1. Layout of the test stand with a flow pipe for testing streaming electrification of insulating fluids:
1 – top tank, 2 – supporting structure, 3 – Faraday cage with measuring tank located inside, 4 – measuring

computer, 5 – electrometer, 6 – pump, 7 – measuring pipe, 8 – solenoid valve, 9 – control box

point on the diagram of the streaming electrification current is an average from 50 measurements.
Accelerated thermal aging of mineral oil Trafo En was performed based on IEC 1125C (120◦C,
164 h, with an addition of cooper catalyst – 2 g/litre) method. Table 1 presents the most important
physicochemical properties of the insulating fluids tested at 20◦C.

Table 1. Properties of the insulating liquids under study (20◦C)

Value

Property Trafo En fresh oil Trafo En aged oil Midel 7131 Midel 1204

Density [kg/m3] 885 891 970 918

Viscosity [m2/s] 2.04 · 10−5 2.43 · 10−5 7 · 10−5 8.4 · 10−5

Relative permittivity [–] 2.23 2.14 3.19 3.21

Conductivity [S/m] 7.94 · 10−13 1.33 · 10−11 8.77 · 10−12 8.26 · 10−12

Acid number [mg KOH/g] 0.015 0.145 < 0.01 < 0.01

3. Results of experiments

In power transformers it is necessary to use an induced circulation of insulating liquid to
increase the effectiveness of carrying away heat losses from their interior. The insulating liquid
flowing in a transformer becomes electrified due to its contact with materials of various physico-
chemical properties and of various surface structures. Both solid dielectrics (paper, pressboard)
used for transformer winding insulation and the metal of which a transformer tank is built as well
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as the cooling system elements (pumps, cooler radiators) are used in this type of facilities. Flow
velocity, physicochemical properties of insulating liquid and also the properties of solid material
have a significant influence on the occurrence and development of the streaming electrification
phenomenon. Fig. 2 shows exemplary plots of the streaming electrification current of the insulat-
ing liquids under study flowing through a metallic pipe with the velocity in the range from 0.34
to 1.75 m/s. Analyzing the diagrams it can be observed that increasing the liquid flow velocity
causes a linear increase of the streaming electrification current value. The investigations carried
out showed that fresh mineral oil has the lowest ECT and aged oil shows almost twice higher
susceptibility to streaming electrification. Comparing the electrification of natural and synthetic
esters it can be concluded that Midel 1204 becomes ca. 30% more electrified than Midel 7131. In
order to confirm the influence of properties of solid phase materials on ECT values, the measure-
ments of streaming electrification current of liquid Midel 1204 in the function of flow velocity
using metallic, aramid and cellulose pipes were taken (Fig. 3). The experiments confirmed that
ECT of insulating liquid strongly depends upon the type of material of which a measuring pipe
is made. The generation of electrostatic charges in liquid Midel 1204 takes place to the highest
degree in a metallic pipe. These liquids were the least electrified during their flow through a pipe
made of cellulose paper. The significant differences in ECT values should be explained by the
properties of a double electric layer of a charge on the border of the solid and liquid phase contact
as well as the surface roughness of the pipe material.
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Fig. 2. Electrification current of insulating liquids vs. flow velocity through a metallic pipe:
1 – fresh mineral oil, 2 – synthetic Midel 7131, 3 – natural Midel 1204, 4 – aged mineral oil

Figs. 4 and 5 show dependencies of streaming electrification current on percent content of
synthetic ester and natural ester Midel 1204 in mixtures with fresh mineral oil.
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Fig. 3. Electrification current vs. flow velocity of natural ester Midel 1204 through the pipes
made of various materials

Fig. 4. Electrification current vs. percent content of synthetic ester Midel 7131
and fresh mineral oil in the mixtures
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Fig. 5. Electrification current vs. percent content of natural ester Midel 1204 and fresh
mineral oil in the mixtures

The tests were carried out using measuring pipes made of metal and aramid and cellulose
paper. The liquid flow velocity was 0.34 m/s (gravity flow). In both types of mixtures a high
dependence of ECT on the percent content of their particular components could be observed.
An increase of concentration of synthetic and natural esters in mixtures with fresh mineral oil
leads to a sharp increase of the electrification current value. In the case of the mixture the content
of which constitutes 60% of fresh mineral oil and 40% of ester, a characteristic maximum of
streaming electrification current is observed. With further increase of percent participation of
esters in mixtures, electrification current decreases significantly.

Figs. 6 and 7 show dependencies of electrification current of mixtures in the function of percent
content of aged mineral oil and synthetic and natural esters. The liquid flow velocity was 0.34 m/s
(gravity flow). An increase of the percent concentration of liquid Midel 7131 and liquid Midel
1204 in the mixtures with aged mineral oil leads to a decrease of their electrostatic properties. The
minimum of electrification current is obtained at 80% content of esters in mixtures regardless of
the measuring pipe used. Further increase of percent content of esters causes a slight increase of
electrostatic properties of the mixtures. Summing up, it should be concluded that the flow velocity
of insulating liquid, the type of the pipe material and the mixture content significantly influence
the value of the streaming electrification current measured. The highest level of ECT is registered
for the mixtures, the content of which constitutes 60% of fresh mineral oil and 40% of esters. The
lowest electrification shows the mixtures, the content of which constitute 80% of aged mineral oil
and 20% of esters. The insulating liquids under study and their mixtures become electrified to the
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Fig. 6. Electrification current vs. percent content of synthetic ester Midel 7131
and aged mineral oil in the mixtures
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Fig. 7. Electrification current vs. percent content of natural ester Midel 1204 and
aged mineral oil in the mixtures
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highest degree during their flow through a metallic pipe. Lower values of streaming electrification
are observed when using an aramid pipe, and the lowest values when using a cellulose pipe.

4. Conclusions

The paper presents experimental research results of ECT of insulating liquids used in power
transformers and their mixtures. The mixtures were made based on fresh and aged mineral
oil Trafo En, synthetic ester Midel 7131 and natural ester Midel 1204. The measurements of
streaming electrification current were taken in a flow-through system with a pipe. The research
work carried out showed a high dependence of generated streaming electrification currents on the
type of insulating liquid (Fig. 2), flow velocity and the pipe material used (Fig. 3). Furthermore, the
research work carried out showed that ECT of the mixtures made strongly depends on their content
(Figs. 4–7). The mixtures of esters with fresh mineral oil show significantly different electrostatic
properties than the mixtures with aged mineral oil. In the first case, streaming electrification
current increases and decreases after achieving a 40% content of esters in the mixtures with
fresh mineral oil. In the case of the mixtures of esters with aged mineral oil in the range from
10% to 80%, a significant decrease of electrification current takes place and after exceeding this
level, its slight increase is observed. It is difficult to compare directly the investigation results
of electrification of mineral oils as their susceptibility to electrification depends significantly
on their chemical composition (the content of particular groups of hydrocarbons), which is
shown in works [38–40]. Presently, there are no similar investigations published in specialist
literature therefore there are no direct references in the paper. The research on physicochemical
and electrostatic properties of insulating liquids and their mixtures can be useful in designing the
insulating systems of power transformers and in the process of retrofilling, the aim of which is
the improvement of transformer work reliability and reduce environmental hazards or increase
fire safety. In the future, studies on physicochemical and electrostatic properties of mixtures as a
function of temperature are planned.
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