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Abstract: In recent years, with the rapid development of digital components, digital
electronic computers, especially microprocessors, digital controllers have replaced ana-
log controllers on many occasions. The application of digital controller makes the per-
formance analysis of impulsive system more and more important. This paper considers
global exponential stability (GES) of impulsive delayed nonlinear hybrid differential sys-
tems (IDNHDS).Through the application of the Lyapunov method and the Razumikhin
technique, a series of uncomplicated and useful guiding principles have been obtained. The
results of a numerical simulation are presented to demonstrate that the method is correct
and effective.
Key words: impulsive delayed nonlinear hybrid systems, global exponential Lyapunov
function, Razumikhin technique

1. Introduction

Time-delay impulsive systems are widely used in engineering, control technology, biology,
economics, communication networks and other fields [1–6]. Therefore, it is very important
to study the characteristics of these systems. Among them, stability analysis is an important
aspect of studying such systems [7–9]. It is particularly important, especially for the study of
exponential stability. Some achievements have been made in the exponential stability analysis of
such systems. In [10–12], the authors have studied the exponential stability of such systems by
using the Lyapunov and Razumikhin technique.

0

© 2019. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0, https://creativecommons.org/licenses/by-nc-nd/4.0/), which per-
mits use, distribution, and reproduction in any medium, provided that the Article is properly cited, the use is non-commercial,
and no modifications or adaptations are made.



554 Q. Jia, C. Xia Arch. Elect. Eng.

The research on a hybrid dynamical system (HDS) has become a hotspot in recent years [13,
14]. The hybrid systems provide convenient applications such as robotics, integrated circuit design,
automated highway systems, complex physical phenomena. V. Lakshikantham and X.Z. Liu were
the first to introduce the concept of the impulsive hybrid systems [15]. In their paper, they
established a comparison principle and some stability criteria for such systems. Recently, hybrid
impulsive dynamical systems are studied extensively [16-21]. However, further research on the
HDS is needed. Results of studying the HDS with delay are rare [22−24]. In [23] the author
investigated globally asymptotically and exponentially the stability issue of non-linear impulsive
and switching time-delay systems. However, the conclusion of the paper needs a set of conditions,
and the time delay is less than the impulsive interval length. In [24], by using a Lyapunov function
and Lyapunov functional, the local uniform stability of a time-delay linear hybrid system is studied
for two cases with delay independent or delay dependent.

In this paper, by using the Lyapunov method and the Razumikhin technique, we consider the
global exponential stability (GES) problems for impulsive delayed nonlinear hybrid differential
systems (IDNHDs) for any time delay. Furthermore, the conclusions of this paper can be used
to study the GES of the linear impulsive HDS with time delays. Therefore, the results of this
paper generalize the results of [24] and study the GES under the same conditions. In addition, the
results show that, for a delayed nonlinear or linear differential hybrid system. Even if the system
may be unstable, the impulses can help the GES.

The sections of this paper are as follows: In the second section, we will introduce some
symbols and definitions. In the third section, we obtain some criteria for GES of impulsive delay
nonlinear or linear mixed differential systems with arbitrary delays. In the fourth section, we
discuss two examples validate the conclusions in this paper. In the fifth section, the work is briefly
discussed.

2. Preliminaries

The symbols and definitions used in this paper are described below. R = (−∞,+∞) is the set
of real numbers. R+ = [0,+∞) is the set of nonnegative real numbers and N = {0, 1, 2, . . .} is
the set of natural numbers. For the vector u ∈ Rn, its transpose is denoted as uT . ∥u∥ is defined
as the norm of vector u. Rn×n is the real matrix with the order n × n.

Consider the following IDNHDS:


ẋ(t) = Ax(t) + f (t, x(t), x(t − τ(t))) + Mk xk , t , tk , t ≥ t0 ,

x(t) = Ck x(t−), t = tk , k ∈ N,

xt0 = φ,

(1)

where t ≥ t0, φ ∈ PC([−τ, 0], Rn), x(t) ∈ Rn, A, B and CK , MK ∈ Rn×n, the time sequence
{tk }+∞k=1 satisfy 0 = t0 < t1 < t2 < · · · < tk < · · · , lim

k→∞
tk = +∞. The time delay 0≤ τ(t)≤ τ≤+∞,

x(t+) = lim
s→0+

x(t + s) and x(t−) = lim
s→0−

x(t + s).
Let

PC
(
[−τ, 0] , Rn) = {

ϕ : [−τ, 0]→ Rn} .
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ϕ(t) is continuous except for a limited number of points t̂. At the points, the condition that
ϕ(t̂+) and ϕ(t̂−) exist and ϕ(t̂+) = ϕ(t̂−) is satisfied.

For
Ψ ∈ PC([−τ, 0] , Rn),

the norm Ψ is defined as:
∥Ψ∥τ = sup

−τ≤s≤0
∥Ψ∥ .

xt, xt− ∈ PC
(
[−τ, 0] , Rn)

are defined by xt (s) = x(t + s) and xt− (s) = x(t− + s) for s ∈ [−τ, 0], respectively.
Assuming that the initial conditions satisfy, system (1) has unique solutions. Denote by

x(t) = x(t, t0, φ) the solution of (1) such that xt0 = φ.
Further we assume that all the solutions xt of system (1) are continuous except at some

breakpoints tk , k ∈ N , at which x(t) is right-continuous.
Let

x(t0) = (x1(t0), x2(t0)) = φ = (−1, 1), ∆tk = tk+1 − tk , k ∈ N .

Obviously, x(t) = 0 is the zero solution of (1).
The following definitions are available.
Definition 1. If there are some constants λ > 0 and K > 0 for any initial condition xt0 = φ,

the following inequality is established:

∥x(t, t0, φ)∥ ≤ K ∥φ∥τe−λ(t−t0), t ≥ t0 ,

where
(t0, φ) ∈ R+ × PC

(
[−τ, 0] , Rn) .

Then the zero solution of (1) is globally exponentially stable. That is, (1) is a global stability
system [4].

Definition 2. Function V : R+ × RN → RN is said to belong to the class υ0, if (i) V is
continuous in each of the sets [tk, tk+1)×Rn, and it exists for each x ∈ Rn,Ψ, lim

(t,y)→(t−
k
,x)

V (t, y) =

V (t−
k
, x); as well (ii) V (t, x) is locally Lipschitzian in all x ∈ Rn, and for all υ0, V (t, 0) = t0 [4].

Definition 3. Given a function V : R+ × Rn → R+, and an upper right-hand derivative of V
with respect to system (1), it is defined by [4].

D+V (t, x(t)) = lim
δ→0+

sup
1
δ

[
V (t + δ, x(t + δ)) − V (t, x(t))

]
.

3. Main results

In this section, some simple and practical criteria will be drawn. These criteria in GES are
directed against the system (1). We will combine the Lyapunov-Razumikhin technology with
some analysis methods.
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Theorem 1. Suppose that P is a square matrix with the order of n, and P is symmetric and
positive definite. Suppose that λ3 and λ4 are the maximum eigenvalues of

P−1
(
AT P + PA + 2PP + l1

)
and l2P−1,

respectively, and suppose that λMk
and λCk

are the maximum eigenvalues of

P−1CT
k MT

k MkCk and P−1CT
k PCk ,

respectively.
Defining λ5 = sup

k∈N
λMk , λ6 = sup

k∈N
λCk and 0 ≤ λ6 ≤ 1.

Assume that the constants satisfying − ln λ6 ≥ 1, λ > 0 and σ > 0, for all k ∈ N . The above
constant satisfies the following conditions:

(i) F (λ) = σ − λ −
(
λ3 +

λ4

λ6
eλτ +

λ5

λ6

)
≥ 0,

(ii) ln λ6 < − (σ + λ) (tk+1 − tk ) ,

(iii) Existing two numbers l1 > 0 as well as l2 > 0,

and satisfying 

 f (t, x(t), x(t − τ(t)))

2 ≤ l1

x(t)

2
+ l2

x(t − τ(t))

2.

Then, for any fixed delays 0 ≤ τ(t) ≤ τ < +∞, the zero solution of (1) is globally exponentially
stable, and the convergence rate is

λ

2
.

Proof
Let x(t) = x(t, t0, x0) be any solution of systems (1), which initial state it is.
Constructing a Lyapunov function:

V
(
t, x(t)

)
xT (t)Px(t). (2)

Therein, λ1 > 0 is the smallest eigenvalue of P, and λ2 > 0 is the largest eigenvalue of P, λ1
and λ2 meet the following condition:

λ1

x(t)

2 ≤ V
(
t, x(t)

) ≤ λ2

x(t)

2. (3)

The following inequalities will be proved:

V
(
t, x(t)

) ≤ λ2K

x0

2
τe−λ(t−t0), t ∈ [tk, tk+1), k ∈ N . (4)

Calculating the right upper derivative of V (t, x(t)),

D+V
(
t, x(t)

)
=

= xT (t)
(
AT P + PA

)
x(t) + 2xT (t)P f (t, x(t), x(t − τ(t)) + 2Mk xk x(t)) ≤

≤ xT (t)
(
AT P + PA + PP

)
x(t) + f (t, x(t), x(t − τ)) f (t, x(t), x(t − τ(t))) +

+xT
k

MT
k

Mk xk + xT (t)PPx(t) ≤
≤ xT (t)

(
AT P + PA + PP + l1p−1P

)
x(t) + l2xT x(t − τ(t))P−1Px(t − τ(t))+

+xT
k

MT
k

Mk xk ≤ λ3V (t, x(t)) + λ4V (t − τ(t), x))) + xT
k

MT
k

Mk xk .

(5)
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Because of condition (ii) is satisfying, we can get:

− ln λ6 + λτ − (σ + λ)(tk+1 − tk ) > 0. (6)

From (6), we choose K ≥ 1, which satisfies:

1 < e(σ+λ)(t1−t0) ≤ K ≤ − ln λ6eλτ−(σ+λ)(t1−t0)e(σ+λ)(t1−t0) . (7)

Then it follows that:



x0

2
τ <



x0

2
τeσ(t1−t0) ≤ K

x0

2

τe−λ(t1−t0) . (8)

First, we need to prove following condition:

V
(
t, x(t) ≤ λ2K ∥x0∥2τe−λ(t−t0)

)
, t ∈ [t0, t1). (9)

For the proof of the upper form, we need to prove that

V
(
t, x(t) ≤ λ2K ∥x0∥2τe−λ(t1−t0)

)
, t ∈ [t0, t1). (10)

If the above model is not set up by (3) and (9), there is some t ∈ (t0, t1) satisfying the following
formula:

V
(
t, x

(
t
))
> λ2K ∥x0∥2τe−λ(t1−t0) ≥ λ2∥x0∥2τe−λ(t1−t0)

> λ2∥x0∥2τ ≥ V
(
t0 + s, x(t0 + s)

)
, s ∈ [−τ, 0].

The above formula implies that some t∗ ∈
(
t0, t

)
exists, such as:

V
(
t∗, x

(
t∗
))
= λ2M ∥x0∥2τe−λ(t1−t0) (11)

and
V (t, x(t)) ≤ V

(
t∗, x(t∗)

)
, t ∈ [t0 − τ, t∗]. (12)

t∗∗ ∈ [t0, t∗) also exists, such as:

V
(
t∗∗, x

(
t∗∗

))
= λ2∥x0∥2τ , (13)

as well as
V

(
t∗∗, x(t∗∗)

) ≤ V (t, x(t)) , t ∈ [t∗∗, t∗]. (14)

So, for any parameter s ∈ [−τ, 0], there are the following inequalities:

V (t + s, x(t + s)) ≤ λ2K ∥x0∥2τe−(t1−t0) ≤ λ2

λ6
eλτ−(σ+λ)(t1−t0)e(σ+λ)(t1−t0) ∥x0∥2τ ≤

≤ λ2

λ6
eλτ−(σ+λ)(t1−t0)e(σ+λ)(t1−t0) ∥x0∥2τ ≤

eλτ

λ6
λ2 ∥x0∥2τ =

eλτ

λ6
V

(
t∗∗, x

(
t∗∗

)) ≤
≤ eλτ

λ6
V (t, x(t)) , t ∈ [

t∗∗, t∗
]
.

(15)
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From (4), (13) and (14), we can get:

xT0 MT
0 M0x0 = xT0 MT

0 M0P−1Px0 ≤ λ5V (t0, x(t0))

≤ λ5λ2 ∥x0∥2τ ≤ λ5V (t, x(t)) , t ∈ [
t∗∗, t∗

]
.

(16)

Because the conditions (i), (5), (15) and (16) are satisfying, we can get:

D+V (t, x(t)) ≤
(
λ3 +

λ4

λ6
eλτ +

λ5

λ6

)
V (t, x(t)) ≤ (σ − λ)V (t, x(t)), t ∈ [

t∗∗, t∗
]
. (17)

From (8), (11), (12), (13) and (14), we can get:

V (t∗, x (t∗)) ≤ V (t∗∗, x (t∗∗)) e(σ−λ)(t∗−t∗∗) = λ2∥x0∥2τe(σ−λ)(t∗−t∗∗) <

< λ2∥x0∥2τeσ(t1−t0) ≤ λ2K ∥x0∥2τe−λ(t1−t0) = V (t∗, x (t∗)) .
(18)

There is a contradiction in the above conclusion. Therefore, Formula (9) is established, and
Formula (4) is true for k = 0.

We assume that (4) holds for k = 0, 1, 2, . . . ,m (m ∈ N , m ≥ 0), i.e.

V (t, x(t)) ≤ λ2K ∥x0∥2τe−λ(t−t0), t ∈ [tk, tk+1), k = 0, . . . ,m. (19)

Next, we will prove the establishment of (4) for k = m + 1, i.e.:

V (t, x(t)) ≤ λ2K ∥x0∥2τe−λ(t−t0), t ∈ [tm+1, tm+2) . (20)

If (20) does not hold, then we define

t = inf
{
t ∈ [tm+1, tm+2) | V (t, x(t)) > λ2K ∥x0∥2τe−λ(t−t0)

}
.

By condition (ii) and (19), the following formula is obtained:

V (tm+1, x(tm+1)) = xT (t−
m+1) CT

m+1PCm+1x(t−
m+1) ≤ λ6V

(
t−
m+1, x(t−

m+1)
)
≤

≤ λ6λ2K ∥x0∥2τe−λ(tm+1−t0) = λ6λ2K ∥x0∥2τeλ(t−tm+1)e−λ(t−t0) <

< λ6λ2eλ(tm+2−tm+1) K ∥x0∥2τe−λ(t−t0) < λ2K ∥x0∥2τe−λ(t−t0)

(21)

and so t , tm+1.
From the continuity of V (t, x(t)) in [tm+1, tm+2), we have:

v
(
t, x

(
t
))
= λ2K ∥x0∥2τe−λ(t−t0), t ∈

[
tm+1, t

]
. (22)

From (21), we know there is some t∗ ∈
(
tm, t

)
such as:

V
(
t∗x

(
t∗
))
= λ6λ2eλ(tm+2−tm+1) K ∥x0∥2τe−λ(t−t0) (23)

and
V

(
t∗x

(
t∗
)) ≤ V (t, x(t)) ≤ V

(
t, x

(
t
))
, t ∈

[
t∗, t

]
. (24)
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According to (19), (21), (23) and (24), we have:

xT
m+1MT

m+1Mm+1xm+1 = x−T
m+1CT

m+1MT
m+1Mm+1Cm+1x−

m+1 ≤ λ5V
(
t−
m+1, x

(
t−
m+1

))
=

= λ2eλ(tm+2−tm+1) K ∥x0∥2τe−λ(t−t0) =
λ5

λ6
λ6λ2eλ(tm+2−tm+1) ∥x0∥2τ e−λ(t−t0) =

=
λ5

λ6
V

(
t∗x

(
t∗
)) ≤ λ5

λ6
V (t, x(t)), t ∈

[
t∗, t

]
.

(25)

Meanwhile, for any t ∈
[
t∗, t

]
, s ∈ [−τ, 0]. Then either t+ s ∈ [t0− t, tm+1) or t+ s ∈

[
tm+1, t

)
.

Two cases will be discussed as follows:
If t + s ∈ [t0 − t, tm+1), than, based on (19), we obtain:

V (t + s, x(t + s)) ≤ λ2K ∥x0∥2τe−λ(t1−t0)e−λs ≤ λ2K ∥x0∥2τe−λ(t−t0)eλ(t−t)eλτ

≤ λ2eλτeλ(tm+2−tm+1) K ∥x0∥2τe−λ(t−t) .
(26)

If t + s ∈
[
tm+1, t

)
then using (22) we get:

V (t + s, x(t + s)) ≤ λ2K ∥x0∥2τe−λ(t−t0) ≤ λ2eλτeλ(tm+2−tm+1) K ∥x0∥2τe−λ(t−t0) . (27)

From (26) and (27), in any case, we have for any s ∈ [−τ, 0]

V (t + s, x(t + s)) ≤ eλτ

λ6
V

(
t∗, x

(
t∗
)) ≤ eλτ

λ6
V (t, x(t)), t ∈

[
t∗, t

]
. (28)

Finally, from (i), (5) and (28), the following can be obtained:

D+V (t, x(t)) ≤
(
λ3 +

λ4

λ6
eλτ

)
V (t, x(t)) ≤ (σ − λ)V (t, x(t)).

Therefore, by condition (ii), the following results can be obtained:

V
(
t, x

(
t
))
≤ V (t∗, x (t∗)) e(σ−λ)(t−t∗) = λ6λ2eλ(tm+1−tm ) K ∥x0∥2τe−λ(t−t0)e(σ−λ)(t−t∗)

< λ2e−(σ+λ)(tm+3−tm+1)eλ(tm+2−tm+1) K ∥x0∥2τe−λ(t−t0)e(σ−λ)(t−t∗) =

= λ2K ∥x0∥2τe−σ(tm+2−tm+1)e(σ−λ)(t−t∗)e−λ(t−t0)

< λ2K ∥x0∥2τe−λ(t−t0) = V
(
t, x

(
t
))
.

(29)

The above results are contradictory. This means that the hypothesis is not valid. Therefore,
(4) is established for k = m + 1 and by mathematical induction, we can set up (4) for any k ∈ N .

From (3), we can obtain:

∥x(t)∥ ≤
√
λ2

λ1
K ∥x0∥τe

−λ
2 (t−t0)t ≥ t0 , (30)

which implies that for any fixed delays 0 ≤ τ(t) ≤ τ ≤ +∞, the zero solution of system (1)
is globally exponentially stable with the convergence rate

λ

2
. Then, we complete the proof of

Theorem 1.
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Corollary 1. Let λ3, λ4, λ5, λ6 and condition (iii) be precisely the same as that of Theorem 1,
and assume that for all k ∈ N

(iv)
(
λ3 +

λ4

λ5
eλτ +

λ5

λ6

)
(tk+1 − tk ) < − ln λ6 .

Then for any fixed delays 0 ≤ τ(t) ≤ τ ≤ +∞, the zero solution of system (1) is globally
exponentially stable.

Proof
The condition (i) of Theorem 1 is equivalent to the following conditions:

(1)′ σ ≥ λ +
(
λ3 +

λ4

λ5
eλτ +

λ5

λ6

)
.

Moreover, both conditions (1)′ and (ii) are equivalent to the following conditions:(
2λ + λ3 +

λ4

λ5
eλτ +

λ5

λ6

)
(tk+1 − tk ) < − ln λ6 , k ∈ N . (31)

If the real number λ > 0 is small enough, the above results can be obtained by conditional (iv).
Actually, we introduce below a function for all k ∈ N :

H (λ) =
(
2λ + λ3 +

λ4

λ5
eλτ +

λ5

λ6

)
(tk+1 − tk ) + ln λ6 , (32)

which can be generated by condition (iv) that H (0) < 0. Because of the continuity of H (λ), we
can deduce that there exists a small enough real number λ > 0 which makes H (λ) < 0. At the
same time, inequality (31) is established by Theorem 1. That is to say, Corollary 1 is set up.

The results of Theorem 1 in this paper can be used to handle the GES problem for the
Theorem 1 of [24] impulsive delayed linear dynamical hybrid systems:


ẋ(t) = Ax(t) + Bx(t − τ) + Mk xk , t , tk , t ≥ t0 ,

x(t) = Ck x(t−), t = tk , k ∈ N,
(33)

in which f :R+×Rn×Rn → Rn is a continuous vector-valued function and satisfying f (t; 0, 0) = 0.
Obviously, system (33) is a generalization of the systems discussed in [24].

4. Numerical simulations

Example 1. Consider the IDNHDS as follows:


ẋ(t) = −0.73x(t) +

2x(t − τ(t))
1 + 3.8x2(t − τ(t))

+
3

k + 2
xk, t , tk , t ≥ t0 ,

x(t) =
k + 1

2k2 + 1
x(t−), t = tk , k ∈ N,

(34)
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where

0 ≤ τ(t) ≤ τ < +∞, x(t) ∈ R, f (t, x(t), x(t − τ(t))) =
2x (t − τ(t))

1 + 3.8x2(t − τ(t))

by Theorem 1.
Let l1 = 0, l2 = 2 satisfy condition (iii).
Let P = 13, then λ3 = 24.54, λ4 = 0.0385, λ5 = 0.1731, λ6 = 0.0769, which imply

conditions (i) and (ii) of Theorem 1 hold. By condition (iv) of Corollary 1, if ∆tk < 0.094,
the zero solution occurs if system (34) is globally exponentially stable with any time delay. The
numerical simulation with ∆tk = 0.09, τ = 0 and initial x(t0) = φ = 1 is given in Fig. 1. When
looking at the bifurcation diagram of Fig. 2, we find that the zero solution of system (34) is
globally exponentially stable for 0 < ∆tk ≤ ∆t∗

k
≈ 2.39. Fig. 3 shows that the zero solution of

system (34) is globally exponentially stable with ∆tk = 2.1.

Fig. 1. Global exponential stability of system (34)
with ∆tk = 0.09

Fig. 2. Bifurcation diagrams of system (34)
for ∆tk = 0.013 over (0.9)

Let

f (λ) =
(
− ln λ6

/
2λ + λ3 +

λ4

λ6
eλτ +

λ5

λ6

)

by the inequality of (31), if ∆tk < f (λ), the zero solution of system (1) or (33) is globally
exponentially stable.

So, if we require the global exponentially convergence rate of system (1) greater than or equal

to any given rate
λ∗

2
, we can choose suitable ∆tk , such that systems (1) or (33) are globally

exponentially stable with exponential convergence rate
λ

2
≥ λ∗

2
> 0 (see Fig. 4, where D is a

globally exponentially stable region).
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Fig. 3. Global exponential stability of system (34)
with ∆tk = 2.1

Fig. 4. Global exponential stable region of system
(34) for (λ,∆tk )

Example 2. Consider the IDNHDS as follows:



ẋ(t) =
*...,

1
1
2

1
4

5

+///- x(t) + *.,
2 2
1
3

6
+/- x(t − τ(t)) +

*...,
1

k + 1
0

0
1

k + 1

+///- xk , t , tk , t ≥ t0,

x(t) =
*...,

3k + 1
k2 + 1

0

0
4k + 1
k2 + 1

+///- x(t−), t = tk , k ∈ N,

(35)

where x(t) = (x1(t), x1(t)) ∈ R2.
Let

P =


9 0
0 12

 ,
then λ3 = 30.0371, λ4 = 3.44449λ5 = 0.1302, λ6 = 0.5208, which imply Theorem 1 holds. By
the condition of Corollary 1, if ∆tk < 0.0159, the zero solution of (34) is globally exponentially
stable for any time delay. The numerical simulation with ∆tk = 0.013, τ = 0 and initial x(t0) =
(x1(t0), x2(t)) = φ = (−1.1) is given in Fig. 5.

Furthermore, we also assume:

P =


9 0
0 12

 , ∆tk = 0.013, τ = 0

and initial x(t0) = (x1(t0), x2(t)) = φ = (−1.1) system (34) is unstable without impulse (see
Fig. 6).
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Fig. 5. Global exponential stability of system (34)
with ∆tk = 0.013

Fig. 6. Instability of system (34) without
impulses

5. Conclusions

In this paper, the GES of impulsive delayed nonlinear and linear hybrid differential systems
has been investigated. The combination of the Razumikhin technology and Lyapunov method
is adopted. Some GES criteria have been established. In this paper, we have extended some
known results existing in the literature. Examples are given to verify our results. Furthermore,
by the simulation, impulse can stabilize an unstable dynamical system, which has more practical
application value.
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