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Abstract—In the past it was usual to exert a huge effort in the 

design, simulation, and the real time implementation of the 

complicated electronic and communication systems, like GNSS 

receivers. The complexity of the system algorithms combined with 

the complexity of the available tools created a system that is 

difficult to track down for debugging or for redesign. So, the 

simulation and educational tools was different from the 

prototyping tools. In this paper the parallel search acquisition 

phase of a GPS receiver was simulated and implemented on FPGA 

using the same platform and through a graphical programming 

language. So this paper introduces the fruit of integrating the 

prototyping tools with the simulation tools as a single platform 

through which the complicated electronic systems can be simulated 

and prototyped. 

 
Keywords—GPS receiver, acquisition phase, SDR, Xilinx System 
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I. INTRODUCTION 

OR the time being the Global Navigation Satellite systems 

(GNSS) are used in many important and vital applications. 

Initially these systems were being dedicated for military 

applications. When they became available for the civilian 

community starting from 1980, they had a reduced accuracy 

compared to the accuracy available to the military applications. 

At 1990 the service operator, the US department of defense, 

started to add intentionally a noise to the GPS signals that are 

available for the civilian community. This action was denoted 

by the Selective Availability (SA). In May 2000 the SA was 

turned off and the accuracy of the positioning and timing 

services were considerably improved [1]. Turning off the SA 

Opened the door for more applications the GNSS receivers can 

be imbedded in. Beside the navigation and timing services, the 

GNSS receivers are used also, for example, in safety 

applications. So, today the GNSS are irreplaceable.  

GNSS receivers are complicated electronic systems that have to 

pass through many stages of signal processing to accomplish 

their missions. The importance of using such systems in many 

daily and vital applications made the scientists to continue 

working on simplifying the design and implementation through 

trying different platforms. The emergence of the Software 

Defined Radio (SDR) technology was a breakthrough in 

simplifying the design and implementation of the complicated 

communications systems. Applying the SDR techniques on the 

GNSS receivers had passed through many forms. 

The high-level open source programming languages, such as 

C++, were used in building the GNSS receivers. The complexity 
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of the system combined with the complexity of the tool (C++ 

language) created a system that is difficult to track down for 

debugging or for redesign. This, for sure, affects the rate of 

developing such systems. It is noteworthy to mention that 

Clifford Killy and Douglas Baker initiated at 1995 an open 

source GPS project through which they designed a GPS receiver 

by using the C programming language [2].  

On the way toward more simplification for such systems 

simpler tools and platforms were used such as MATLAB m-

Language. Although both the m-language and C-language are 

classified as a text programming language, there is a substantial 

difference between them. The main advantage of the C++ is that 

it is based on a compiler that maps the whole algorithm to the 

machine language in one step but the m-language is an 

interpreter based language that translates the code step by step. 

So C++ is more complex but more efficient than Matlab when 

it is used in building embedded systems. So Matlab was initially 

used in only the simulation of the GNSS receivers and to 

implement that design one has to move to another platform. Kai 

Borre and Dennis Akos introduced a book titled "A Software 

Defined GPS and Galileo Receiver A Single - Frequency 

Approach" through which they introduced the theoretical 

background behind GPS receivers. Then they applied it on the 

simulation of a complete GPS receiver using the m-language 

[2]. They wrote about 39 m-files for all the 3 stages; acquisition, 

tracking, and navigation solution, of the GPS receiver. In 

general using a text programming language in simulating large 

systems, even if an easy language, it has drawbacks. The large 

number of m-files makes the system not transparent enough. 

This has an impact on the difficulties in the redesign and 

debugging errors [3].  

It is well known that the graphical programming languages, like 

SIMULINK, are easier and more transparent than the text 

programming languages [4] [5]. Although Simulink is more 

suitable for the top level functions while Matlab is better for the 

low level functions, G.Hamza and A.Zekry succeeded in 

converting the 39 m-files wrote by Kai Borre and Dennis 

Akos(et al) to a Simulink model that represents a complete GPS 

receiver [6]. After that the code generation tools accompanied 

to Simulink was exploited in generating the C-code for that 

design to implement it on a DSP for the educational purposes 

[7] [8]. If it is required for that design to be real time 

implemented then both the acquisition and tracking phases 

should be implemented on FPGA due to the heavy processing 

in these stages. 
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At 2015 Didier Siboniyo designed, simulated and 

implemented the acquisition phase of a GPS receiver using the 

serial search acquisition technique through SIMULINK. The 

code generation tools inside SIMULINK, the HDL coder, 

enabled him from converting the simulated model to VHDL 

code that could be implemented on FPGA [9].  

The advent of the prototyping tools, like the Xilinx System 

Generator (XSG), and embedding it with the simulation tool 

make the hardware designer to use the same environment in both 

simulation and the real time implementation. 

In this paper, the Simulink model of the acquisition phase using 

the parallel search that is previously introduced by G.Hamza 

and A.Zekry was taken as a guidance in building the acquisition 

phase using XSG and implementing it on FPGA. This means 

that we move a step forward toward easier and more transparent 

designing, simulation and prototyping through the same 

environment. 

In this paper Xilinx ISE 14.7, Xilinx System Generator 14.7, 

and Xilinx Virtex-6 (xc6vcx240t-2 FF1156) evaluation kit were 

used in the prototyping process [10:14]. 

This paper arranged as follows: Section II will describe the 

implementation of the acquisition phase of the GPS receiver 

which is divided into seven subsections. Subsection A will 

explain the interface between the Simulink blocks and the 

Xilinx System Generator model to feed the GPS signal to Xilinx 

System Generator model. Subsections B, C and D will show the 

implementation of correlation stage, peak detection stage and 

fine detection stage of the acquisition phase, respectively. 

Subsection E will display the implementation of a complete 

acquisition phase at sampling frequency 38.192 MH. Subsection 

F will focus on the implementation of a complete acquisition 

phase at sampling frequency 8.192 MHz. Subsection G will be 

devoted to a comparison between the two acquisition systems at 

sampling frequency of 32.768 MHz and 8.192 MHz. Section III 

concludes the paper. 

II. THE ACQUISITION PHASE OF THE GPS RECEIVER 

The main function of the acquisition phase of the GPS receiver 

is to detect the visible satellites and estimate roughly both the 

code phase and the carrier frequency of the visible satellites. 

Acquisition has three standard methods which are: The serial 

search acquisition, the parallel frequency space search 

acquisition and the parallel code phase space search acquisition. 

The first two methods are implemented in ASIC because of the 

complex of the floating Fast Fourier Transform that used in the 

technique. While the third method used in Software Defined 

Radio (SDR) technology [2] [15].  

So, the parallel code phase space search technique is used to 

implement the acquisition phase of GPS receiver as shown in 

figure 1.The parallel code phase space search technique 

searches for 29 frequency bins for each satellite in 14 KHz 

search band with 500Hz frequency step. 

The acquisition phase of the GPS receiver has been 

implemented using Xilinx System Generator by dividing it into 

three stages as shown in Fig.1. The three stages are; the 

correlation stage, the peak detection stage and the fine detection 

stage. The incoming signal will fed the correlation stage from 

the collected data of the GPS signal in Simulink to Xilinx 

System Generator blocks through using interface Simulink 

blocks. These interface blocks will be displayed in detail in 

section A. The goal of fragmentation is to determine the 

implemented resource area of each stage. Also, to compare the 

results output from Xilinx System Generator with the output 

results that comes out from the Simulink model in [3] for 

validation. The output of our stages is verified with the 

corresponding output results of the simulated model in [3] and 

[6]. Then the three stages are combined to one Xilinx System 

Generator model. The compilation in Xilinx System Generator 

converts the Xilinx System Generator model to a hardware / 

software co-simulation block. This block represents an FPGA 

chip used in SIMULINK model to verify the output results from 

Xilinx System Generator and the output from this new block 

which is running in Xilinx Virtex-6 evaluation kit. In the 

following subsections the implementation of the three stages 

will be introduced. Then connecting the three stages will 

construct a complete acquisition phase that is implemented in 

Xilinx System Generator. 

 
Fig. 1 Block diagram for the Implementation of Acquisition phase in Xilinx 

System Generator. 

 

A.  Feeding the Xilinx System Generator model with the GPS 

signal. 

The incoming signal from the front end of GPS receiver is the 

same collected data used in references [2] and [3]. These 

collected data has a sampling frequency of 38.192 MHz and 

Intermediate Frequency (IF) of 9.548MHz.  Before inputting 

these data to the Xilinx System Generator its sampling 

frequency is reduced from 38.192 MHz to 32.768 MHz using 

the method in [3]. After that, this data is input through the 

gateway in block of the Xilinx System Generator. But we need 

to make interface before inputting this incoming signal from the   

SIMULINK blocks to the gateway in block of the Xilinx System 

Generator blocks. That's because the input signal is M-by-N 

array that is not consistent with Xilinx System Generator blocks. 

It deals with the data in serial format. So, one has to add some 

SIMULINK blocks before the Xilinx System Generator blocks 

to make an interface between them as depicted in Fig. 2. These 

interface blocks are added to carry out the following tasks: input 

the incoming GPS signal, add the sine carrier and cosine carrier 

as well as generate the sampled PRN. The incoming GPS signal 

is loaded from a binary file in Simulink, while the sine carrier, 

the cosine carrier and the PRN are stored in matlab workspace. 

The SIMULINK blocks added are: reshape block which 

converts the two dimensional matrix to one dimensional matrix 

for serial format, frame conversion block which converts the 

output from reshape block to frame and the last block is the 

unbuffer block which converts the input frame to sequence of 

scalar output. Then   the output from the unbuffer block is input 
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to the Xilinx gateway in block which converts data received 

from Simulink in the floating point format to fixed point format 

which can be used inside the hardware system modeled using 

Xilinx System Generator. Also, in case of output data from the 

Xilinx System Generator a gateway output block is used to 

convert the output data from Xilinx System Generator model 

form of fixed point format to floating point format to show it in 

SIMULINK. Figure 2 shows the detailed block diagram of the 

input interface block from Simulink to the system generator. 

Figure 3 shows the histogram of collected 1048576 signal 

samples in Simulink and Fig. 4 shows the histogram of same 

collected 1048576 signal samples in Xilinx System Generator 

after the Xilinx gateway in block.  

 

 

Fig. 2 Input data from MATLAB/SIMULINK to Xilinx 

System Generator model. 

 

 
Fig. 3. Histogram of collected 1048576 samples in Simulink. 

 

 
Fig. 4 Histogram of collected 1,048,576 samples inXilinx 

System Generator at out1. 

 

B. Implementation of the correlator stage of the acquisition 

through Xilinx System Generator 

The purpose of this stage is to obtainment the absolute value that 
result from the correlation process. Detection the absolute value 
of the acquisition signal to determine the visible and nonvisible 
satellites. The implementation block diagram utilizing the 
Xilinx system generator of the correlator block and its 
corresponding testing Hardware Co-Simulation JTAG is given 
in Fig. 5. First, we apply the incoming signal and multiply it 
with a locally generated sine and cosine carrier signals which 
are stored in the MATLAB workspace. This gives two signal 
components, the in phase component, I-signal and the 
Quadrature component, Q-signal. Fast Fourier Transform is 
then performed on I and Q components to transfer them to 
frequency domain. The Xilinx FFT block has two inputs 
components which are the real component and the imaginary 
component. The I signal component is input to the real 
component of the Xilinx FFT block while the Q component is 
input to the imaginary component in Xilinx FFT block. The 
transform size of the FFT is 32768 samples. The configuration 
selected for the FFT is the pipelined streaming input/output 
option in Xilinx FFT block. The FFT can be considered the 
bottleneck for the GPS receiver because it consumes long time 
to load the data and processing them. So, the larger time 
consumed in the GPS receiver occurs in the acquisition phase. 
This consumed time depends on the length of FFT. Also, the 
increase in the length of the FFT will lead to increase in the 
hardware resources.  

The function of the PRN generator is to generate the C/A code 
for each GPS satellite. There are 32 different C/A codes for the 
32 GPS satellites. The C/A code is unique for each satellite. 
Each C/A code has a length of 1023 chips. The sampling 
frequency that is used is 32.768 MHz. So, the generated PRN 
codes are upsampled from 1023 samples to 32768 samples. 
There are two ways that can be used to perform the FFT of PRN 
code and conjugate the output. 

The first way is to store the generated PRN codes in a lookup 
table. Then, perform the FFT for the PRN code to transform it 
to frequency domain and perform the conjugate operation on the 
FFT output. The other way is to perform the FFT of PRN code 
and conjugate it in SIMULINK and after that store the output 
result in RAM of FPGA. After that the outputs from the two 
FFT blocks are multiplied and the multiplication result is input 
to the inverse Fast Fourier Transform block (IFFT) to transform 
it to time domain. The output𝑢of IFFT block is a complex signal 
and has R and I components. The usual method that used to 
detect whether the satellite is visible or invisible is to calculate 
the absolute value of correlation as in (1) and compare it with a 
threshold value [16].   

 

|𝑢|2 = 𝑅2 + 𝐼2                         (1) 

 
Then the output values are stored in memory. After 
implementing the correlator stage using Xilinx System 
Generator, one chooses a Hardware Co-Simulation from 
compilation menu in the system generator block configuration 
to generate the model of Hardware Co-Simulation and test it 
through the virtex-6  Evaluation kit by using the JTAG cable. 
This cable is connected between the Evaluation kit and the host 
computer. The lower section of Fig. 5 shows the hardware co-
Simulation block of the correlator stage.  



742 M. ELHAWARY, G.G. HAMZA, A. ZEKRY AND I. MOTAWIE 

 

 
Fig. 5 Implementation of the correlator stage of acquisition 

phase using JTAG hardware CO-Simulation. 

 

C. Implementation of the peak detection stage of acquisition 

through Xilinx System Generator 

The absolute value of the correlator stage is stored in memory 

for feeding to the peak detection stage.  The purpose of this stage 

is to determine the maximum peak and the code phase of the 

detected signal. The technique used to determine the detection 

of the maximum peak and the code phase is the binary tree based 

logic. The stored samples stored in memory are compared to 

each other. Each sample is compared with the adjacent sample 

until getting the maximum amplitude and its index [17] [18] 

[19]. 

Figure 6 shows the implementation of the peak detection 

stage of the acquisition phase in the Xilinx System Generator 

and its corresponding testing Hardware Co-Simulation JTAG 

that connecting the outputs to the workspace.   Figure 7 shows 

the acquisition results from the Xilinx System Generator for one 

of the visible satellites which have a peak value exceeding a 

threshold level of 2.5. This means that the ratio between the 

peak size and the second peak size must be greater than the value 

of 2.5. Figure 8 shows the acquisition results from the Xilinx 

System Generator for nonvisible satellite having values less 

than the predefined threshold value. This means that the ratio 

between the peak size and the second peak size less than the 

value of 2.5. 
TABLE I  

THE CODE PHASE OBTAINED FROM THE SIMULINK MODEL AND XILINX 

MODEL. 

Satellite ID 
Code Phase from 

SIMULINK Model 

Code Phase from  Xilinx 

System Generator Model 

21 13404 13411 

22 6288 6298 
15 36321 36332 

18 20725 20735 

9 

26 

4696 
26826 

4706 
26836 

32 1489 1499 

6 28202 28211 

 

Table I shows the output code phase from the SIMULINK 

model and also the output code phase from the Xilinx System 

Generator model. The satellite 21 as it is in table I has a code 

phase of 13404 that output from the Simulink model and has a 

code phase of 13411 that output from the Xilinx System 

Generator model. The difference in the code phase between the 

two models is small. This means that the results obtained from 

the output code phase of the Xilinx System Generator model is 

close to the output code phase that output from the Simulink 

model. This difference, as a result of using hardware blocks 

instead of Simulink blocks.  

 

 
Fig. 6 Implementation of the peak detection stage of acquisition 

phase using JTAG hardware CO-Simulation. 

 

 
Fig. 7 Acquisition plot for a visible satellite. 

 

 
Fig. 8 Acquisition plot for nonvisible satellite. 
 

D. Implementation of the fine detection stage in Xilinx System 

Generator 

The maximum value and its index that output from the peak 

detection stage is fed to the fine detection stage. The goal of this 

stage is to determine the value of the carrier frequency. In this 

stage the maximum value is compared to a predetermined 

threshold value. If the maximum value exceeds the threshold 

value, the satellite is considered visible. If not, then repeat the 

correlation and peak detection while inserting new PRN code. 

Figure 9 shows the implementation of the fine detection stage in 

the Xilinx System Generator and its corresponding testing 

Hardware Co-Simulation JTAG. 
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Table II shows the output results of the satellite number and its 

carrier frequency for SIMULINK model and for Xilinx System 

Generator model. From Table II it is clear that the output carrier 

frequency of the satellite ID 21 from the Xilinx System 

Generator model is 9.547420 MHz and also, the carrier 

frequency that output from the Simulink model is 9.547429 

MHz. This difference between them is about 9 Hz. Also, as the 

case of the satellite ID 22 the difference between the carrier 

frequency that output from the Xilinx System Generator and the 

output from the Simulink model is about 9 Hz. This result from 

transforming the Simulink blocks to hardware blocks.  

 

Fig. 9 Implementation of the fine detection stage using JTAG 

hardware Co-Simulation. 

TABLE II 

THE RESULTS OBTAINED FROM THE SIMULINK MODEL AND THE XILINX 

SYSTEM GENERATOR MODEL 

Satellite ID 
Code Phase from 

SIMULINK Model 

Code Phase from  Xilinx 

System Generator Model 

21 9.547429 MHz 9.547420 MHz 

22 9.549695 MHz 9.549686 MHz 
15 9.549921 MHz 9.549912 MHz 

18 9.548250 MHz 9.548241 MHz 
9 9.550843 MHz 9.550834 MHz 

26 9.545015 MHz 9.545006 MHz 

32 9.316436 MHz 9.316427 MHz 

 

E. Implementation of a complete Acquisition phase in Xilinx 

System Generator with sampling frequency =32.768 MHz 

Now, the correlator, peak detection and fine detection stages of 

the acquisition phase are combined into one stage as shown in 

Fig. 10 and Fig. 11 to test the whole system operation.  

 
Fig. 10 Implementation of the complete acquisition phase in 

Xilinx System Generator. 

Table III depicts the results from the Xilinx System Generator 

model of the whole system. One sees that the results from the 

Xilinx System Generator model agree well with that of the 

SIMULINK model. The output from this complete acquisition 

phase will be input to the tracking phase of the GPS receiver. 

 

 
Fig. 11 Implementation of complete Acquisition phase using 

JTAG hardware Co-Simulation. 
 

F. Implementation of a complete Acquisition phase in Xilinx 

System Generator model at sampling frequency =8.192 MHz 

and IF=2.046 MHz 

The aim of this section is to display the implementation of the 

acquisition phase of the GPS receiver using sampling frequency 

8.192 MHz.  The length of the FFT and IFFT are reduced to 

8192 samples. Also, the sampled PRNcode is sampled by 

sampling frequency 8.192 MHz. So, the numbers of samples in 

C\A code are 8192 samples. This model also is divided into 

three stages as the previous model. After that, the three stages 

are connected to one model. The output results of this model are 

close to the output result of the previous model that use a 

sampling frequency of 32.768 MHz. 

G. Comparison between the two acquisition systems at 

sampling frequency of 32.768 MHz and 8.192 MHz 

This section introduces a comparison between the two models 

with different sampling frequencies. The comparison contains 

the following items: the resources of the hardware 

implementation of the two systems and their processing time. In 

contrast to digital signal processing, FPGAs implementations 

are genuinely parallel in nature. So, various processing 

operations do not have to contain the same resources. Each 

freelance processing function is specified to a dedicated part of 

the chip. Also, it can work self sufficient with no impact from 

other logic blocks. Therefore, the execution of one part of the 

application isn't influenced when adding more processing 

operations. 

Table III and table IV depict the hardware resources utilized 

in the FPGA implementations of the two designs. From the table 

III and table IV, it is illustrated that the hardware resources 

decrease with reduction the sampling frequency. Because the 

number of samples that is used is decreased.  

Table V and table VI shows the processing times in the two 

designs. The design with higher sampling frequency has 

consumed slightly more resources from the FPGA chip. It also 

needs a larger time to process the signals. Surprisingly, the 

differences are not small.   
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TABLE III 
SUMMERY OF THE RESOURCES USING SAMPLING FREQUENCY 

FS= 32.768 MHZ 

 Used Utilization 

Number of Slice Register 102744 34% 
Number of Slice LUTs 97474 65% 

Number of fully used LUT-FF pairs 88475 86% 

Number of Block RAM/FIFO 305 73% 
Number of DSP48E1s 497 64% 

 
TABLE IV 

SUMMARY OF THE RESOURCES USING SAMPLING FREQUENCY FS= 8.192 MHZ 

 Used Utilization 

Number of Slice Register 91656 30% 

Number of Slice LUTs 87307 57% 
Number of fully used LUT-FF pairs 79725 80% 

Number of Block RAM/FIFO 100 24% 

Number of DSP48E1s 412 53% 

 
TABLE V 

SUMMARY OF TIMING USING FS=32.768MHZ 

Clock frequency 39.193 MHz 

Total Routing 15.511 ns 
Total Logic 10.004 ns 

Total Time  25.515 ns 

 
TABLE VI 

Summery of Timing using Fs=8.192MHz 

Clock frequency 39.193 MHz 

Total Routing 15.11 ns 
Total Logic 8.703 ns 

Total Time  23.819 ns 

III. CONCLUSION 

This paper introduced the simulation and implementation of the 

acquisition phase of the GPS receiver on FPGA through the 

Xilinx System Generator and hardware/ software co-simulation. 

In this paper the same platform is utilized in simulation and 

implementation. This means that we moved a step forward 

toward easier and more transparent designing, simulation and 

 

prototyping of the of the acquisition phase of the GPS receiver 

through the same environment. The output result from the 

Xilinx System Generator model and output from the Simulink 

model is close to each other. This express the successful 

conversion processing of the Simulink blocks to the Xilinx 

hardware blocks. 
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