
933INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2019, VOL. 65, NO. 4, PP. 739-744

Manuscript received July 7, 2019; revised September, 2019. DOI: 10.24425/ijet.2019.130257

Abstract—In the past it was usual to exert a huge effort in the

design, simulation, and the real time implementation of the

complicated electronic and communication systems, like GNSS

receivers. The complexity of the system algorithms combined with

the complexity of the available tools created a system that is

difficult to track down for debugging or for redesign. So, the

simulation and educational tools was different from the

prototyping tools. In this paper the parallel search acquisition

phase of a GPS receiver was simulated and implemented on FPGA

using the same platform and through a graphical programming

language. So this paper introduces the fruit of integrating the

prototyping tools with the simulation tools as a single platform

through which the complicated electronic systems can be simulated

and prototyped.

Keywords—GPS receiver, acquisition phase, SDR, Xilinx System

Generator XSG, FPGA implementation

I. INTRODUCTION

OR the time being the Global Navigation Satellite systems

(GNSS) are used in many important and vital applications.

Initially these systems were being dedicated for military

applications. When they became available for the civilian

community starting from 1980, they had a reduced accuracy

compared to the accuracy available to the military applications.

At 1990 the service operator, the US department of defense,

started to add intentionally a noise to the GPS signals that are

available for the civilian community. This action was denoted

by the Selective Availability (SA). In May 2000 the SA was

turned off and the accuracy of the positioning and timing

services were considerably improved [1]. Turning off the SA

Opened the door for more applications the GNSS receivers can

be imbedded in. Beside the navigation and timing services, the

GNSS receivers are used also, for example, in safety

applications. So, today the GNSS are irreplaceable.

GNSS receivers are complicated electronic systems that have to

pass through many stages of signal processing to accomplish

their missions. The importance of using such systems in many

daily and vital applications made the scientists to continue

working on simplifying the design and implementation through

trying different platforms. The emergence of the Software

Defined Radio (SDR) technology was a breakthrough in

simplifying the design and implementation of the complicated

communications systems. Applying the SDR techniques on the

GNSS receivers had passed through many forms.

The high-level open source programming languages, such as

C++, were used in building the GNSS receivers. The complexity

A. Zekry is with Electronics and Electrical Communications Engineering

Department, ASU University, Cairo, Egypt (e-mail: aaazekry@hotmail.com).

M. ELHawary, G. G. Hamza and I. Motawie are with Time and Frequency

Department, National Institute of Standards (NIS), Cairo, Egypt (e-mail:

of the system combined with the complexity of the tool (C++

language) created a system that is difficult to track down for

debugging or for redesign. This, for sure, affects the rate of

developing such systems. It is noteworthy to mention that

Clifford Killy and Douglas Baker initiated at 1995 an open

source GPS project through which they designed a GPS receiver

by using the C programming language [2].

On the way toward more simplification for such systems

simpler tools and platforms were used such as MATLAB m-

Language. Although both the m-language and C-language are

classified as a text programming language, there is a substantial

difference between them. The main advantage of the C++ is that

it is based on a compiler that maps the whole algorithm to the

machine language in one step but the m-language is an

interpreter based language that translates the code step by step.

So C++ is more complex but more efficient than Matlab when

it is used in building embedded systems. So Matlab was initially

used in only the simulation of the GNSS receivers and to

implement that design one has to move to another platform. Kai

Borre and Dennis Akos introduced a book titled "A Software

Defined GPS and Galileo Receiver A Single - Frequency

Approach" through which they introduced the theoretical

background behind GPS receivers. Then they applied it on the

simulation of a complete GPS receiver using the m-language

[2]. They wrote about 39 m-files for all the 3 stages; acquisition,

tracking, and navigation solution, of the GPS receiver. In

general using a text programming language in simulating large

systems, even if an easy language, it has drawbacks. The large

number of m-files makes the system not transparent enough.

This has an impact on the difficulties in the redesign and

debugging errors [3].

It is well known that the graphical programming languages, like

SIMULINK, are easier and more transparent than the text

programming languages [4] [5]. Although Simulink is more

suitable for the top level functions while Matlab is better for the

low level functions, G.Hamza and A.Zekry succeeded in

converting the 39 m-files wrote by Kai Borre and Dennis

Akos(et al) to a Simulink model that represents a complete GPS

receiver [6]. After that the code generation tools accompanied

to Simulink was exploited in generating the C-code for that

design to implement it on a DSP for the educational purposes

[7] [8]. If it is required for that design to be real time

implemented then both the acquisition and tracking phases

should be implemented on FPGA due to the heavy processing

in these stages.

hawary5000@yahoo.com,, gihan_gomah@yahoo.com, imotawie10@gmail.

com).

FPGA Implemetation of Acquisition Phase of

the GPS Receiver Using XSG
Mohamed Ibrahiem El Hawary, Gihan Gomah Hamza, Abdelhalim Zekry,

and Ibrahiem Mohamed Motawie

F

740 M. ELHAWARY, G.G. HAMZA, A. ZEKRY AND I. MOTAWIE

At 2015 Didier Siboniyo designed, simulated and

implemented the acquisition phase of a GPS receiver using the

serial search acquisition technique through SIMULINK. The

code generation tools inside SIMULINK, the HDL coder,

enabled him from converting the simulated model to VHDL

code that could be implemented on FPGA [9].

The advent of the prototyping tools, like the Xilinx System

Generator (XSG), and embedding it with the simulation tool

make the hardware designer to use the same environment in both

simulation and the real time implementation.

In this paper, the Simulink model of the acquisition phase using

the parallel search that is previously introduced by G.Hamza

and A.Zekry was taken as a guidance in building the acquisition

phase using XSG and implementing it on FPGA. This means

that we move a step forward toward easier and more transparent

designing, simulation and prototyping through the same

environment.

In this paper Xilinx ISE 14.7, Xilinx System Generator 14.7,

and Xilinx Virtex-6 (xc6vcx240t-2 FF1156) evaluation kit were

used in the prototyping process [10:14].

This paper arranged as follows: Section II will describe the

implementation of the acquisition phase of the GPS receiver

which is divided into seven subsections. Subsection A will

explain the interface between the Simulink blocks and the

Xilinx System Generator model to feed the GPS signal to Xilinx

System Generator model. Subsections B, C and D will show the

implementation of correlation stage, peak detection stage and

fine detection stage of the acquisition phase, respectively.

Subsection E will display the implementation of a complete

acquisition phase at sampling frequency 38.192 MH. Subsection

F will focus on the implementation of a complete acquisition

phase at sampling frequency 8.192 MHz. Subsection G will be

devoted to a comparison between the two acquisition systems at

sampling frequency of 32.768 MHz and 8.192 MHz. Section III

concludes the paper.

II. THE ACQUISITION PHASE OF THE GPS RECEIVER

The main function of the acquisition phase of the GPS receiver

is to detect the visible satellites and estimate roughly both the

code phase and the carrier frequency of the visible satellites.

Acquisition has three standard methods which are: The serial

search acquisition, the parallel frequency space search

acquisition and the parallel code phase space search acquisition.

The first two methods are implemented in ASIC because of the

complex of the floating Fast Fourier Transform that used in the

technique. While the third method used in Software Defined

Radio (SDR) technology [2] [15].

So, the parallel code phase space search technique is used to

implement the acquisition phase of GPS receiver as shown in

figure 1.The parallel code phase space search technique

searches for 29 frequency bins for each satellite in 14 KHz

search band with 500Hz frequency step.

The acquisition phase of the GPS receiver has been

implemented using Xilinx System Generator by dividing it into

three stages as shown in Fig.1. The three stages are; the

correlation stage, the peak detection stage and the fine detection

stage. The incoming signal will fed the correlation stage from

the collected data of the GPS signal in Simulink to Xilinx

System Generator blocks through using interface Simulink

blocks. These interface blocks will be displayed in detail in

section A. The goal of fragmentation is to determine the

implemented resource area of each stage. Also, to compare the

results output from Xilinx System Generator with the output

results that comes out from the Simulink model in [3] for

validation. The output of our stages is verified with the

corresponding output results of the simulated model in [3] and

[6]. Then the three stages are combined to one Xilinx System

Generator model. The compilation in Xilinx System Generator

converts the Xilinx System Generator model to a hardware /

software co-simulation block. This block represents an FPGA

chip used in SIMULINK model to verify the output results from

Xilinx System Generator and the output from this new block

which is running in Xilinx Virtex-6 evaluation kit. In the

following subsections the implementation of the three stages

will be introduced. Then connecting the three stages will

construct a complete acquisition phase that is implemented in

Xilinx System Generator.

Fig. 1 Block diagram for the Implementation of Acquisition phase in Xilinx

System Generator.

A. Feeding the Xilinx System Generator model with the GPS

signal.

The incoming signal from the front end of GPS receiver is the

same collected data used in references [2] and [3]. These

collected data has a sampling frequency of 38.192 MHz and

Intermediate Frequency (IF) of 9.548MHz. Before inputting

these data to the Xilinx System Generator its sampling

frequency is reduced from 38.192 MHz to 32.768 MHz using

the method in [3]. After that, this data is input through the

gateway in block of the Xilinx System Generator. But we need

to make interface before inputting this incoming signal from the

SIMULINK blocks to the gateway in block of the Xilinx System

Generator blocks. That's because the input signal is M-by-N

array that is not consistent with Xilinx System Generator blocks.

It deals with the data in serial format. So, one has to add some

SIMULINK blocks before the Xilinx System Generator blocks

to make an interface between them as depicted in Fig. 2. These

interface blocks are added to carry out the following tasks: input

the incoming GPS signal, add the sine carrier and cosine carrier

as well as generate the sampled PRN. The incoming GPS signal

is loaded from a binary file in Simulink, while the sine carrier,

the cosine carrier and the PRN are stored in matlab workspace.

The SIMULINK blocks added are: reshape block which

converts the two dimensional matrix to one dimensional matrix

for serial format, frame conversion block which converts the

output from reshape block to frame and the last block is the

unbuffer block which converts the input frame to sequence of

scalar output. Then the output from the unbuffer block is input

FPGA IMPLEMETATION OF ACQUISITION PHASE OF THE GPS RECEIVER USING XSG 741

to the Xilinx gateway in block which converts data received

from Simulink in the floating point format to fixed point format

which can be used inside the hardware system modeled using

Xilinx System Generator. Also, in case of output data from the

Xilinx System Generator a gateway output block is used to

convert the output data from Xilinx System Generator model

form of fixed point format to floating point format to show it in

SIMULINK. Figure 2 shows the detailed block diagram of the

input interface block from Simulink to the system generator.

Figure 3 shows the histogram of collected 1048576 signal

samples in Simulink and Fig. 4 shows the histogram of same

collected 1048576 signal samples in Xilinx System Generator

after the Xilinx gateway in block.

Fig. 2 Input data from MATLAB/SIMULINK to Xilinx

System Generator model.

Fig. 3. Histogram of collected 1048576 samples in Simulink.

Fig. 4 Histogram of collected 1,048,576 samples inXilinx

System Generator at out1.

B. Implementation of the correlator stage of the acquisition

through Xilinx System Generator

The purpose of this stage is to obtainment the absolute value that
result from the correlation process. Detection the absolute value
of the acquisition signal to determine the visible and nonvisible
satellites. The implementation block diagram utilizing the
Xilinx system generator of the correlator block and its
corresponding testing Hardware Co-Simulation JTAG is given
in Fig. 5. First, we apply the incoming signal and multiply it
with a locally generated sine and cosine carrier signals which
are stored in the MATLAB workspace. This gives two signal
components, the in phase component, I-signal and the
Quadrature component, Q-signal. Fast Fourier Transform is
then performed on I and Q components to transfer them to
frequency domain. The Xilinx FFT block has two inputs
components which are the real component and the imaginary
component. The I signal component is input to the real
component of the Xilinx FFT block while the Q component is
input to the imaginary component in Xilinx FFT block. The
transform size of the FFT is 32768 samples. The configuration
selected for the FFT is the pipelined streaming input/output
option in Xilinx FFT block. The FFT can be considered the
bottleneck for the GPS receiver because it consumes long time
to load the data and processing them. So, the larger time
consumed in the GPS receiver occurs in the acquisition phase.
This consumed time depends on the length of FFT. Also, the
increase in the length of the FFT will lead to increase in the
hardware resources.

The function of the PRN generator is to generate the C/A code
for each GPS satellite. There are 32 different C/A codes for the
32 GPS satellites. The C/A code is unique for each satellite.
Each C/A code has a length of 1023 chips. The sampling
frequency that is used is 32.768 MHz. So, the generated PRN
codes are upsampled from 1023 samples to 32768 samples.
There are two ways that can be used to perform the FFT of PRN
code and conjugate the output.

The first way is to store the generated PRN codes in a lookup
table. Then, perform the FFT for the PRN code to transform it
to frequency domain and perform the conjugate operation on the
FFT output. The other way is to perform the FFT of PRN code
and conjugate it in SIMULINK and after that store the output
result in RAM of FPGA. After that the outputs from the two
FFT blocks are multiplied and the multiplication result is input
to the inverse Fast Fourier Transform block (IFFT) to transform
it to time domain. The output𝑢of IFFT block is a complex signal
and has R and I components. The usual method that used to
detect whether the satellite is visible or invisible is to calculate
the absolute value of correlation as in (1) and compare it with a
threshold value [16].

|𝑢|2 = 𝑅2 + 𝐼2 (1)

Then the output values are stored in memory. After
implementing the correlator stage using Xilinx System
Generator, one chooses a Hardware Co-Simulation from
compilation menu in the system generator block configuration
to generate the model of Hardware Co-Simulation and test it
through the virtex-6 Evaluation kit by using the JTAG cable.
This cable is connected between the Evaluation kit and the host
computer. The lower section of Fig. 5 shows the hardware co-
Simulation block of the correlator stage.

742 M. ELHAWARY, G.G. HAMZA, A. ZEKRY AND I. MOTAWIE

Fig. 5 Implementation of the correlator stage of acquisition

phase using JTAG hardware CO-Simulation.

C. Implementation of the peak detection stage of acquisition

through Xilinx System Generator

The absolute value of the correlator stage is stored in memory

for feeding to the peak detection stage. The purpose of this stage

is to determine the maximum peak and the code phase of the

detected signal. The technique used to determine the detection

of the maximum peak and the code phase is the binary tree based

logic. The stored samples stored in memory are compared to

each other. Each sample is compared with the adjacent sample

until getting the maximum amplitude and its index [17] [18]

[19].

Figure 6 shows the implementation of the peak detection

stage of the acquisition phase in the Xilinx System Generator

and its corresponding testing Hardware Co-Simulation JTAG

that connecting the outputs to the workspace. Figure 7 shows

the acquisition results from the Xilinx System Generator for one

of the visible satellites which have a peak value exceeding a

threshold level of 2.5. This means that the ratio between the

peak size and the second peak size must be greater than the value

of 2.5. Figure 8 shows the acquisition results from the Xilinx

System Generator for nonvisible satellite having values less

than the predefined threshold value. This means that the ratio

between the peak size and the second peak size less than the

value of 2.5.
TABLE I

THE CODE PHASE OBTAINED FROM THE SIMULINK MODEL AND XILINX

MODEL.

Satellite ID
Code Phase from

SIMULINK Model

Code Phase from Xilinx

System Generator Model

21 13404 13411

22 6288 6298
15 36321 36332

18 20725 20735

9

26

4696
26826

4706
26836

32 1489 1499

6 28202 28211

Table I shows the output code phase from the SIMULINK

model and also the output code phase from the Xilinx System

Generator model. The satellite 21 as it is in table I has a code

phase of 13404 that output from the Simulink model and has a

code phase of 13411 that output from the Xilinx System

Generator model. The difference in the code phase between the

two models is small. This means that the results obtained from

the output code phase of the Xilinx System Generator model is

close to the output code phase that output from the Simulink

model. This difference, as a result of using hardware blocks

instead of Simulink blocks.

Fig. 6 Implementation of the peak detection stage of acquisition

phase using JTAG hardware CO-Simulation.

Fig. 7 Acquisition plot for a visible satellite.

Fig. 8 Acquisition plot for nonvisible satellite.

D. Implementation of the fine detection stage in Xilinx System

Generator

The maximum value and its index that output from the peak

detection stage is fed to the fine detection stage. The goal of this

stage is to determine the value of the carrier frequency. In this

stage the maximum value is compared to a predetermined

threshold value. If the maximum value exceeds the threshold

value, the satellite is considered visible. If not, then repeat the

correlation and peak detection while inserting new PRN code.

Figure 9 shows the implementation of the fine detection stage in

the Xilinx System Generator and its corresponding testing

Hardware Co-Simulation JTAG.

FPGA IMPLEMETATION OF ACQUISITION PHASE OF THE GPS RECEIVER USING XSG 743

Table II shows the output results of the satellite number and its

carrier frequency for SIMULINK model and for Xilinx System

Generator model. From Table II it is clear that the output carrier

frequency of the satellite ID 21 from the Xilinx System

Generator model is 9.547420 MHz and also, the carrier

frequency that output from the Simulink model is 9.547429

MHz. This difference between them is about 9 Hz. Also, as the

case of the satellite ID 22 the difference between the carrier

frequency that output from the Xilinx System Generator and the

output from the Simulink model is about 9 Hz. This result from

transforming the Simulink blocks to hardware blocks.

Fig. 9 Implementation of the fine detection stage using JTAG

hardware Co-Simulation.

TABLE II

THE RESULTS OBTAINED FROM THE SIMULINK MODEL AND THE XILINX

SYSTEM GENERATOR MODEL

Satellite ID
Code Phase from

SIMULINK Model

Code Phase from Xilinx

System Generator Model

21 9.547429 MHz 9.547420 MHz

22 9.549695 MHz 9.549686 MHz
15 9.549921 MHz 9.549912 MHz

18 9.548250 MHz 9.548241 MHz
9 9.550843 MHz 9.550834 MHz

26 9.545015 MHz 9.545006 MHz

32 9.316436 MHz 9.316427 MHz

E. Implementation of a complete Acquisition phase in Xilinx

System Generator with sampling frequency =32.768 MHz

Now, the correlator, peak detection and fine detection stages of

the acquisition phase are combined into one stage as shown in

Fig. 10 and Fig. 11 to test the whole system operation.

Fig. 10 Implementation of the complete acquisition phase in

Xilinx System Generator.

Table III depicts the results from the Xilinx System Generator

model of the whole system. One sees that the results from the

Xilinx System Generator model agree well with that of the

SIMULINK model. The output from this complete acquisition

phase will be input to the tracking phase of the GPS receiver.

Fig. 11 Implementation of complete Acquisition phase using

JTAG hardware Co-Simulation.

F. Implementation of a complete Acquisition phase in Xilinx

System Generator model at sampling frequency =8.192 MHz

and IF=2.046 MHz

The aim of this section is to display the implementation of the

acquisition phase of the GPS receiver using sampling frequency

8.192 MHz. The length of the FFT and IFFT are reduced to

8192 samples. Also, the sampled PRNcode is sampled by

sampling frequency 8.192 MHz. So, the numbers of samples in

C\A code are 8192 samples. This model also is divided into

three stages as the previous model. After that, the three stages

are connected to one model. The output results of this model are

close to the output result of the previous model that use a

sampling frequency of 32.768 MHz.

G. Comparison between the two acquisition systems at

sampling frequency of 32.768 MHz and 8.192 MHz

This section introduces a comparison between the two models

with different sampling frequencies. The comparison contains

the following items: the resources of the hardware

implementation of the two systems and their processing time. In

contrast to digital signal processing, FPGAs implementations

are genuinely parallel in nature. So, various processing

operations do not have to contain the same resources. Each

freelance processing function is specified to a dedicated part of

the chip. Also, it can work self sufficient with no impact from

other logic blocks. Therefore, the execution of one part of the

application isn't influenced when adding more processing

operations.

Table III and table IV depict the hardware resources utilized

in the FPGA implementations of the two designs. From the table

III and table IV, it is illustrated that the hardware resources

decrease with reduction the sampling frequency. Because the

number of samples that is used is decreased.

Table V and table VI shows the processing times in the two

designs. The design with higher sampling frequency has

consumed slightly more resources from the FPGA chip. It also

needs a larger time to process the signals. Surprisingly, the

differences are not small.

744 M. ELHAWARY, G.G. HAMZA, A. ZEKRY AND I. MOTAWIE

TABLE III
SUMMERY OF THE RESOURCES USING SAMPLING FREQUENCY

FS= 32.768 MHZ

 Used Utilization

Number of Slice Register 102744 34%
Number of Slice LUTs 97474 65%

Number of fully used LUT-FF pairs 88475 86%

Number of Block RAM/FIFO 305 73%
Number of DSP48E1s 497 64%

TABLE IV

SUMMARY OF THE RESOURCES USING SAMPLING FREQUENCY FS= 8.192 MHZ

 Used Utilization

Number of Slice Register 91656 30%

Number of Slice LUTs 87307 57%
Number of fully used LUT-FF pairs 79725 80%

Number of Block RAM/FIFO 100 24%

Number of DSP48E1s 412 53%

TABLE V

SUMMARY OF TIMING USING FS=32.768MHZ

Clock frequency 39.193 MHz

Total Routing 15.511 ns
Total Logic 10.004 ns

Total Time 25.515 ns

TABLE VI

Summery of Timing using Fs=8.192MHz

Clock frequency 39.193 MHz

Total Routing 15.11 ns
Total Logic 8.703 ns

Total Time 23.819 ns

III. CONCLUSION

This paper introduced the simulation and implementation of the

acquisition phase of the GPS receiver on FPGA through the

Xilinx System Generator and hardware/ software co-simulation.

In this paper the same platform is utilized in simulation and

implementation. This means that we moved a step forward

toward easier and more transparent designing, simulation and

prototyping of the of the acquisition phase of the GPS receiver

through the same environment. The output result from the

Xilinx System Generator model and output from the Simulink

model is close to each other. This express the successful

conversion processing of the Simulink blocks to the Xilinx

hardware blocks.

REFERENCES

[1] GuochangXu and YanXu, GPS: THEORY, ALORITHMS AND
APPLICATIONS, 3rd ed. 2016.

[2] K. Borre and D. Akos., “A Software-Defined GPS and GALILEO

Rceiver – A Single-Frequency Approach,” Birkhauser, New York, 2006.
[3] G. Hamza, AbdelhaliemZekry, and IbrahimMotawie, “Implementation of

a Complete GPS Receiver using Simulink,” IEEE Circits Syst. Mag., 2009.

[4] M.ElHawary, G.Gomah, A.Zekry, and I.Hafez, “Simulation of the E1 and
E6 Galileo Signals using SIMULINK,” Int. J. Comput. Appl., vol. 88,

2014.

[5] M.ElHawary, “Signal Simulator for Global Navigation Satellite System,”
Ain Shams University, 2014.

[6] G. G. Hamza, Abdelhaliem A.Zekry, and M. M. N., “Implementation of a

Complete GPS Receiver on the C6713 DSP through Simulink,” J. Glob.
Position. Syst., vol. 8, 2009.

[7] Gihan Gomah Hamza, “Enhancing the Time Measurement Accuracy of

GPS receiver,” Ain Shams University, 2009.
[8] “http://www.ti.com/tool/TMDSDSK6713#technicaldocuments.”

[9] D. Siboniyo, “FPGA-based data acquisition system for GNSS receiver for

LEO-satellites application,” Arctic University of Norway, 2017.
[10] System Generator for DSP Reference Guide, UG638, 14.1. April 2012.

[11] System Generator for DSP User Guide, UG640, 14.1. April 2012.

[12] System Generator for DSP User Guide, UG638, 14.2. July 2012.
[13] System Generator for DSP User Guide, UG640, 14.3. October 2012.

[14] System Generator for DSP Reference Guide, UG638, 14.5. March 2013.

[15] J.Tian,W.Ye,S.Lin, and Z.Hua, “Software defined radio GNSS receiver

design over single DSP platform,” in Proc. 10th Int. Symp. Spread

Spectrum Techniques and Applications (ISSSTA08), 2008, pp.37-41.
[16] PabloE.Leibovich, JuanG.Díaz, and P. R. JavierG.García, “Dedicated

hardware for FFT based fast acquisition of GNSS signals,” IEEE 6th Lat.

Am. Symp. Circuits Syst., 2015.
[17] A. Shukla, “Hardware Implementation of Real time ECG Analysis

algorithms,” Hawaii University, 2008.

[18] PirajFozoonmayeh, “A practical approach to DSP algorithms using FPGA
devices,” Simon Fraser University, 2011.

[19] R. T. Bone, “FPGA design of a hardware efficient pipelined FFT

processor,” Wright State University, 2008.

