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Abstract. The Drazin inverse of matrices is applied to analysis of the pointwise completeness and of the pointwise degeneracy of the fractional 
descriptor linear discrete-time systems. Necessary and sufficient conditions for the pointwise completeness and the pointwise degeneracy of 
the fractional descriptor linear discrete-time systems are established. It is shown that every fractional descriptor linear discrete-time systems is 
not pointwise complete and it is pointwise degenerated in one step (for i = 1).
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The following notation will be used: ℜ – the set of real 
numbers, ℜn×m – the set of n×m real matrices, ℜ+

n×m – the set 
of n×m real matrices with nonnegative entries and ℜ+

n = ℜ+
n×1, 

In – the n×n identity matrix. Im P is the image of the operator 
(matrix) P.

2. Fractional autonomous descriptor
discrete-time linear systems and their solutions

Consider the fractional autonomous descriptor discrete-time 
linear system

E∆αxi + 1 = Axi, i 2 Z+ = {0, 1, …}, (1)

where, xi 2 ℜn is the state vector E, A 2 ℜn×n and

∆αxi = 
j = 0

i

∑ (–1) j α
j

xi ¡  j (2a)

α
j

=

1 for  j = 0

 
α(α ¡ 1) … α(α ¡ j + 1)

j!
for  j = 1, 2, …

 (2b)

is the fractional α 2 ℜ order difference of xi.
Substituting (2) into (1) we obtain

Exi + 1 = Aα xi + 
j = 2

i + 1

∑ cj Exi ¡  j + 1 , (3a)

where

Aα = A + Eα ,  cj = (–1) j α
j

. (3b)

It is assumed that det E = 0 and

det
£
Ez ¡ Aα

¤
6= 0 for some z 2 C, (4)

where C is the field of complex numbers.

1. Introduction

A dynamical system described by homogenous equation is 
called pointwise complete if every final state of the system 
can be reached by suitable choice of its initial state. A system, 
which is not pointwise complete is called pointwise degener-
ated. The pointwise completeness and pointwise degeneracy of 
linear continuous-time systems with delays have been investi-
gated in [2, 3, 9, 15, 17], the pointwise completeness of linear 
discrete-time cone systems with delays in [18] and of fractional 
linear systems are presented in [1, 9, 10]. The pointwise com-
pleteness and pointwise degeneracy of standard and positive 
hydrid systems described by the general model have been ana-
lyzed in [7] and of positive linear systems with state-feedbacks 
in [8]. Some new results in fractional systems have been given 
in [4, 13, 14 16].

The Drazin inverse of matrices has been applied to analysis 
of the pointwise completeness and of the pointwise degener-
acy of the descriptor linear continuous-time and discrete-time 
systems in [5] and for fractional standard and descriptor linear 
continuous-time systems in [12].

In this paper the Drazin inverse of matrices will be applied 
to analysis of the pointwise completeness and of the pointwise 
degeneracy of the fractional descriptor discrete-time linear sys-
tems.

The paper is organized as follows. In Section 2 the basic 
definitions and theorems concerning the fractional descriptor 
linear discrete-time systems and the Drazin inverse of matri-
ces are recalled. The pointwise completeness of the fractional 
descriptor linear discrete-time systems is investigated in Sec-
tion 3 and the pointwise degeneracy in Section 4. Concluding 
remarks are given in section 5. The considerations are illustrated 
by numerical example of fractional linear discrete-time system.

*e-mail: kaczorek@ee.pw.edu.pl

Manuscript submitted 2019-06-12, revised 2019-09-23, initially accepted  
for publication  2019-10-18, published in December 2019

CONTROL AND ROBOTICS



990

T. Kaczorek

Bull.  Pol.  Ac.:  Tech.  67(6)  2019

Assuming that for some chosen c 2 C, det
£
Ec ¡ Aα

¤–1  6= 0 
and premultiplying (3a) by 

£
Ec ¡ Aα

¤–1, we obtain

 

2 

where 
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j
cEAA j

j

α
αα )1(, .             (3b) 

It is assumed that det E = 0 and 

0]det[ ≠− αAEz for some C,∈z               (4) 

where C  is the field of complex numbers. 

Assuming that for some chosen C∈c , 0]det[ ≠− αAEc  

and premultiplying (3a) by ,][ 1−
− αAEc  we obtain 


+

=

+−+ +=
1

2

11

i

j

jijii xEcxAxE α ,             (5a) 

where 

EAEcE
1][ −

−= α , .][ 1
ααα AAEcA

−
−=     (5b) 

Note that the equations (3a) and (5a) have the same 

solution ix , +∈ Zi . 

Definition 1. [6, 11] The smallest nonnegative integer q is 

called the index of the matrix nnE ×ℜ∈  if  

1rank rank += qq
EE .                       (6) 

Definition 2. [6, 11] A matrix D
E  is called the Drazin 

inverse of nnE ×ℜ∈  if it satisfies the conditions 

EEEE
DD = ,                            (7a) 

DDD
EEEE = ,                           (7b) 

qqD
EEE =+1 ,                            (7c) 

where q is the index of E  defined by (6). 

The Drazin inverse D
E  of a square matrix E  always 

exists and is unique [5, 6]. If 0det ≠E  then 1−= EE
D . 

Some methods for computation of the Drazin inverse are 

given in [5, 9]. 

Theorem 1. The matrices E  and αA  defined by (5b) 

satisfy the following equalities 

1. αα AEEA =  and DD
AEEA αα = , DD

EAAE αα = , 

DDDD
AEEA αα = ,                                                          (8a) 

2. }0{kerker =∩ EAα ,                                               (8b) 

3. 
1

0

0 −








= T

N

J
TE , 

1
1

00

0 −
−












= T

J
TE

D
,                (8c) 

0det ≠T , 11 nn
J

×
ℜ∈  is nonsingular, 22 nn

N
×

ℜ∈  is 

nilpotent, nnn =+ 21 , 

Proof is given in [6]. 

Theorem 2. Let 

D
EEP = ,                                  (9a) 

αAEQ
D

= .                             (9b) 

Then: 

1) PP
k =  for k = 2,3,…,                                              (10) 

2) QQPPQ == ,                                                         (11) 

3) DD
EEP = .        (12) 

Proof is given in [6]. 

Theorem 3. The solution to the equation (5a) is given by 

,)2...( 01
3

3
2

2 xTPwcIQcQcQcQx iini
iii

i =+++++= −
−−   ,+∈Zi

          (13a) 

,2... 1
3

3
2

2 ini
iii

i cIQcQcQcQT +++++= −
−−   ,Im0 Px ∈

                    (13b) 

where Q and P are defined by (9), coefficient jc  can be 

computed using (3b) and n
w ℜ∈  is arbitrary. 

Proof is given in [6]. 

Theorem 4. Let 


=

+=Φ
i

k

k
i

PAcQi

2

0 )( α ,                    (14) 

where Q and P are defined by (9). 

Then 

)()( 00 iiP Φ=Φ ,                          (15) 

Proof is given in [5]. 

3. Pointwise completeness of fractional 

descriptor discrete-time linear systems 

In this section conditions for the pointwise 

completeness of fractional descriptor linear discrete-time 

linear systems will be established. 

Definition 3. The fractional descriptor discrete-time linear 

system (1) is called pointwise complete for qi =  if for 

final state 
n

fx ℜ∈ , there exists an initial condition 

Px Im0 ∈  such that  
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In this section conditions for the pointwise 
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linear systems will be established. 

Definition 3. The fractional descriptor discrete-time linear 

system (1) is called pointwise complete for qi =  if for 

final state 
n

fx ℜ∈ , there exists an initial condition 

Px Im0 ∈  such that  
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detT  6= 0, J 2 ℜn1×n1 is nonsingular, N 2 ℜn2×n2 is nilpotent, 
n1 + n2 = n,
Proof is given in [6].

Theorem 2. Let

 P = E¡E¡D, (9a)

 Q = E¡DA¡α . (9b)

Then:

1) Pk = P for k = 2, 3, …, (10)

2) PQ = QP = Q , (11)

3) PE¡D = E¡D. (12)

Proof is given in [6].

Theorem 3. The solution to the equation (5a) is given by

 
xi = (Qi + c2Qi ¡ 2 + c3Qi ¡ 3 + … +

xi + 2ci ¡ 1Q  + Inci)Pw = Ti x0,  i 2 Z+ ,
 (13a)

 
Ti = Qi + c2Qi ¡ 2 + c3Qi ¡ 3 + … +
Ti + 2ci ¡ 1Q  + Inci , x0 2 Im P,

 (13b)

where Q and P are defined by (9), coefficient cj can be com-
puted using (3b) and w 2 ℜn is arbitrary.
Proof is given in [6].

Theorem 4. Let

	 Φ0(i) = Qi + 
k = 2

i

∑ ck A¡αP, (14)

where Q and P are defined by (9).
Then

 PΦ0(i) = Φ0(i). (15)

Proof is given in [5].

3. Pointwise completeness of fractional 
descriptor discrete-time linear systems

In this section conditions for the pointwise completeness of 
fractional descriptor linear discrete-time linear systems will be 
established.

Definition 3. The fractional descriptor discrete-time linear sys-
tem (1) is called pointwise complete for i = q if for f inal state 
xf  2 ℜn, there exists an initial condition x0 2 Im P such that

 xf = xq 2 Im P (16)

where P is def ined by (9a).

Theorem 5. The fractional descriptor discrete-time system (1) 
is pointwise complete for any i = q and every xf  2 ℜn if and 
only if
 rankTq = n, (17)

where Tq is defined by (13b) for i = q.
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Proof. Note that there exists the inverse matrix Tq
–1 if and only 

if the condition (17) is satisfied. In this case from (13a) for 
i = q we obtain

 x0 = Tq
–1xf . (18)

Therefore, for every xf  there exists x0 2 Im P such that xq = xf 
if and only if the condition (17) is satisfied. □

Theorem 6. Every fractional descriptor linear discrete-time 
system (1) is not pointwise complete for q = 1.

Proof. From the assumption det E = 0 it follows that 

det E– = det{£Ec ¡ A
¤–1E} = det

£
Ec ¡ A

¤–1det E = 0 

and this implies det E D = 0. Using (9b) we obtain

 detQ = det
£

E¡DA¡α
¤
 = det E¡Ddet A¡α = 0. (19)

From (13b) for i = 1 we have T1 = Q and detT1 = det Q = 0. 
Therefore, by Theorem 5 every fractional descriptor linear dis-
crete-time system is not pointwise complete for q = 1. □

Example 1. Consider the fractional descriptor linear system (1) 
with α = 0.6 and the matrices
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Pxx qf Im∈=                          (16) 
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−−
EAEcEAEcE  and this 

implies .0det =D
E  Using (9b) we obtain 

.0detdet]det[det === αα AEAEQ
DD           (19) 

From (13b) for 1=i  we have QT =1  and 

.0detdet 1 == QT  Therefore, by Theorem 5 every 

fractional descriptor linear discrete-time system is not 

pointwise complete for .1=q  □ 

Example 1. Consider the fractional descriptor linear 
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Therefore, by Theorem 5 the descriptor system for 2=q  

is pointwise complete. 
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−

−−

−−

=+=

111

110

101

αα EAA                   (21) 

and it is nonsingular. Therefore, we choose in (4) 

0== cz  and we obtain 

3]det[]det[ =−=− αα AAEc                (22) 

and  

,

211

121

112

3

1
][ 1
















−

−

=−= −
EAE α  

  .

100

010

001

][ 1

















−

−

−

=−= −
ααα AAA               (23) 

Note that 0det =E  and .0det ≠αA  

The Drazin inverse of the matrix E  given by (23) has the 

form 

EE
D =
















−

−

=

211

121

112

3

1
                (24) 

and 
















−

−

===

211

121

112

3

12
EEEP

D              (25) 

.

211

121

112

3

1

















−−−

−−

−−

== αAEQ
D             (26) 

Note that 0detdet 2 == EP  and 

0detdetdet == αAEQ
D  since .0det =D

E  

Therefore, by Theorem 6 the fractional descriptor system 

with 6.0=α  and the matrices (20) is not pointwise 

complete for ,1=q  since 0detdet 1 == QT  

Using (13) and (26) we obtain 
















−

−

=
















−
















−

−

=+=

5467.03333.03333.0

3333.05467.03333.0

3333.03333.05467.0

100

010

001

12.0

211

121

112

3

1
32

2
2 IcQT

(27) 

and  

.0929.0det 2 =T                             (28) 

Therefore, by Theorem 5 the descriptor system for 2=q  

is pointwise complete. 

.

 (23)

Note that det E– = 0 and det A–α  6= 0.
The Drazin inverse of the matrix E– given by (23) has the 

form

 E¡D =  1
3

 2 –1 1
 –1 2 1
 1 1 2

 = E¡ (24)

 P = E¡E¡D = E¡2 =  1
3

 2 –1 1
 –1 2 1
 1 1 2

 (25)

 Q = E¡DA¡α =  1
3

 –2 1 –1
 1 –2 –1
 –1 –1 –2

. (26)

Note that det P = det E– 2 = 0 and det Q = det E–Ddet Aα = 0 
since det E–D = 0.

Therefore, by Theorem 6 the fractional descriptor system 
with α = 0.6 and the matrices (20) is not pointwise complete 
for q = 1, since detT1 = det Q = 0.

Using (13) and (26) we obtain

T2 = Q2 + c2I3 =  1
3

 2 –1 1
 –1 2 1
 1 1 2

 – 0.12
 1 0 0
 0 1 0
 0 0 1

 =

T2 = 
 0.5467 –0.3333 0.3333
 –0.3333 0.5467 0.3333
 0.3333 0.3333 0.5467

 (27)

and

 detT2 = 0.0929. (28)

Therefore, by Theorem 5 the descriptor system for q = 2 is 
pointwise complete.

 

T3 = Q3 + 2c2Q + c3I3 =  1
3

 –2 1 –1
 1 –2 –1
 –1 –1 –2

3

 ¡

T3 ¡ 0.24
3

 –2 1 –1
 1 –2 –1
 –1 –1 –2

 ¡ 0.056
 1 0 0
 0 1 0
 0 0 1

 =

T3 = 
 –0.5627 0.2533 –0.2533
 0.2533 –0.5627 –0.2533
 –0.2533 –0.2533 –0.5627

 (29)
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and

 detT3 = – 0.0373. (30)

Therefore, by Theorem 5 the descriptor system for q = 3 is also 
pointwise complete.

4. Pointwise degeneracy of fractional descriptor 
discrete-time linear systems

In this section conditions for the pointwise degeneracy of frac-
tional descriptor linear discrete-time linear systems will be 
established.

Definition 4. The fractional descriptor discrete-time linear sys-
tem (1) is called pointwise degenerated in the direction v 2 ℜn 
for i = q if there exists a nonzero vector v such that for all initial 
conditions x0 2 Im P the solution xi of the system (1) for i = q 
satisfies the condition

 vTxq = 0. (31)

Theorem 7. The fractional descriptor discrete-time linear sys-
tem (1) is pointwise degenerated in the direction v 2 ℜn for 
i = q if and only if

 detTq = 0 (32)

where Tq is defined by (13b) for i = q.

Proof. From (31) and (13a) for i = q we have

 vTTq x0 = 0. (33)

Note that there exists nonzero vector v 2 ℜn such that the con-
dition (33) is satisfied for all x0 2 Im P if and only if the matrix 
Tq is singular. Therefore, the fractional descriptor system (1) is 
pointwise degenerated in the direction v 2 ℜn for i = q if and 
only if the condition (32) is satisfied. □

Theorem 8. Every fractional descriptor linear discrete-time 
system (1) is pointwise degenerated for q = 1.

Proof. From the assumption det E = 0 if follows that det E– = 0 
and det E–D = 0 this implies that det Q = 0 (see (19)). Taking 
into account that T1 = Q we obtain detT1 = 0. Therefore, by 
Theorem 7 every fractional descriptor discrete-time system (1) 
is pointwise degenerated for q = 1. □

Example 2. (Continuation of  Example 1). Consider the frac-
tional descriptor system (1) with α = 0.6 and the matrices E, 
A given by (20).

In this case the matrix Q is given by (26) and

 detT1 = detQ = j  – 2
3

 1
3

 – 1
3

 1
3

 – 2
3

 – 1
3

 – 1
3

 – 1
3

 – 2
3

j = 0. (34)

Therefore, by Theorem 8 the fractional descriptor system for 
q = 1 is pointwise degenerated.

The vector v 2 ℜ3 in which the system is pointwise degen-
erated can be computed from the equation

 QTv =  1
3

 –2 1 –1
 1 –2 –1
 –1 –1 –2

v1

v2

v3

 =  
0
0
0

 (35)

and its solution is vT = 
£
v1, v2, v3

¤T = 
£
–a, –a, a

¤
 for any num-

ber a.

5. Concluding remarks

The Drazin inverse of matrices has been applied to analysis of 
the pointwise completeness and of the pointwise degeneracy of 
the fractional descriptor linear discrete-time systems. Necessary 
and sufficient conditions for the pointwise completeness and 
the pointwise degeneracy of the fractional descriptor linear dis-
crete-time systems have been established (Theorems 5 and 7). 
It is shown that every fractional descriptor linear discrete-time 
systems is not pointwise complete and it is pointwise degener-
ated for i = 1 (Theorems 6 and 8).

The considerations have been illustrated by numerical 
example of the fractional descriptor linear discrete-time system. 
The considerations can be extended to the fractional different 
orders linear continuous-time and discrete-time linear systems.
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