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Averaged controllability of heat equation in unbounded
domains with random geometry and location
of controls: The Green’s function approach

JERZY KLAMKA and ASATUR ZH. KHURSHUDYAN

The constrained averaged controllability of linear one-dimensional heat equation defined
on R and R+ is studied. The control is carried out by means of the time-dependent intensity
of a heat source located at an uncertain interval of the corresponding domain, the end-points
of which are considered as uniformly distributed random variables. Employing the Green’s
function approach, it is shown that the heat equation is not constrained averaged controllable
neither in R nor in R+. Sufficient conditions on initial and terminal data for the averaged exact
and approximate controllabilities are obtained. However, constrained averaged controllability
of the heat equation is established in the case of point heat source, the location of which is
considered as a uniformly distributed random variable.

Moreover, it is obtained that the lack of averaged controllability occurs for random variables
with arbitrary symmetric density function.

Key words: lack of controllability, constrained controllability, heuristic method, averaged
dynamics, uniformly distributed random variable

1. Introduction

The exact controllability of the heat equation defined on R+ and in R3
+

has
been studied by Micu and Zuazua, respectively, in [1, 2] and [3] concluding
the lack of its L2-boundary null controllability. This result has been confirmed
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in [4] as a limiting case when the control source approaches the boundary of R+,
straightforwardly using the Green’s function approach, which turns to be very
efficient in controllability analysis [5]. Moreover, as long as the control source
is far from the boundary, i.e., distributed controllability is studied, necessary
and sufficient conditions on the initial and terminal data are obtained for exact
controllability of the heat equation on R+. Thus, the location of the control
strongly affects the controllability property of the heat equation. This motivates
to study the controllability of the heat equation on R+ and R when the location
of the control is not fixed.

Let the heat equation defined on R or R+ be controlled by the intensity u of
a heat source distributed at an uncertain bounded interval [x0, x1]. It is assumed
that x0 and x1 are normally distributed independent random variables such that
|x1 − x0 | ¬ l for a given finite l > 0. The probability density function is then
given by

ρ(x0, x1) =
1

µ(Ωl )
χΩl

(x0, x1),

where µ(Ωl ) is the measure, χΩl
is the indicator function of

Ωl = {x0, x1 ∈ Ω, |x1 − x0 | ¬ l} .

Hereinafter, Ω = R+ or Ω = R. Note also that when Ω = R+, Ωl = [0, l]2,
µ(Ωl ) = l2, and when Ω = R, Ωl = [−l, l]2, µ(Ωl ) = 4l2.

Given any initial,Θ0, and desired,ΘT , temperature distributions, finite control
time T , and finite l > 0 such that |x1 − x0 | ¬ l, determine admissible functions
u ∈ U , such that at t = T

RT (u) = ‖Θ (x,T ; u,Θ0, x0, x1) − ΘT (x)‖ = 0,

where Θ is the temperature distribution in Ω × [0,T], ‖·‖ is the norm of the
space of the terminal states assumed to be L2(Ω). However, this makes the
control to be dependent on random variables x0 and x1. In order to avoid such
situations, the concept of averaged control has been recently introduced by the
prominent mathematician Enrique Zuazua in [6] as a property of parameter-
dependent systems. Accoring to Zuazua, instead of RT above, the following
residue must be considered:

Rav
T (u) =

MΩl

T
[Θ] − ΘT (x)

L2(Ω)
, (1)

where

M
Ωl

T
[Θ] =

∫

Ωl

Θ (x,T ; u,Θ0, x0, x1) dP(x0, x1)

is the averaged temperature distribution or the mathematical expectation of Θ.
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Averaged controllability of various systems has been studied by Zuazua
and colleagues [7–10]. In [9] a handful of open problems related to averaged
controllability of parameter-dependent systems described by evolution partial
differential equations is presented. Among very recent results, note the analy-
sis of optimal averaged controllability of the wave equation with an unknown
wave velocity [11] and the similar study of the averaged controllability of the
N-dimensional heat equation defined on a bounded domain [12]. Besides an un-
known parameter in the state equation, there is a missing boundary condition in
both studies.

Most of the literature in this direction so far has been concerned with un-
constrained controllability, and little is known for the non-trivial case when the
control is restricted to take on values in a preassigned subset of the control space.
In this paper, however, constrained averaged controllability is considered follow-
ing to [13–16]. More specifically, the set of admissible controls is defined as
U =

{
u ∈ L2 [0,T] , |u| ¬ ǫ, supp(u) ⊆ [0,T]

}
.

In terms of the residue (1) two main definitions of averaged controllability are
distinguished below.

Definition 1 The state Θ is called constrained exactly averaged controllable if

for any given Θ0 andΘT , control time T , there exits an admissible control u ∈ U
such that Rav

T
(u) = 0.

Definition 2 The state Θ is called constrained approximately averaged control-

lable if for any givenΘ0 andΘT , control time T , there exits an admissible control

u ∈ U such that Rav
T

(u) ¬ ε for a required accuracy ε > 0.

Hereinafter, shorter terms exactly averaged controllable and approximately aver-
aged controllable will be used for convenience.

The aim of the present paper is to study exact and approximate controllability
of the heat equation on R and R+ when the control heat source has a random ge-
ometry and location, i.e., x0 and x1 are random. At this, for the sake of simplicity,
it is assumed that these are uniformly distributed independent random variables.
It is then shown that the heat equation is not averaged controllable in the sense
of Definitions 1 and 2 (Section 3). Moreover, it is also shown that the lack of
controllability occurs as soon as the probability density function is symmetric
with respect to x0 and x1 (Section 5). Nonetheless, when the heat source has
a point distribution, exact and averaged controllability can still be established
(Section 4).
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2. Governing equation and its Green’s function solution

In dimensionless variables and quantities, the heat diffusion in the rod in time
is described by the system


∂Θ

∂t
= α

∂2
Θ

∂x2
+ u(t) χΩl

(x), x ∈ Ω, t ∈ R+,

Θ = Θ0, x ∈ Ω, t = 0,
(2)

in which α > 0 represents physical characteristics of the rod and is assumed to
be given. When Ω = R+, Θ ≡ 0 for x = 0 and t > 0.

The problem is to describe the set U ex
res =

{
u ∈ U, Rav

T
(u) = 0

}
of exactly

resolving average controls. In case whenU ex
res = ∅ corresponding to the lack of ex-

act average controllability, the description of the setUap
res =

{
u ∈ U, Rav

T
(u) ¬ ε

}
of approximately resolving average controls is required. IfU ap

res = ∅, then a lack
of approximate averaged controllability occurs. Evidently, U ap

res = ∅ implies
U ex

res = ∅.

Remark 1 When x0 → x1, |x1 − x0 |−1 χ[x0,x1](x) → δ (x − x0) in the sense of
distributions, where δ is Dirac’s delta function. Exact and approximate control-
lability of heat equation with point heat source is studied in [4].

2.1. Green’s function solution

Involving Green’s function solution of (2), the dependence Rav
T
= Rav

T
(u) is

made explicit, simplifying the averaged controllability analysis. Following to [18],

Θ (x, t; x0, x1) =

∫

Ω

G
(

x, ξ, t
)

Θ0(ξ)dξ +

t
∫

0

Ĝ (x, t − τ; x0, x1) u(τ)dτ, (3)

where

G
(

x, ξ, t
)

=

{

ϕ(x − ξ, t), Ω = R,

ϕ(x − ξ, t) − ϕ(x + ξ, t), Ω = R+,

Ĝ (x, t; x0, x1) =

∫

Ω

G
(

x, ξ, t
)

χΩl
(ξ)dξ =

=


ψ(x − x0, t) − ψ(x − x1, t), Ω = R,

ψ(x − x0, t) + ψ(x + x0, t)−
−ψ(x − x1, t) − ψ(x + x1, t), Ω = R

+,
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ϕ(x, t) =
1

√
4παt

exp

[
− x2

4αt

]
, ψ(x, t) =

1

2
erf

(

x
√

4αt

)

and erf is the Gauss error function.

3. Lack of averaged controllability

Making use of the representation (3) evaluated at t = T , the mathematical
expectation can be transformed into

M
Ωl

T
[Θ] =

∫

Ωl


∫

Ω

G
(

x, ξ,T
)

Θ0(ξ)dξ+

+

T
∫

0

Ĝ (x,T − τ; x0, x1) u(τ)dτ


ρ(x0, x1)dΩl =

=

∫

Ω

G
(

x, ξ,T
)

Θ0(ξ)dξ +
1

µ(Ωl )

T
∫

0

G̃ (x,T − τ) u(τ)dτ,

(4)

where

G̃(x, t) =

∫

Ωl

Ĝ (x, t; x0, x1) dΩl .

The first term in the right hand side of (4) does not depend on x0 or x1, so it
can be combined with ΘT in (1). Computing the integral in the second term (see
Appendix A), it is obtained that G̃ ≡ 0 in Ω × R+ in both cases of Ω = R and
Ω = R

+. Then, the residue (1) becomes independent of u:

Rav
T (u) =


∫

Ω

G
(

x, ξ,T
)

Θ0(ξ)dξ − ΘT (x)

ΘT

. (5)

Remark 2 Evidently, when, e.g., Θ0 = 0 and ΘT , 0, then Rav
T
, 0 for any

u ∈ U . In other words,U ex
res = ∅.

Also, in general, for arbitrary Θ0 and ΘT , Rav
T
¬ ε may not be satisfied for

sufficiently small accuracy ε. In other words, in general,U ap
res = ∅.

In general, the following assertion holds.
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Theorem 1 The system (2) is not averaged controllable by any u ∈ U neither in
R nor R+.

On the other hand, the following assertions hold.

Corollary 1 If for prescribed Θ0, ΘT and T , the equality

ΘT (x) =

∫

Ω

G
(

x, ξ,T
)

Θ0(ξ)dξ (6)

holds, then the linear heat equation is exactly averaged controllable for every
u ∈ U .

Corollary 2 If for prescribed Θ0, ΘT and T , the inequality


∫

Ω

G
(

x, ξ,T
)

Θ0(ξ)dξ − ΘT (x)

L2(Ω)

< ε

holds, then the linear heat equation is approximately averaged controllable for
every u ∈ U .

Remark 3 It is possible to keepΘ0 arbitrary. Then, the set of reachable terminal
states will be defined as

T =
{
ΘT ∈ L2(Ω), (6)

}
.

4. Limiting case: point source

Recalling Remark 1, let x0 → x1 corresponding to a point heat source. In that
case, (3) is reduced to

Θ(x, t; x0) =

t
∫

0

G (x, x0, t − τ) u(τ)dτ +

∫

Ω

G
(

x, ξ, t
)

Θ0(ξ)dξ.

The averaged residue in this case will read as

Rav
T (u) =


1

µ(Ωl )

T
∫

0

G̃ (x,T − τ) u(τ)dτ +

∫

Ω

G
(

x, ξ,T
)

Θ0(ξ)dξ − ΘT (x)

ΘT

,
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where Ωl = {x0 ∈ Ω, |x0 | ¬ l}, µ(Ωl ) is the length of Ωl , i.e., µ(Ωl ) = 2l when
Ω = R, and µ(Ωl ) = l when Ω = R+. In this case, however (see Appendix A),

G̃(x, t) =

∫

Ωl

G (x, x0, t) dx0 =

=


ψ(l − x, t) − ψ(l − x, t), Ω = R,

2ψ(x, t) − ψ(l − x, t) − ψ(l + x, t), Ω = R+.

Then, the exact controllability of the system is achieved by u ∈ U con-
strained by

T
∫

0

G̃ (x,T − τ) u(τ)dτ = M (x), x ∈ Ω, (7)

where

M (x) = µ(Ωl )

ΘT (x) −
∫

Ω

G
(

x, ξ,T
)

Θ0(ξ)dξ

 .

Repeating the steps of the Green’s function approach, appropriate constraints
on u ∈ U will be derived for exact and approximate averaged controllability.
For details of the steps, see [4, 5, 19]. Involving the heuristic method [17], the
corresponding sets of resolving controls can be described.

5. Remarks on other types of random variables

The lack of averaged controllability obtained in Theorem 1 was established
when x0 and x1 are uniformly distributed independent random variables. How-
ever, it is straightforwardly proved that when x0 and x1 are normally distributed
independent random variables, then (2) is not averaged controllable. Indeed, in
that case,

ρ(x0, x1) =
1

2π
exp

−
x2

0 + x2
1

2

 . (8)
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Therefore, instead of (4), the averaged state is described by the expectation

M
Ωl

T
[Θ] =

1

2π

∫

Ωl


∫

Ω

G(x, ξ,T )Θ0(ξ)dξ+

+

T
∫

0

Ĝ(x,T − τ; x0, x1)u(τ)dτ


exp

−
x2

0 + x2
1

2

 dΩl =

=

1

2π
µ(Ωl )

∫

Ω

G(x, ξ,T )Θ0(ξ)dξ +
1

2π

T
∫

0

G̃n(x,T − τ)u(τ)dτ,

(9)

where

G̃n(x, t) =

∫

Ωl

Ĝ (x, t; x0, x1) exp
−

x2
0 + x2

1

2

 dΩl .

Evaluating the last integral, it is obtained that G̃n ≡ 0 in Ω × R+ in both cases of
Ω = R andΩ = R+ (see Appendix). This results in independence of the averaged
residue Rav

T
of u. Thus, Theorem 1 holds.

Generalizing, it turns out that as soon as the density function of the distribution
of x0 and x1 is symmetric with respect to its argument, then system (2) is not
averaged controllable neither on R nor on R+. In other words,

Theorem 2 If ρ(x0, x1) = ρ(x0, x1), then the statement of Theorem 1 holds true.

Despite the difficulty of explicit determination of integrals in the limiting case
of point source considered in Section 4 for complicated forms of ρ (e.g., (8)), it
is still possible to derive controllability conditions in the form of (7).

6. Conclusion

Linear one-dimensional heat equation defined in R and R+ is governed by the
time-dependent intensity of a heat source, the location and geometry of which
is assumed to be bounded, uniformly distributed random variables. Involving
the Green’s function approach, the mathematical expectation or the averaged
dynamics is represented explicitly. It is established that the heat equation lacks to
be constrained averaged controllable in finite time unless constrained initial and
terminal states are considered. On the other hand, it is shown that constrained
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averaged controllability, in principle, can be achieved in the case of heat source
with point distribution.

In addition, it is proved that when the probability density function is symmetric
with respect to the random variables, then the heat equation is not averaged
controllable.

Appendix. Evaluation of some integrals

The case of uniformly distributed random variables

Begin with the evaluation of G̃. First, consider the case when Ω = R. Then,
Ωl = [−l, l] × [−l, l],

G̃(x, t) =

l
∫

−l

l
∫

−l

Ĝ (x, t; x0, x1) dx0dx1 =

=

l
∫

−l

l
∫

−l

[

ψ(x − x0, t) − ψ(x − x1, t)
]

dx0dx1 =

= l


l

∫

−l

ψ(x − x0, t)dx0 −
l

∫

−l

ψ(x − x1, t)dx1


.

Evidently
l

∫

−l

ψ(x − x0, t)dx0 −
l

∫

−l

ψ(x − x1, t)dx1 ≡ 0

in R × [0,T]. In the same way it is proved that G̃ ≡ 0 for x ∈ R+, t ∈ [0,T].
Now, compute the integral

G̃(x, t) =

∫

Ωl

G(x, x0, t)dx0.

For the sake of simplicity, consider the case when Ω = R. Then, Ωl = [−l, l] and
µ(Ωl ) = 2l. Therefore, taking into account that

∫

ϕ(x − x0, t)dx0 = −ψ(x − x0, t),

it is immediately derived that

G̃(x, t) = ψ(l + x, t) − ψ(l − x, t).
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The case of normally distributed random variables

Now, evaluate the integrals arising in the case when x0 and x1 are standard
normally distributed random variables. Assume that Ω = R. Then,

G̃n(x, t) =

l
∫

−l

l
∫

−l

[

ψ(x − x0, t) − ψ(x − x1, t)
]

exp
−

x2
0 + x2

1

2

 dx0dx1 =

=

l
∫

−l

ψ(x − x0, t)
*..,

l
∫

−l

exp
−

x2
0 + x2

1

2

 dx1
+//-

dx0−

−
l

∫

−l

ψ(x − x1, t)
*..,

l
∫

−l

exp
−

x2
0 + x2

1

2

 dx0
+//-

dx1 =

=

√
2π erf

(

l
√

2

)


l

∫

−l

ψ(x − x0, t) exp
−

x2
0

2

 dx0−

−
l

∫

−l

ψ(x − x1, t) exp
−

x2
1

2

 dx1


≡ 0.

The same reasoning will end up with the conclusion that when Ω = R+,

G̃n(x, t) =

l
∫

−l

l
∫

−l

[

ψ(x − x0, t) − ψ(x − x1, t)+

+ ψ(x + x0, t) − ψ(x + x1, t)
]

exp
−

x2
0 + x2

1

2

 dx0dx1 ≡ 0.
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