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Flexoelectric and surface effects on a cracked piezoelectric
nanobeam: Analytical resonant frequency response

A nanoscale beam model containing defect under the piezoelectricity considering
the surface effects and flexoelectricity is established on the framework of Euler-
Bernoulli theory. The governing equations of motion and related boundary conditions
are derived by using Hamilton’s principle. The imperfect nanobeam is modeled by
dividing the beam into two separate parts that are connected by a rotational and a
longitude spring at the defect location. Analytical results on the free vibration response
of the imperfect piezoelectric nanobeam exhibit that the flexoelectricity and the surface
effects are sensitive to the boundary conditions, defect position, and geometry of the
nanobeam. Numerical results are provided to predict the mechanical behavior of a
weakened piezoelectric nanobeam considering the flexoelectric and surface effects.
It is also revealed that the voltage, defect severity, and piezoelectric material have
a critical role on the resonance frequency. The work is envisaged to underline the
influence of surface effects and flexoelectricity on the free vibration of a cracked
piezoelectric nanobeam for diverse boundary conditions. It should be mentioned,
despite our R. Sourkiprevious works, an important class of piezoelectric materials
used nowadays and called piezoelectric ceramics is considered in the current study.

1. Introduction

In the past decades, nanostructures have been extensively utilized in nano-
electro-mechanical systems (NEMS) such as nano-resonators and nano-oscil-
lators [1]. Combination of the piezoelectric and semiconducting properties of
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GaNlN, nano-rods, and ZnO nanostructures are essential for obtaining electricity
from mechanical energy, and harvesting solar energy [2, 3]. ZnO nanowires have
become a central factor in powering nano-devices by converting mechanical en-
ergy into electricity [4]. A fundamental application of some nanostructures such
as piezoelectric field effect transistor (PE-FET) and nano-sensors made of ZnO
nanowire are sensors for measuring forces [5]. They can also be used as a gate
voltage for controlling the current flow [6]. However, there is evidence that nanos-
tructures are size-dependent and have considerable impact on the static/dynamic
response of the nanostructure. Chaipanich [7] revealed the size-dependent behav-
ior of PZT-cement composites and demonstrated that the dielectric property of the
composites enhances by PZT particle size. A size-dependent viscoelastic model
was also extended for nanotube resonators by Farokhi and his colleagues [8].
The size-dependent behavior a clamped piezoelectric nano-plate was depicted by
Zhang et al. under transverse vibration and bending [9]. Liang et al. [10], illustrated
that the electromechanical coupling coefficient of the piezoelectric nanobeam un-
der bending is size-dependent. The size-dependent vibration and bending analysis
of a clamped piezoelectric circular nano-plate were presented using a modified
Kirchhoff plate model by Yan [11]. Also, the variation of the resonant frequency
was represented with the plate thickness and plate radius to thickness ratio was
represented utilizing a modified Kirchhoff plate model.

Flexoelectricity, on the other hand, refers to an electrical polarization caused
by a strain gradient (or inhomogeneous strain) that describes many electrome-
chanical behaviors. It is a size-dependent effect, which becomes more prominent
in nanostructures [12]. This property enables scientists to harvest energy from
materials and makes it feasible to design self-powered sensors in nanoscale. Ac-
cording to the flexoelectricity theory and the strain gradient theory, a size-dependent
bending model of an electro-elastic bi-layer nanobeam was considered under the
open and closed circuit conditions. Recent work by several studies illustrate the
size-dependency of the flexoelectricity and the strain gradient elastic effect [13].
An analytical solution for the deflection and rotation of the Timoshenko dielec-
tric nanobeam model was obtained with the direct effect of flexoelectricity under
various boundary conditions [14]. Results revealed that the flexoelectricity in the
size-dependent electromechanical coupling response plays a vital role when the
beam thickness is small. Yan and Jiang [15] determined the flexoelectric effect
on the electro-elastic fields in the bending piezoelectric nanobeams with vari-
ous boundary conditions while electrical and mechanical loads were applied to
nanobeams. Simulation results depicted the fact that the flexoelectric effect on the
elastic behavior of nanobeams depends on the boundary conditions and the elec-
trical load. Furthermore, it was mentioned that the flexoelectricity has significant
influence upon the contact stiffness and electric polarization of nanobeams while
thickness is in nanoscale values.

Interestingly, when flexoelectricity is under consideration, surface effects com-
monly present a remarkable influence in predicting the size-dependency of piezo-
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electric nanostructures [16]. Liang et al. [17], investigated the buckling and vi-
bration of the piezoelectric nanowires considering the flexoelectricity and surface
effects based on Euler-Bernoulli beam theory. It was found that the surface ef-
fects and flexoelectricity have a significant influence on Young’s modulus, bending
rigidity, critical buckling voltage, and the first resonance frequency of PZT and
BaTiO3 nanowires. A year later, using Timoshenko beam model with piezoelectric
couple stress theory and flexoelectricity theory, a size-dependent static deformation
and free vibration of the hinged-hinged piezoelectric nanobeam were presented by
Tadi Beni [18]. Sourki et al. [19] analyzed free transverse vibration of a cracked
microbeam, modeled by a rotational spring, on the basis of modified couple stress
theory. They considered the impacts of crack position, Poisson’s ratio, material
length scale parameter as well as crack severity on natural frequencies. It has
been investigated that the crack severity has a negative effect on natural frequency.
Based on nonlocal modified couple stress theory incorporating surface effects,
the nonlocal parameter, surface effect parameters and crack position were found
to have prominent influences on stiffness and dynamic behavior of the weakened
nanobeam [20].

Other than nanoscale beams, nanoscale shells and plates were the focus of
many researchers [21-28]. Two-dimensional general equations of piezoelectric
shells with nano-thickness were suggested by Zhang et al. [29] considering the sur-
face effects. It was concluded that due to surface effects, the resonant frequencies of
the piezoelectric cylindrical shell at nanoscale under an axisymmetric deformation
and different boundary conditions are size dependent. A modified Kirchhoff plate
model was extended by considering the residual surface stress, surface elasticity,
surface piezoelectricity, and flexoelectricity to study the electro elastic responses
and the free vibration of a piezoelectric nanoplate. The surface effects and flexoelec-
tricity on the electromechanical coupling behaviors of the piezoelectric nano-plate
is related to the plate dimensions and the electrical loading [30]. Yan and Jiang
[31] discussed the surface effects on the size-dependent electro-elastic responses
of the static bending and buckling behaviors of the piezoelectric nanoplate within
Kirchhoff plate theory with different in-plane constraints. By considering the sur-
face piezoelectricity, a piezoelectric ring under a prescribed potential has been
studied by Huang and Yu [32]. Numerical results demonstrated an important effect
of surface piezoelectricity on the electric and stress fields in the nanometer scale.
The sinusoidal plate model was used to analyze the bending problem of a simply
supported piezoelectric nanoplate considering the surface effect. Then, the influ-
ence of surface effects and electric loading on the displacement, electric potential,
stress and electric displacement was reported under the uniform electromechanical
loading [33]. In order to estimate the bending behavior of nanowires, a framework
of high-order surface stresses based on the continuum theory of Euler— Bernoulli
beams was served by Chiu and Chen [34]. The results indicated that, under a certain
critical diameter size, high-order surface stresses have a highlighted influence on
the bending behavior of nanowires.
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There have been some studies on the defected nanostructures mostly on
nanobeams showing the importance of the defect features on the response of
nanostructures [19, 20, 35, 36]. A case in point is the work of Xiao et al. [37]
on piezoelectric materials with an elliptical cavity based on surface effect sub-
jected to the electromechanical load. The results revealed the size dependency
of stress and electric displacement fields and the electro-elastic intensity factors
with the nanometer cavity size. By considering surface effects, Wang and Wang
[38] developed a nonlinear fracture mechanics analysis model for nanoscale piezo-
electric double cantilever beam specimens. Simulation results indicated that the
influence of the surface residual stress and negative surface elasticity upon the
energy release rate depends on the length to thickness ratio of the piezoelectric
double cantilever beam. The effect of crack face residual surface stress on the
nanoscale fracture of an infinite piezoelectric medium considered by Nan and
Wang [39]. The results showed that the electromechanical coupling fracture be-
havior of the piezoelectric materials is significantly affected by the residual surface
effect.

As cited above, piezoelectric materials on nanoscale have widely used in di-
verse devices including sensors, actuators, energy harvesters due to their high
electromechanical coupling, mechanical and physical properties. The literature
reveals that the properties of piezoelectric nanomaterials depend on the particular-
size and do not follow their bulk counterparts. The flexoelectricity also as a size-
dependent property becomes more significant at the nanoscale that could strikingly
affect the electromechanical coupling behavior of piezoelectric materials. It is clear
that the capabilities of structures are reduced because of the existence of cracks
or other defects. Thereby, the issue of cracking in the structures is interested in
nano-scale dimensions. With regard to the fact that all modes of vibration do not
equally contribute to the response of a structure, normally only those modes which
have higher participation factors are considered. This assumption actually helps
in simplifying the problem. In mechanical systems when the frequency of oscil-
lations matches the natural frequency of vibration, mechanical resonance occurs
and tend to absorb more energy than it does at other frequencies. It can lead to
violent motions and disastrous failures in inappropriately constructed structures.
Hence, the importance of considering it in order to avoiding resonance catastro-
phes is a major concern in every structure. Overall, there is little published study
of nanoscale structures and previous studies have not dealt with the flexoelectricity
and surface effect on the resonant frequency considering the effect of imperfec-
tions. This paper aims to highlight the influence of flexoelectricity and surface
effects on the free vibration of an imperfect piezoelectric nanobeam in detail for
various boundary conditions. In section 2 of this paper, the fundamentals of the
flexoelectricity and the surface effect will be presented. In section 3, the govern-
ing equations will be expressed. Then, in section 4, the weakened effects will be
considered in the structure, and finally, in section 5 the results will be shown and
discussed.
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2. Theory of flexoelectricity and the surface effect

As proposed by Shen and Hu [40] in order to take into account the surface
effects, the beam would be decomposed into a bulk part and surface layers. In
addition, in order to consider the flexoelectricity based on the extended linear
theory for dielectrics, the terms of strain gradient, polarization, and polarization
gradient are incorporated. Thus, for the bulk part, the general expression for the
internal energy density U, can be expressed as

1 1
Up = S PP + Ebijklpi,jpk,l + S CijkiEijEkL + diji€ijPr + eijki&ijPr
(D

+ fijkitti jx Pr + TijkimEijUi,im + 5 8ijklmnli jilmn

where P; is the polarization vector, b;;y; is the higher order coupling between the

polarization gradient, g;; is the strain tensor which is defined as g;; = 3 (uij+uj;i);

u; is the displacement vector; ay; is the reciprocal dielectric susceptibility; c;jx;
is the elastic constant; d;ji is the piezoelectric coeflicient, f;jx; and e;;x; are the
direct and converse flexoelectric constant tensors, respectively.

For simplicity the coupling effects between strain and strain gradient are ig-
nored and hence the elements r;jx;, and g;jkimn are assumed to be zero [15].
Thereby, the constitutive equation can be expressed as

oUp
Ojj = 7 = Cijki€kl + diji Pr + eijic Pri s
68,'_,'
oUy
Tij1 = 7—— = fijicPx>
asijl
U ’ (2)
b
i = = = aijPj + dji€ji + fiki€jr,1
P,
Uy
Eij = —— = bijiPr,y + diij€xi »
IP;j

where o;, 7;j;, E;, and E;; are the stress, higher order stress, electric field and
higher order electrical force, respectively. Gurtin and Murdoch [41] developed a
continuum theory of the elastic material surfaces, and derived a linear theory con-
sidering the residual stress. Therefore, for the piezoelectric materials with surface
effects, including the surface piezoelectricity, the residual surface stress and the
surface elasticity, the surface internal energy density Us depending on the surface
polarization and the surface strain, can be expressed as [40, 42]

1 1
Us = Uy + EaZBP;PE + chlﬂwsfxﬁsjk + diﬁy‘?;ﬁP; + O'gﬁsfxﬁ, 3)
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in which afyﬁ, cftﬁ, and dflﬁy are the surface reciprocal dielectric susceptibility
tensor, the surface elastic constant tensor and surface piezoelectric constant tensor,
respectively. Also, P, sgﬁ, and O'gﬁ denote the surface polarization tensor, surface
strain tensor, and residual surface stress tensor, respectively.

The surface constitutive equations can be determined as

Ky aUS 0 K K K K
U(‘”ﬁ - oe’ =0t C;BVK‘Q;K + d;ﬁyp )" >
B (4)
. AU

i — S S N S
o« = gps = Yapts + dpya®py:

where (rgﬁ and E; are the surface stress tensor and surface electric field vector,
respectively. The flexoelectricity can be written by the flexoelectric coefficient
tensor (ujkii = fjkii — ejri) [43]. Moreover, according to [44] the direct and
converse flexoelectric constant tensors are justified to satisfy f;jx; = —e;jx -

3. Modeling and formulation

3.1. Governing equations within the Euler-Bernoulli beam framework

According to the Euler-Bernoulli beam theory, the displacement vector and
axial elastic strain at any point of the piezoelectric nanobeam can be defined as

uen) = - 280 e, 5)
ox
*w(x,1)
Exx = —ZT, (6)

where X = (x,y,z) are the spatial variables, w is the transverse displacement,
and ¢ denotes time. The constitutive equations for the bulk and surface of the
one-dimensional beam from Eq. (2) and Eq. (4) can be stated as

M31

Oxx = Cl1Exx +d31 P, — TPz,za
H31 7
E; = a33P; + d31&xx + Tsxx,z;
s _ .0 S S s pS
Oy = 01 +C]1Exx +d3 P, ®
s _ 0
ES=E°.

Based on the generalized Young-Laplace equations [45], the traction jumps

are described as )
a K s su
T, = _Z-”, Tzl’“ = (@) 9)
X r
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in which the subscript « is the upper surface stress, the subscript/ is the lower surface
stress, and r is the symbol of radius curvature. By using Hamilton’s principle, the
governing equation can be derived as [46, 47]

T
6fK U+Wldt=0, (10)
0

where K and U are the kinetic energy and strain energy, and W is the work done by
external loads. The governing equation for the beam can be derived from Eq. (10)

as follows
2 2

o5 (M + My + F) =TS + f(x1) - o2 Z o, (11)

12
where [ = f dAand M = faxxsz, F = foxsz, and M, = fo'fchdA
A A A A
are the bending moments due to the Cauchy stress, higher order double stress,
and surface stress, respectively. 7, = (T} — Tzl ) is a lateral load considering the
surface effect. By substituting Eq. (5) into Eq. (10), the governing equation can be
derived as

d*wi(x, n dzw(x 1) 0’w(x, 1)

(ED* N o + f(x, 1) + ply———— P

= 0. (12)

Due to the influence of flexoelectricity and surface effects, the effective bending
rigidity is defined as follows [17, 46]

2 2 s K
1 e 3 azc’ +esle 6 2
(ED)* = _lzbh3 (—31+c11)(1+ ( i Phiidd V) (—+—)). (13)
a3 h

2
2 632,1+a33C11) e3,+a33Ci h b

The bending rigidity of the classical piezoelectric beam is defined as

sk 1 3 6%1
(EI) = Ebh a—33+C11 . (14)

b
The axial load, including Py, =f0'11 dAand Py = 2(b + h)O'(l)1 +2 (1 + E) ey, V,

can be denoted as [17, 48]

b
P=P,+Ps=2(b+ h)o-(l)1 +e31bV +2 (Z + 1) ey, V. (15)
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3.2. Free vibration of a piezoelectric nanobeam

At first, we will obtain the vibration frequency of the piezoelectric nanobeam
in order to validate the results with those presented by Liang et al. [17]; when the
effect of imperfection is omitted from the equations, the results of this work and
those in [17] should be the same. By considering the external force equal to zero,
the governing equation for the free vibration of the piezoelectric nanobeam can be
expressedby virtue of Eq. (12) as

4 2 2
d*w(x,t) B Pd w(x,t) +p108 w(x,t) _

ED*
(ED) dx* dx? o0r?

0. (16)

In order to determine the free vibration behavior, the displacement is assumed
as the following Fourier series

W) = ) Wy sin e, (17)
n=1

where w,, is the vibration frequency, and W, is the Fourier coefficients. By sub-
stituting Eq. (17) into Eq. (16), the governing equation for free vibration problem
will be expressed as

[(EI)* (?)4 +P (%)2 - plow,%] W, = 0. (18)

By solving Eq. (18), the expression of w% can be computed
. (nm\* o\ 2
(EI) (T) +P ()

2
w;, = . 19
olo (19)

The positive root of w, is the frequency of the simply supported nanobeam
for various values of positive integer n. To obtain the resonance frequency of
the piezoelectric nanobeam, a harmonic vibration has been used to rewrite the
displacement as

w(x, 1) = W(x)e'“". (20)

By substituting Eq. (20) into Eq. (16), and using the dimensionless variables
and constants as
w ‘= X 2 _ pw?Iol*
1’ 1’ (ED*

the governing equation can be cast into the form

W =

WD) = gW”(O) - *W () =0, 21)
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2

(ED”
differential Eq. (21) is obtained as

, and A is the frequency parameter. The general solution for the

where g =

W1i(£) = ¢ sinh [@1£] + ¢z cosh [a1£] + c3 cos [aal] + cqsin [a2l], (22)

where @ and a; are the roots of the characteristic equation

£q + /g% + 442
Lo = \/L. (23)

2

The following equation that is directly extracted from literature [17] is the
same Eq. (23)

(24)

1/2
By = +N + N2 + 4pw?Io(ED e /
b2 2(EDer ’

where N = P, (EI)* = (EID)e. As mentioned above, the roots of characteristic
equation are compared with the result being given in [17] and completely coincide.

4. The weakened piezoelectric nanobeam model

The vibration of an imperfect piezoelectric nanobeam with length /, width b,
thickness /4, and different boundary conditions, considering the flexoelectricity and
surface effect is under study in this section. A Cartesian coordinate system (x, y, z)
is adopted to describe the beam position. The polar direction of the piezoelectric
body is along the z-axis. The location of the defect, described as an edge crack, is
specified at a distance /. with related dimensionless variable d = [./I.

As shown in Fig. 1, the defected nanobeam is modeled as a rotational and
longitudinal spring that connects two separated parts of the beam at the defect

Surfaces Bulk
- / |
o 2] 7A
X "4
—————————————————————— = > h
| -
r b= b —
L | &G | |
B
, ~©-
=0 G=d (=1
d=( /L,s‘“/ )

Fig. 1. Configuration of the cracked piezoelectric beam with surface effect
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position. As a result, an additional strain energy will be caused by the spring [49].
So, the strain energy of a nanobeam weakened can be stated as

1
:%jﬁ( )dx+A®0 (25)
0

where N = f oxxdAand M = — f yoxxdA are the axial force and bending

A A
moment, and AD,. is strain energy increasing due to the presence of the defect, can

be written as | |
A(DC = ENAM + EMAH, (26)

where A@ and Au are the angular displacement and horizontal displacement caused
by rotational and longitudinal spring, respectively and may be expressed as

2
AQ—CMMB u-l-CMNQ,
0x? 0x
¢ (@7)
A ov N 0-u
u=-c — +cC s
NN g ONM o

where cprpr, cpN, CNNs Cvar are the flexibility constants. These constants which
introduce the crack severity are considered as a hypothetical input in studies regard-
ing to static and dynamic behaviors of nanobeams in the presence of a crack [50].
To study the free transverse vibration, the longitudinal displacement is neglected
in this study. Besides, due to the low values of cpsn and cypz, only cprps, which
corresponds with the bending moment, is considered in the equations. By using
dimensionless variables, A in the defect position is stated as

0°U

CMM 620
0x? |,y

[ 0x2

AG = (28)

¢=d

To analyze the free vibration of the imperfect nanobeam, governing equation
of each segments of the nanobeam can be defined as follows by view of Eq. (21)

W) - gW"() - *W(Q) =0, 0<¢<d

_ - , (29)
W) = gW" () - PW () =0,  d<{<
Therefore, general solution for each part can be expressed as
Wi(£) = ¢ sinh [B1¢] + ca cosh [ B1Z] + 3 cos [ B2l] + casin [ B2 ],
0<{<d,
(30)

W2({) = dy sinh [ B1£] + dy cosh [ B1£] + d3 cos [ B2l ] + dysin [Ba(],
d<i<l.
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The mentioned equations, including eight unknown constants, are solved using
the boundary conditions and compatibility conditions at the defect position

Wa(d) = Wi(d), Wy(d) - W{(d) = KW/ (d),

7444 7444 X777 74444 (31)
W' (d) =W]'d), W)'(d)=W(d).

By applying the different boundary conditions and above conditions into the
Eq. (30), the resonance frequencies are obtained.

5. Numerical results and discussion

In this section, numerical results of the vibration behavior of a weakened
piezoelectric nanobeam considering the surface effects and flexoelectricity will be
presented. The numerical calculations are conducted to illustrate the influence of
six different boundary conditions, different positions of the defect, various crack
severities, and thickness on the resonance frequency. PZT-5H and BaTiOj3 are used
as samples of the piezoelectric materials.

Remarks
* Throughout this paper, the length to thickness ratio of the nanobeam is fixed
at//h = 10.

» Except for Fig. 10 there is no applied voltage (V =0 V).

* Unlike Fig. 7 in which C changes, for other figures: C = 1.5.

* The residual surface stress could also change from a negative value to a
positive value based on the crystal plane direction [44].

* In the presented results, symbols S-S, F-F, C-C, C-F, C-S and S-F are served
to represent the simply supported, free, clamped, clamped-free, clamped-
simply supported and simply supported-free beams.

In Table 1, the bulk material properties and the flexoelectric coefficient relevant

to this study are determined by atomistic simulations or experiments, and the
piezoelectric and surface elastic constants are obtained from [17, 51, 52].

Table 1.
The material properties

Proveri ke N C c\|, (N , (C C
roperties | p E 11 E e3] E %%} m (o E €3 E 31 ;

BaTiO; | 6020 | 131x10° | 1.87x10%|0.79x 108 | 9.72 -0.056 | 5x1077
PZT-5H | 7500 | 126x10° | —6.5 13x107% | 756 |-3x107%| 5%x1077

For the sake of validations, the normalized resonance frequency of a perfect
piezoelectric nanobeam is compared with the results given by Liang et al. [17].
It is seen, Fig. 2, that the present results have an excellent agreements with those
in [17]. It is observed when the beam thickness decreases, the influence of surface
effect and flexoelectricity, size-dependent properties, on resonance frequency is
more prominent within the two different values of residual surface stress.
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24 — o}=0. Current model
5 . (fﬂ:]. Current model
= 2.2t
i o 0}=0.Liang et al.[16]
é 20l w 0fj=1.Liang et al[16]
=
]
&
S 1.8t
g
2
2 16}
-
v
N
E
2 14
<) ‘ .
Z . ®

1.2+

0 2.x107%  4.x10®%  6.x10®  8x10®  1.x1077

Thickness (nm)

Fig. 2. Variation of the normalized resonance frequency versus thickness
for a PZT-5H nanobeam, and S-S beam

The results in Fig. 3 have shown in displays the critical influence of boundary
conditions on the resonance frequency for PZT-5H nanobeam. It is shown that
the surface effect at the resonance frequency depends on boundary conditions and
defect position, and is more announced for F-F and C-C beams. It is determined
that the resonance frequency for C-F beam is lower than those obtained without the
surface effects as opposed to C-C and S-S beams. Interestingly, it is observed that
C-C, F-F, and S-S beams present a softer-like elastic behavior, while C-F condition
indicates a stiffer-like elastic behavior.

According to the results depicted in Fig. 4, the maximum values of the nor-
malized resonance frequency for both C-S and S-F nanobeam are similar. In this
example, both surface and flexoelectricity effects are taken into account. For S-F
beam, when the defect is located at { = 0.4, resonance frequency hits its lowest
values, while for C-S beam the lowest resonance frequency occurs at £ = 0.7.

In Fig. 5, the resonance frequency for the BaTiO3; nanobeam considering the
surface effects is shown. It can be seen that the effect of the residual surface
stress is significant. Also, using different values of residual surface stress in the
mentioned numerous investigations in the literature [52] confirm this explanation.
It is noteworthy to mention that the resonance frequency decreases by moving to
£ = 0.5 and then increases in a symmetric manner.

Fig. 6 represents the effect of flexoelectricity. The variation of the resonance
frequency with the crack position is plotted while this effect is taken into account.
It is apparent from this figure that the flexoelectricity decreases the resonance
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Fig. 4. Variation of the normalized resonance frequency with the crack position for a PZT-5H beam
with different boundary conditions (C-S and S-F) and 0'(1)1 =1Nm™32

frequency of S-S beam, and this influence is suppressed while there is a defect.
For C-F beam, unlike the previous condition, the flexoelectricity enhances the
resonance frequency. Moreover, the flexoelectric effect is more considerable in
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for a BaTiO3 and S-S nanobeam considering surface effects

S-S beam than C-F beam. So, the flexoelectric effect on the vibration behavior of
the piezoelectric nanobeam is sensitive to the beam boundary conditions. For the
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Fig. 6. Variation of the normalized resonance frequency with the crack position for a PZT-5H

nanobeam, and for S-S, and C-F beams and 0'(1)1 = Nm2
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S-S beam, when the crack is located at the midpoint of the beam, the resonance
frequency hits its minimum value.

Fig. 7 represents the effect of the crack position on resonance frequency con-
sidering the flexoelectricity and surface effects. The resonance frequency is equal
for all crack severities when a crack located at / = 0 and £ = 1 that indicates the
perfect beam. The resonance frequency is minima while the defect is located at
the middle of the beam ({ = 0.5). According to the results, as the crack severity
increases, the difference between the two consecutive curves decreases. The in-
verse relationship between the resonance frequency and the crack severity was also
discussed in [19, 49].
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Fig. 7. Variation of the normalized resonance frequency with the crack position for a PZT-5H
nanobeam, and for the S-S beam and 0'(1)1 = Nm2

The effect of thecrack severity on the resonance frequency considering the
surface effect and flexoelectricity is plotted in Fig. 8. The defect is located at { =
0.25. Results demonstrate that the frequency of the nanobeam decreases drastically
as the crack severity increases [53]. Furthermore, the resonance frequency value
caused by BaTiO3; nanobeam is more than PZT-5H that is justified by the material
properties of Table 1.

Fig. 9 represents the normalized resonance frequency versus the crack po-
sition taking into account the flexoelectricty effect. As presented in the figure,
flexoelectricity decreases the normalized resonance frequency of S-S beam, and
this influence enhances while the geometry effect (b/h) increases. It is observed
that the resonance frequency almost remains the same for b/h = 0.25. The size
dependency of flexoelectricity is illustrated in this figure as well. As long as the
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Fig. 9. Variation of the normalized resonance frequency with the crack position
for a PZT-5H nanobeam and for S-S beam with flexoelectric effect, while 0'(1)1 =1

defect moves along the nanobeam, the resonance frequency decreases, and the res-
onance frequency takes the lowest value when the defect is located in the middle
of the nanobeam.
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Fig. 10 analyzes the behavior of S-S and C-F beams subjected to the differ-
ent values of voltage. In this figure, the normalized resonance frequency versus
the crack position is shown, while there is no residual surface stress. The most
surprising aspect of the results is that the influence of the voltage on the resultant
resonance frequency depends on the physical boundary conditions. A comprasion
of results reveals that for S-S condition the resonance frequency is lower for the
positive in contrast to the C-F condition. In S-S condition, by increasing the dis-
tance of imperfection from two ends of the nanobeam, the resonance frequency
decreases and it reaches its lowest value at the midpoint. On the contrary, for C-F
nanobeam, the lowest value of the resonance frequency occurs in the left corner of
the beam.
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Fig. 10. Variation of the normalized resonance frequency with the crack position
for a PZT-5H nanobeam, and for S-S and C-F beams, and 0'(1)1 =0

6. Conclusions

In the presented paper, the Euler-Bernoulli beam model incorporating the sur-
face effects and flexoelectricity is used to investigate the size-dependent properties
of the vibration behavior of an imperfect piezoelectric nanobeam. The modeling
of a cracked nanobeam was performed using a rotational and a longitudinal spring.
The resonance frequencies for the free vibration of the weakened piezoelectric
nanobeam for various different boundary conditions were studied. The results indi-
cate that the surface effects considering the residual surface stress, surface elasticity,
surface piezoelectricity, flexoelectricity, defect position and crack severity highly
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affect the mechanical behaviors of the weakened piezoelectric nanobeam. It can
also be concluded that the surface effect and the flexoelectricity are size-dependent
and are far more dominant when thickness of the nanobeam tends to small values.
It is found that C-F condition provides softer-like elastic behavior compared to
other boundary condition types. Additionally, the results suggest that as long as
crack severity increases, the normalized resonance frequency decreases.
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