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BUCKLING AND POST-BUCKLING STUDY OF OPEN SECTION

CYLINDRICAL SHELLS SUBJECTED TO CONSTRAINED TORSION

The work concerns numerical – experimental studies on pre- and post-buckling

of thin-walled, steel, cylindrical shells, with the open section, subjected to constrained

torsion. Two geometrically varied structures are considered: an open section cylin-

drical shell without stiffeners and one that is reinforced by closed section stringers.

The shells have five different length to diameter ratios. Numerical simulations were

carried out and the neuralgic zone stress distributions in pre- and post-buckling re-

sponses, were determined. Torsion experiments were performed and the results were

compared to the numerical conclusions, with reasonably high level of agreement.

The exactness of the experiment was proven for selected cases, establishing the basis

for FEM numerical model estimation.

1. Introduction

The demand for light-weight and high-strength structures, assuming a

reasonable pay load to dead weight relation, has led to ongoing research,

into more efficient computation methods and testing of new structures. This

trend can be observed in the majority of technological fields, in particular

in those, where a thin-walled structure is necessary. Structural durability and

reliability are determined by the presence of neuralgic zones, which have to

support functionality. These zones provide an area of lesser strength, where

stress may be concentrated and commonly introduce abrupt variations of

geometric parameters. While it is not difficult to obtain the required torsional

rigidity for closed section shell structures, to meet this condition in the case

of open section structures, is considerably more complex [7], [9], [11], [12].
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In such cases, one of the most frequently used methods to obtain the required

torsional rigidity, is to enforce the boundary conditions through clamping, at

least one of the free cross section ends. As a result, normal stress appears

in the cross section, in addition to the shear stress. This kind of loading,

defined as constrained torsion, leads to the existence of high level stress

gradients, which appear, in particular, at the free lengthwise border of the

shell. This could reduce the fatigue life of the structure and its load capacity.

It is therefore necessary to strengthen the lengthwise boundaries, usually by

applying closed cross section stringers.

In our paper, the problem will be considered, using the example of open

section shell structures, subjected to constrained torsion.

2. Subject and scope of the study

The subject to be considered, concerns numerical-experimental analysis

of open cross section, thin-walled cylindrical shells, subjected to constrained

torsion. The range of numerical calculations includes pre- and post-buckling

stress analysis and determination of critical loads. Two geometrically varied

structures are considered. The first is an open section cylindrical shell with-

out stiffening. The second structure represents the shell reinforced by three

stringers of closed section. Five different length to diameter ratios are taken

into account: L/D = 1.0, 2.0, 3.0, 4.0, 5.0.

Fig. 1. Installation, loading device and dimensions of the cross section

Parallel to the numerical computations, for two of the variants mentioned

above, actual experiments were performed: one on the shell without stiffen-

ing, and one on the shell which had been reinforced by three closed section

stringers. A ratio of L/D = 5 was assumed in both cases.
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The installation, loading device and structure dimensions, with reinforc-

ing stringers cross section is shown in Fig. 1.

3. Finite element – linear analysis of pre-buckling and buckling

Although elastic buckling analysis of the structures is generally a nonlin-

ear problem, in a number of cases, important from a practical point of view,

pre-buckling and buckling analysis can be performed as a linear system.

The shells, considered in this study, were analysed with the ABACUS

finite elements solver [3]. The pre-buckling analysis of the shells, was deter-

mined, using the linear static analysis option, and conventional bifurcation

buckling analysis was applied. The approach to the buckling prediction is

based on the development of a linear perturbation of the structure stiffness

about an equilibrium point, which means the initial equilibrium under no

load or in a preloaded state. At any time, the structure’s total elastic stiffness

is

[K]0 + [K]p
, (a)

where [K]0 is the stiffness presented by the material and [K]p is the initial

stress and load stiffness, caused by non-zero loading. For the elastic systems,

[K]0 is almost constant and the variation of [K]p is proportional to the

load variation. During the bifurcation buckling step, there may be a non-

zero “dead” load of P and there must be a linear perturbation with load

Q, specified in the bifurcation buckling step. The aim of this process is to

estimate multiples of Q, which combined with P cause instability.

Since the response is assumed to be elastic, and therefore, closely pro-

portional to load, the stiffness at P + λQ load is well approximated by

[K]0 + [K]p + λ [K]q
, (b)

where [K]q is the initial stress and load stiffness, caused by Q. Thus, the

buckling load estimation is provided by the eigenvalue equation:

(

[K]0 + [K]p + λ [K]q
)

φ = {0} . (1)

The eigenvalue λ is a multiplier of the applied load, which when added to

the preload factor, provides the critical load estimate: the predicted collapse

load is P + λQ and φ is the collapse mode.

For problems involving buckling behaviour, according to [2] and [3],

quadrilateral four node shell elements, with six degrees of freedom, were

used in the models. Using MPC-TIE elements, connections of surface and

stringers were made in the points of the rivet axises. In order to eliminate
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the potential for interpenetrating surfaces, during eventual local buckling

between rivets, very low stiffness solid elements were introduced in the space

between stringers and surface. To define the boundary conditions correspon-

ding to constrained torsion, translational degrees of freedom were blocked

in the nodes of the fixed boundary cross section. Using MPC-PIN standard

elements, the opposite boundary sections of the shell were connected with

10 mm thick stiff plates.

At the first step, calculations were used for the structure without stiffen-

ers. The following constants were assumed: Young’s modulus E = 2.1 · 105

[N/mm2] and Poisson’s ratio v = 0.3. Assuming the constant shell diame-

ter of D = 200[mm], calculations were performed for five values of shell

length: L = 200, 400, 600, 800 and 1000[mm]. In all cases the regular grid

of structural partition, for rectangular elements was assumed. The number

of elements was increased repeatedly, according to the results obtained. In

every geometric variant the same size value of the characteristic grid – a, (see

picture 2) measured along the structure length, was maintained. FEA shell

models: without stiffeners – L = 200[mm] – minimal considered length, and

with stiffeners – L = 1000[mm] – maximum length are presented in Fig. 2.

Fig. 2. Two examples of FEA shell models:

a) shell without stiffeners – L = 200[mm], b) shell with stiffeners – L = 1000[mm]

3.1. Structure without stiffening

In order to determine the stress distribution in a shell without stiffening in

the pre-buckling stage, calculations for all geometric variants were performed,
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assuming the unitary external loading of Mt = 0.1[Nm]. Effective stress

distribution, according to Von Mises’ criterion is shown in Fig. 3.

Fig. 3. Effective stress distribution according to Von Mises’ criterion in the pre-buckling state.

Shells without stiffening: L = 0.2[m], L = 0.6[m], L = 1[m]

Table 1.

Critical load in geometrically varied numerical models; n – denotes number of finite elements

a [cm]
L = 0.2[m] L = 0.4[m] L = 0.6[m] L = 0.8[m] L = 1[m]

n
Mcr

[Nm]
n

Mcr

[Nm]
n

Mcr

[Nm]
n

Mcr

[Nm]
n

Mcr

[Nm]

1.0 832 60.8 1472 28.37 2112 17.68 2752 12.60 3232 10.30

0.7 1480 61.16 2572 28.74 3706 17.93 4841 12.79 5680 10.45

0.6 2262 61.37 4032 28.91 5746 18.05 7462 12.88 8762 10.52

0.5 3270 61.43 6750 29.00 8230 18.12 10710 12.92 12570 10.56

0.4 5128 61.49 9028 29.08 12928 18.18 16829 12.97 19714 10.60

The results show that the highest stress levels and the largest gradient

zones are located in the vicinity of the unbounded longitudinal edges, in the

areas adherent to boundary cross sections.
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Using the bifurcation buckling option, critical load values and corre-

sponding critical collapse modes were determined. In order to estimate the

convergent solution in all variants, the number of elements was increased

repeatedly.

The results of the calculations are presented in table 1.

On the basis of the obtained results we are able to present the relation

between the critical buckling load Mcr versus length L of the shell, for the

various geometric values (Fig. 4).

Fig. 4. The critical buckling load Mcr versus length L of the shell

Fig. 5. First buckling modes of geometrically varied numerical models without stiffeners.

a) L = 0.2[m], Mcr = 61.49[Nm]; b) L = 0.4[m], Mcr = 29.08[Nm]; c) L = 0.6[m],

Mcr = 18.18[Nm]; d) L = 0.8[m], Mcr = 12.97[Nm]; e) L = 1[m], Mcr = 10.60[Nm]

The numerical results provide a way to represent the shapes of the buck-

ling modes. The first modes for the structures without stiffeners are presented

in Fig. 5.
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These calculations denote the strongly nonlinear relationship between

critical moment and length of shell, if the aspect ratio is L/D < 2. Beyond

this value, sensitivity of critical moment on the length increment does not

considerably increase.

3.2. The structures reinforced by stiffeners

Numerical results obtained for open section shells without stiffeners sug-

gest, that this kind of structure, when subjected to constrained torsion, has

Fig. 6. Effective stress (von Mises) for numerical models with stiffeners,

a) L = 0.2[m]; b) L = 0.4[m]; c) L = 0.6[m]; d) L = 0.8[m]; e) L = 1[m]
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no practical application. This is due to an impractically low critical local

buckling level, which precludes the possibility of load increase over a critical

value. Reinforcing the structure with stringers seems to be an effective way to

increase stiffness and capacity. The structures considered in this study were

reinforced by thin-wall stringers of closed section. This increased torsional

stiffness, in addition to a slight growth in structure weight. In every shell

variant, the same stringer cross section geometry, dimensions and quantity,

were assumed. Analogically, as in the case of a shell without stiffeners,

assuming the unitary external loading factor Mt = 0.1[Nm], the character of

the stress distribution in the pre-buckling state was determined at the first

step. The results of the calculation in the form of effective stress distribution

plots, according to von Mises’ criterion, is shown in Fig. 6.

Fig. 7. First buckling modes of geometrically varied numerical models with stiffeners.

a) L = 0.2[m], Mcr = 184.1[Nm]; b) L = 0.4[m], Mcr = 102.8[Nm]; c) L = 0.6[m],

Mcr = 88.3[Nm]; d) L = 0.8[m], Mcr = 84.8[Nm]; e) L = 1[m], Mcr = 82.7[Nm]

Fig. 8. The critical buckling load Mcr versus length L
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For a geometric structure with the corresponding load from above, critical

moments of Mcr and first buckling modes were determined. The shapes of

the first buckling modes are shown in Fig. 7.

The effect of length L on the buckling load Mcr for the five geometric

variants is shown in Fig. 8.

4. Actual Experiments

Parallel to the numerical calculations, qualitative experimental testing

was performed on selected variants of the structure. This provided a method

for comparison of buckling shape and critical load values obtained in the

numerical manner. The experiment was carried out on a special station,

able to provide the assumed loading and boundary conditions. Two cases

were considered: the shell without reinforcement, and a structure with three

stringers of closed section. In both cases the specimen length was L = 1[m].

Figure 9 shows the design of this device.

Fig. 9. The experiment device

Structure stiffness measurements in the pre-buckling state range preceded the

buckling test. The plot of torsion angle versus torsion moment is shown by

Fig. 10.

Fig. 10 shows, in the range of pre-buckling, that the load relationship

between torsion moment and torsion angle is linear, exactly up to the moment

of abrupt variation.



318 TOMASZ KOPECKI, HUBERT DĘBSKI

Fig. 10. Torsion angle versus torque moment.

1 – shell without reinforcement, 2 – structure with stiffeners

The local buckling shape of the shell without reinforcement is shown

in Fig. 11. In this case, the critical moment is Me
cr � 12.5[Nm], while the

numerical result was Mcr = 10.6[Nm]. A quantitative comparison of these

results suggests reasonably high compatibility (∼ 15%).

Fig. 11. Local buckling of the structure without reinforcement; L = 1[m]

Fig. 12. Post-buckling plastic deformation. Structure reinforced by closed section stiffeners
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A similar statement can be made with reference to the test with a rein-

forced structure. In this case, the critical loading obtained experimentally was

also higher than that in the numerical calculation. Post buckling deformation

is shown by Fig. 12.

These experiments show that the structures considered are characterised

not only by low torsional rigidity, but also by large deformations. Therefore

application of the linear FEM analysis can only refer to the under-critical

deformation range. It provides a way to identify stress concentration zones,

possibly local buckling areas.

In order to determine the stress distribution in the post-buckling state,

nonlinear static analysis was done. The stress-strain relation of uniaxial ten-

sion for actual material was simplified by the model of the ideal elastic –

plastic body with a yield point of 240[MPa] (Fig.13).

Fig. 13. Stress-strain relation of idealised material

5. Nonlinear FEM analysis

The results of the experiments showed that even a small load increment

over the critical value leads to local plastic deformation. Numerical simu-

lation of post-buckling deformation requires a nonlinear application. Large

deformations and the change of the structure’s rigidity have to be taken into

consideration.

Nonlinear formulation of the problem is managed by the discrete equilib-

rium equations encountered in nonlinear static structural analysis, formulated

by the displacement method, presented in the compact force residual form

[8]

r(u,Λ) = 0. (2)

Here u is the state vector, containing the degrees of freedom that characterize

the configuration of the structure; Λ is an array of control parameters, con-

taining the components of external loading, whereas r is the residual vector
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containing out-of-balance forces, conjugated to u. Varying the vector r with

respect to the components of u in the assumption – Λ=constant, a tangent

stiffness matrix K in a structural mechanics application can be written as:

K =
∂r

∂u
. (3)

An alternative version of equation (2) is the force-balance form:

p(u) = f(u,Λ). (4)

The p vector contains components of internal forces, resulting from defor-

mation of the structure; however f are the control-dependent external forces,

composing the set introduced respectively during the next stages of the analy-

sis, which may also be dependent on the current geometry of the structure.

The philosophy of the nonlinear analysis in FEM is based on the gradual

application of control parameters, completed in further stages. It corresponds

to the stage for every reliable state of the structure, in which a static balance

is specific for a corresponding solution of equation (2). Control parameters

connected to external force components are generally expressed as functions

of reliable quantity λ, called the stage control parameter. The result of the

nonlinear analysis, composes a set of solutions, corresponding to each value

of the λ parameter. They create the equilibrium path of the system. The

unambiguous graphical interpretation of the equilibrium path is possible for

at most two degrees of freedom. However with the knowledge of external

loading, the value of stage control parameters and related geometric structural

configurations, it is possible to obtain an approximated dependence between

selected values describing deformation of the structure versus external load-

ing. For the numerical models considered, equilibrium paths were determined

in the method: torsional moment versus total torsional angle.

Algorithms of nonlinear analysis are mainly based on iterative and in-

cremental – iterative procedures. The stiffness matrix K is treated in every

equation stage, as a constant and it is increased as far as the λ stage con-

trol parameter is increaded. The Newton-Raphson algorithm constitutes the

basic iterative method. Its’ drawback is that it cannot obtain the solution

convergence. This method is bound up with the appearance of the limit of

bifurcation points on the equilibrium path. In such situations, the arc length

method is applied, which makes it possible to determine the balance of the

system [4], [5], [6], [14], [15].

Nonlinear, numerical analyses of this problem were done, applying the

MSC MARC 2005 programme. This programme allows the user to intervene

in the iteration parameter selection.
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The same numerical model, which was applied in the linear analysis, was

utilized without stiffening stringers as a structure. Two diversified numerical

models were analyzed, with the structure stiffened by the stringers of “omega”

in the cross section of each. The first has a surface – stringer rivet joint,

simulated by beam elements. Contact was also reflected between the surfaces

of stringers and the surface itself. A simplification was applied in the second

model, relying on the continuous connection of stringers with surface.

After several numerical tests, the boundary conditions of all models were

changed, due to their excessive stiffness. The establishment of the back edges

of the shells, as shown in Fig. 2 was replaced by ribs with additional supports.

The effects, illustrating the character of deformation in numerical cal-

culations and effective stress distribution on external structural surfaces, are

shown by Figs. 14–19.

Fig. 14. Post buckling deformation. Structure without stringers

The results of the calculations presented in Figs. 14 and 15, prove the

existence of local plastic deformation areas in the vicinity of the boundary

fixing of the structure. These effects show satisfactory compatibility with the

experiment (compare Fig. 12), both in the location and the character of the

plastic deformation range.

Figures 16 and 17 show the numerical results for the model, where the

connection was reflected by inner rivets. The result obtained, describing the

state of local plastic deformation in a post-buckling state, differs qualitatively

from the effect noted in the experiment. Several attempts were made (not

presented here) to identify reasons for this divergence. It is possible, on this

basis, to make an attempt to explain this phenomena.

Looking at Fig. 17, we can notice that the elements of the surface and

stringer in the zone between rivets, were subjected to transverse dislocations,
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Fig. 15. Form of post buckling deformation; a) area of A detail in actual scale; b) effective stress

distribution on external surface according to von Mises’ criterion

Fig. 16. Version 1-riveted joint of the surface with the stringer. Local post-buckling deformation

moving in opposite directions, while the direction of dislocations were the

same. This divergence could be the result of a loss of stability bifurcation.

A reasonable suggestion arises from the fact that in both elements the bifur-

cation had a stable-symmetrical character. In the actual structure, geometric

imperfections could determine the identical direction of the dislocation of

both surfaces already initiated during the riveting process.

The second model was of considerable interest. The results of numerical

calculations correspond exactly to the results of the experiment (Figs. 18, 19).

Applied simplifications adjust conditions of the iteration parameters selection

in the actual structure transformation. They rely on the continuous connection

between stringers and surfaces, which eliminates the possibility of local stress

concentration in the proximity of the rivets. Taking into consideration the



BUCKLING AND POST-BUCKLING STUDY OF OPEN SECTION CYLINDRICAL... 323

Fig. 17. Form of post-buckling deformation; a) area of C detail in actual scale; b) effective stress

distribution on external surface according to von Mises’ criterion

Fig. 18. Version 2 – continuous connection of surface and stringers. Local post-buckling

deformation

character of advanced plastic deformation as noted, and the responding stress

distribution, it is possible to regard the results obtained as satisfactory.

In Fig. 20, the relationship between the torsion moment and the torsion

angle is shown as obtained both in the experiment and in the calculation.

It is necessary to emphasize that the results of the numerical calculations

present approximate relations between the loading and the accepted param-

eter, determining structure deformation. In fact, the obtained characteristics

express the relationship between the torsion angle of the structure and the

product: Mmax ·pt, where pt denotes a pseudo-time coefficient, as the step of

load advantage application, in the particular, step of counts, whereas Mmax

is the maximum value of the structure loading. In the case considered, it is
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Fig. 19. Form of post-buckling deformation; a) area of B detail in actual scale; b) effective stress

distribution on the external surface according to von Mises’ criterion

Fig. 20. Relationship between the torsion moment versus the torsion angle.

1 – Structure without stringers – experimental result

2 – Structure reinforced by closed section stiffeners – experimental result

N1 – Structure without stringers – numerical result

N2−1 – Version with continuous connection of surface and stringers – numerical results

N2−2 – Version with riveted joint of the surface with the stringers – numerical results

a maximum value of the torsional moment. The relationship is dependent on

the accepted method of the solution, the parameters of the iteration, and the

shape of the equilibrium path, between the products mentioned above and the

actual loading of the numerical model. It should be noted, that the loading of

the numerical model is the maximum accepted value of the torsional moment

for pt = 1.
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6. Concluding remarks

On the basis of the numerical and experimental results, several statements

could be formulated, essential for engineering practice.

• The results obtained numerically show higher critical load values in all

considered cases. It is possible that this can be explained by a rather

imprecise rigidity, reflecting the actual design in the numerical model, as

whole. It is related to the plate boundary conditions, in particular. Addi-

tionally, the structure stiffness execution process should be considered.

• Establishing the back edge of the shell by limiting its degrees of free-

dom causes excessive stiffness in the numerical model of the structure.

It is necessary to apply boundary conditions reproducing actual mount

flexibility.

• Linearised pre-buckling analysis gives reliable results if the first element

of decreasing stability in a complex structure is characterized by little

stress redistribution (a stringer, for example).

• The obtained divergence between the nonlinear numerical analysis and

the results of the experiments suggests that appropriate imperfections of

structure geometry in the numerical model, should be taken into consid-

eration. The effect would be the ability to propose reliable inferences, if

not requirements, in relation to the technological process, particularly for

neuralgic zones, determining the load capacity of the structure.

• The presented study denotes experimental revision, information about

structure behaviour under loading, and a verification function for the

numerical FEM model, in particular, where the solution of the problem

requires nonlinear formulation.

Manuscript received by Editorial Board, December 19, 2006;

final version, June 04, 2007.
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Analiza wyboczenia oraz stanów deformacji zakrytycznych powłok walcowych,

o przekrojach otwartych, poddanych skręcaniu nieswobodnemu

S t r e s z c z e n i e

W pracy zaprezentowano wyniki eksperymentalno-numerycznych analiz deformacji walco-

wych, otwartych powłok, poddawanych skręcaniu nieswobodnemu, w zakresie obciążeń kryty-

cznych i zakrytycznych. Rozważano dwa warianty struktury. Pierwszy z nich stanowiła powłoka

pozbawiona wzmocnień, drugi – powłoka wzmocniona podłużnicami. Analiza numeryczna, w uję-

ciu metody elementów skończonych, obejmowała pięć ustrojów każdego rodzaju, o różnych dłu-

gościach. Stosowano zlinearyzowaną analizę wyboczeniową oraz przyrostowo-korekcyjną analizę

nieliniową. Obliczenia numeryczne pozwoliły określić rozkłady wytężenia w newralgicznych stre-

fach ustrojów. Ich wyniki porównywane były z rezultatami eksperymentu. Dążono do uzyskania

zgodności postaci i wielkości deformacji. Praca zakończona jest szeregiem wniosków i zaleceń

konstrukcyjnych.


