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Comparison of the adaptive and neural network control
for LWR 4+ manipulators: simulation study

This paper deals with two control algorithms which utilize learning of their mod-
els’ parameters. An adaptive and artificial neural network control techniques are
described and compared. Both control algorithms are implemented in MATLAB and
Simulink environment, and they are used in the simulation of a postion control of the
LWR 4+ manipulator subjected to unknown disturbances. The results, showing the
better performance of the artificial neural network controller, are shown. Advantages
and disadvantages of both controllers are discussed. The usefulness of the learning
algorithms for the control of LWR 4+ robots is discussed. Preliminary experiments
dealing with dynamic properties of the two LWR 4+ robots are reported.

1. Introduction

The problem of the robotic manipulator control stretches back to the early days
of robotics. During the second half of the last century, many approaches – from
the independent joint PID control to the model-based methods [1–4] – were devel-
oped. Based on the manipulator dynamic model, computed torque methods offer
good tracking performance [1–4], however they obviously require the knowledge
of the dynamic parameters (masses, locations of the centers of mass and moments
of inertia) of the manipulator. The identification of such parameters is often a de-
manding task during which a researcher has to solve problems of selecting the set
of identifiable parameters and obtaining a sufficiently rich data [5, 6]. Moreover,
the mass and inertia of the object carried by the end-effector would also have to be
identified. If the parameters are not known with the sufficient accuracy, the control
quality might not be acceptable.
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To overcome the aforementioned problems, an adaptive control scheme for
robotic manipulators was proposed in the 1980s [7–11]. In this approach, the
parameters of the model are estimated online, based on the position and velocity
errors. Consequently, there is no need for the prior parameters identification. The
model is constantly updating itself, ensuring small tracking error.

On the other hand, another approach – the artificial neural network control –
does not use any dynamic model at all. Given that neural networks are universal
approximators, they can represent unknown nonlinear manipulator dynamics [12,
13]. The use of neural networks in closed-loop feedback control systems was
studied since at least the 1990s [12–18]. Similarily as in the case of adaptive
control, a neural network controller constantly updates its weights to keep the
tracking error in check.

As shown, the adaptive and neural network control are not entirely new con-
cepts, however they are still actively researched and extended nowadays as evi-
denced in [19–26].

In this paper the adaptive and neural controllers are discussed, and implemented
in the simulation of the closed-loop feedback control system. The controlled object
is a dynamic model of the KUKA lightweight redundant robotic manipulator
(LWR 4+). The primary objective of this work is the comparison of the two control
methods.

The paper is organized as follows: section 2 deals with the controlled object,
sections 3.1 and 3.2 describe the adaptive and artificial neural network controllers,
respectively. In section 4 results of the simulation study are detailed, in section 5
preliminary works on the robots are discussed and section 6 concludes the paper.

2. Model of the controlled object

The studied controlled object is the KUKA LWR 4+ manipulator. LWR 4+
is a 7 degree of freedom light-weight robot with a redundant anthropomorphic
structure. To develop the dynamic model of the manipulator, a recursive algorithm
presented in [27] was used. It is based on a spatial operator algebra [28] and derives
the equations of motion of the dynamic system in a compact matrix form.

The manipulator is modeled as a multibody system comprised of n rigid links
and the equations are formulated in the joint space. For simplicity, the joint elasticity
and actuator dynamics are not included in the model. The equations of motion of
the manipulator are given in the matrix form:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (1)

where q ∈ Rn×1 is the vector of joint coordinates, M(q) ∈ Rn×n is the manipulator
inertia matrix, C(q, q̇)q̇ ∈ Rn×1 is the Coriolis and centrifugal force vector, G(q) ∈
Rn×1 is the gravitational force vector, τ ∈ Rn×1 contains driving torques in joints
and n = 7 as the manipulator has 7 degrees of freedom.
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The kinematic data necessary for the model derivation was obtained from
the official KUKA documentation [29]. The dynamic data, such as inertias of the
links, were obtained through the identification procedures described in [5, 6] and
supplemented with the parameters published in [30].

3. Controllers

3.1. Adaptive controller

The considered adaptive controller [11, 31] minimizes the position error while
estimating online the unknown dynamic parameters. The control law is given by
the following equation:

τ = Y(q, q̇, q̇r, q̈r )θ̂ +Ks, (2)

where K ∈ Rn×n is the positive definite gain matrix, and s is the filtered tracking
error:

s = q̇r − q̇, (3)

while q̇r is the reference joint velocity defined as:

q̇r = q̇d + Λe. (4)

The joint position error e is computed as:

e = qd − q, (5)

where qd is the desired joint trajectory and Λ ∈ Rn×n is a symmetric positive
definite gain matrix. The current estimate of the dynamic parameters θ ∈ Rp×1 is
contained in the vector θ̂ ∈ Rp×1, where p is the number of the parameters. The
manipulator regressor matrix Y(q, q̇, q̇r, q̈r ) ∈ Rn×p satisfies the equation [31]:

M(q)q̈r + C(q, q̇)q̇r +G(q) = Y(q, q̇, q̇r, q̈r )θ̂, (6)

which is based on the linearity-in-parameters property of the rigid body dynamic
manipulator model [3, 32].

Finally, the parameter adaptation law is given by:

˙̂θ = ΓYT (q, q̇, q̇r, q̈r )s, (7)

where Γ ∈ Rp×p is a positive definite gain matrix.
The main difficulty of implementing that control scheme is the derivation of

the regressor Y. In general, this is a demanding task [3, 32]. However, an efficient
algorithm, based on the recursive Newton-Euler formulation, for computing the
regressor Y is presented in [31]. It requires only the knowledge of the kinematic
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parameters such as link lenghts and locations of the joints. The stability issues
of the adaptive control method are discussed in [11, 31]. Number of the dynamic
parameters p (and therefore the number of columns of Y) can be reduced to account
only for the most essential parameters in the model using the algorithm described
in [33].

Nevertheless, to parametrize the model in the unknown parameters, the struc-
ture of the manipulator has to be fully known. That is, the model has to account for
all the significant dynamics. Furthermore, if the manipulator dynamics includes
considerable nonlinear components (e.g. some forms of friction) then the linearity-
in-parameters property does not hold. In turn, the control quality might deteriorate
due to the presence of the unmodeled dynamics as the discussed controller relies
on the linear model.

Moreover, the elements of θ̂ does not necessarily converge to the real values
of the dynamic parameters given in θ. Similarly as in the case of the offline iden-
tification, a sufficiently exciting trajectory has to be used as the desired trajectory
qd to obtain the real θ [11].

3.2. Neural network controller

As mentioned in the introduction, the artificial neural network (ANN) con-
troller does not use a dynamic model. Instead, the neural network compensates the
unknown nonlinear dynamics. No reliance on the linearity-in-parameters assump-
tion makes the use of ANN controller advantageous over the adpative controller.

The considered controller is based on [12, 17]. It is a closed-loop feedback
system containing a two-layer ANN. The first layer – also called the input layer –
has l neurons, while the second – or the hidden – layer has h neurons. The equation
describing the control law is given below:

τ =WTσa +Ks, (8)

where σa ∈ R
(h+1)×1 is defined as:

σa =



1
σ

(
VTX

) , (9)

and where X ∈ Rl+1:

X =
[
1 eT ėT qT

d q̇T
d q̈T

d

]T
(10)

is the augmented vector of the inputs to the neural network (the first element equal
to 1 allows to include neurons’ biases), V ∈ R(l+1)×h is the matrix of biases (the
first row) and weights (the rest l rows) of the input layer, and W ∈ R(h+1)×n is the
matrix of biases (the first row) and weights (the rest h rows) of the hidden layer.
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Each element of the vector σ is a sigmoid activation function given by:

σ j =
1

1 + exp(−z j )
, j = 1, 2, . . . , h, (11)

where z j are the outputs of the input layer. In other words, z j are the elements of
the vector z = VTX.

Standard open-loop weight training algorithms do not apply to the closed-loop
feedback systems where weights as well as all internal states have to be bounded
and the tracking error has to remain small [12, 17, 18]. One of the solutions is to
use the backpropagation tuning algorithm, for example, the augmented backprop
tuning [12]:

Ẇ = FσasT − Fσ′aVTXsT − kwF| |s| |W, (12)

V̇ = BX(σ′a
TWs)T − kwB| |s| |V, (13)

where the design parameters F ∈ R(h+1)×(h+1) and B ∈ R(l+1)×(l+1) are positive
definite matrices and kw is a positive scalar, while | |x| | is the Euclidean norm of x.
Finally, σ′a ∈ R(h+1)×h is a derivative of σa, defined as:

σ′a =



0 0 0 . . . 0
σ′1 0 0 . . . 0
0 σ′2 0 . . . 0
...

...
. . . . . .

...

0 0 0 . . . σ′h



, (14)

where:
σ′j = σ j

(
1 − σ j

)
, j = 1, 2, . . . , h, (15)

and σ j is given by (11).
The stability of the ANN controller is covered in detail in [12, 18].

4. Simulations and results

The simulations were performed in the MATLAB/Simulink. The equation (1)
was extended by adding the vector τdist ∈ R

n×1 representing unknown nonlinear
dynamics – such as friction in joints – and other disturbances:

M(q)q̈ + C(q, q̇)q̇ +G(q) + τdist = τ. (16)
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It was chosen arbitrarily as:

τdist =



0.5 sin
(
0.1t +

π

6

)
1.5 sin

(
0.25t +

π

10

)
− sin (0.2t)

0.5 sin (0.15t)
−0.2 sin (0.1t)
0.1 sin (0.15t)
0.01 sin (0.1t)



Nm. (17)

The end-effector trajectory was designed as a circle with the radius of 0.3 m
to be completed in 10 seconds:

rd (t) =



0.276
−0.3 + 0.3 cos

(
π

5
t
)

0.124 + 0.3 sin
(
π

5
t
)


m (18)

and the joint trajectories were calculated by solving the inverse kinematics problem
and using the manipulability measure to avoid singularities [32]:

q̇ = J+ṙd +
(
I − J+J

)
kq∇H (q), (19)

where J+ is the pseudoinverse of the manipulator’s Jacobian matrix J(q) ∈ R3×7,
kq is the scalar gain and H (q) is the manipulability measure defined as:

H (q) =
√

det
(
JJT

)
. (20)

The driving torques in the vector τ at the right hand side of the Eq. (16) were
computed using the Eqs. (2) and (8). The adaptive controller was implemented
with p = 8 dynamic parameters and Γ = 200I8×8. Meanwhile, the parameters of
the ANN controller were chosen as follows: number of neurons in the hidden layer
h = 7, number of inputs to the neural network l = 35, F = 200I8×8, B = 200I36×36,
and kw = 0.5. Both controllers used K = diag([10 100 60 80 10 10 10]) and
Λ = 5I7×7. All the dynamic parameters in the adaptive controller and weights in
the ANN controller were initialized to zero.

Figs. 1, 2 and 3 show the end-effector position errors for the adaptive and ANN
controller.

It is evident that the ANN controller performs better than the adaptive one,
except for the z-axis where the gravity forces are dominating the unknown distur-
bances. These results illustrate the inability of the adaptive controller to mitigate
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Fig. 1. X-axis position error

Fig. 2. Y-axis position error

the effects not accounted in the linear model of Eq. (6). Meanwhile, the ANN
managed to achieve good level of position tracking despite the disturbances, as it
was expected.

On the other hand, the ANN requires a lot of design parameters (matrices F
and B) which are subject to heuristic tuning. Additionaly, the number of weights
of the ANN:

Nweights = (l + 1)h + (h + 1)n = 252 + 56 = 308 (21)

is much greater than of the parameters of the dynamic model (p = 8). Moreover,
the dynamic parameters of the model-based adaptive controller have a physical
interpretation like masses or moments of inertia which can not be said about the
ANN weights.
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Fig. 3. Z-axis position error

5. Preliminary work on the robots

Preliminary experiments carried on two KUKA LWR 4+ robots showed subtle
but apparent differences in the dynamic properties of the manipulators [34]. The
experiments consisted in programming both robots to follow the same sinusoidal
trajectories, measuring the joint torques and comparing the results with the rigid-
body model given by Eq. (1). It was observed that the differences between the
two robots and between the dynamic model and each robot were comparable in
magnitude. These results suggested that the unmodeled effects such as friction or
joint elasticity are possible culprits. It was concluded that in order to account for
that phenomena in the model, each robot would have to be identified separately. On
the other hand, if such level of detail is not necessary for a given application, a rigid-
body model, obtained from identifying just one robot, should suffice. Alternatively,
for control purposes, an adaptive or ANN controller studied in this paper could
be used. Possibly, the parameters and weights would converge to slightly different
values when used on two LWR 4+ robots doing the same tasks.

6. Conclusions

In this paper, an adaptive and ANN control methods were described and their
featureswere compared.Both approacheswere implemented inMATLAB/Simulink
and used in the simulation of a postion control of the LWR 4+ manipulator sub-
jected to unknown disturbances. The results show the advantage of the ANN over
the adaptive control method. However, the model-based adaptive controller still
has its advantages. Future works will include formulating the model in the canon-
ical coordinates, as the Hamilton formulation has many advantages in the control
systems [35–37].
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Moreover, the preliminary experiments carried on two LWR 4+ robots were
discussed. It was discovered that there are subtle differences in the dynamic proper-
ties of the two robots. Given that, the learning control algorithm such as the adaptive
controller or the ANN is clearly advantageous over the non-learning model-based
controller which would require the separate identification of each robot. In that
regard, an implementation of the ANN algorithm on the real LWR 4+ is planned
with the use of the KUKA FRI programming interface, which allows to send the
desired joint torques from the user’s computer to the robot’s controller in each
control cycle [38].
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