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Vibration control of a rotating shaft by passive
mass-spring-disc dynamic vibration absorber

Shaft is a machine element which is used to transmit rotary motion or torque.
During transmission of motion, however, the machine shaft doesn’t always rotate with
a constant angular velocity. Because of unstable current or due to sudden acceleration
and deceleration, the machine shaft will rotate at a variable angular velocity. It is
this rotary motion that generates the moment of inertial force, causing the machine
shaft to have torsional deformation. However, due to the elasticity of the material, the
shaft produces torsional vibration. Therefore, the main objective of this paper is to
determine the optimal parameters of dynamic vibration absorber to eliminate torsional
vibration of the rotating shaft that varies with time. The new results in this paper are
summarized as follows: Firstly, the author determines the optimal parameters by using
the minimum quadratic torque method. Secondly, the maximization of equivalent
viscous resistance method is used for determining the optimal parameters. Thirdly,
the author gives the optimal parameters of dynamic vibration absorber based on the
fixed-point method. In this paper, the optimum parameters are found in an explicit
analytical solutions, helping the scientists to easily find the optimal parameters for
eliminating torsional vibration of the rotating shaft.

Nomenclature

Abbreviations
CPVA centrifugal pendulum vibration absorber
DVA dynamic vibration absorber
FP fixed-point
MEVR maximization of equivalent viscous resistance
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MQT minimum quadratic torque
TMD tuned mass damper
Symbols
ca damping coefficient of damper
ceqv the equivalent resistance coefficient of DVA
D the amplitude magnification factor of the rotating shaft
e1 radial position of spring
e2 radial position of damper
Ja mass moment of inertia of DVA
Jr mass moment of inertia of rotor
ka stiffness of spring of DVA
ks torsional stiffness of the rotating shaft
L the quadratic torque matrix
M excitation torque
Meqv the equivalent resistance torque of DVA
ma mass of DVA
mr mass of rotor
n number of spring-damper sets
q1 the response of the system
Greek symbols
α tuning ratio
αFP

opt optimal tuning ratio of DVA by using the fixed-point method
αMEVR

opt optimal tuning ratio of DVA by using the maximization of equivalent viscous
resistance method

αMQT
opt optimal tuning ratio of DVA by using the minimum quadratic torque method
β frequency ratio
γ ratio between radial position of spring and radius of gyration of rotor
ε the angular acceleration of the rotating shaft
η ratio between radius of gyration of passive disk and rotor
θ torsional vibration of the rotating shaft
θ0 initial condition of the torsional vibration angle
θ̂ complex form of torsional vibration of the rotating shaft
|θ̂ | amplitude of torsional vibration of the rotating shaft
λ ratio between radial position of damper and radius of gyration of rotor
µ ratio between mass of DVA and mass of the rotating shaft
ξ damping ratio
ξFP

opt optimal damping ratio of DVA by using the fixed-point method
ξMEVR

opt optimal damping ratio of DVA by using the maximization of equivalent viscous
resistance method
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ξMQT
opt optimal damping ratio of DVA by using the minimum quadratic torque method
ρa radius of gyration of DVA
ρr radius of gyration of rotor
ϕ angular displacement of the rotating shaft
ϕa relative torsional angle between passive disk and rotor
ϕr angular displacement of rotor
ω excitation torque frequency
ωa natural frequency of DVA
Ωs natural frequency of the rotating shaft

1. Introduction

This paper describes how to eliminate torsional vibration of rotating shafts.
As we know, the shaft is one of the most important parts of a machine. The shaft is
used to transmit torque and rotation from one part to another part of the machine.
The characteristic movement of the shaft is rotary motion. The torsional vibration
of the rotating system is mainly due to the uneven transmission of torque between
the rotating parts of the machine. Excessive torsional vibration in the machine
system leads to noise or fatigue destruction. So, they must be stopped or controlled
immediately to ensure the reliability of the system. Passive vibration control has
been applied frequently due to its simplicity and the effect which is acceptable,
therefore, it has been studied by many scientists, as in references [1–23].

Centrifugal pendulum vibration absorbers (CPVA) are used for the reduction
of torsional vibrations in rotating and reciprocating machines. They consist of the
masses mounted on a rotor in such a way that they can freely move in accordance
with the specified paths related to rotating systems. The movement of the masses is
used to counteract the torque, thus reducing torsional vibration of the rotating parts
[4–14]. The CPVA with different designs was introduced for the use in different
conditions of the system. Author of [4] proposed the CPVA for the use in aircraft
engines with variable speed conditions, in which the weight of the centrifugal
mass was designed so that the recovery force changed with speed. Author of [5]
introduced a CPVA including a compact design pendulum with rollers applicable
for aircraft engines. Until early 1980, most CPVAs designs used circular profiles.
Later, various non-circular path types were considered for the design of the CPVA,
such as cycloidal path [6], tautochronic curve [7] and epicycloidal path [8, 9], etc.
In 2002 the dynamic behavior of multiple CPVAs was studied in [10]. In 2006,
authors of [11] studied an investigation of the dynamic response and performance
of the CPVA. In 2014, authors of [12] presented a general approach to the design
of tautochronic pendulum vibration absorbers. These results provided a basis for
the design and analysis of tautochronic bifilar and non-bifilar vibration absorbers.
In 2015, Ref. [13] studied aims to highlight the vibration absorbing capabilities
of CVPAs, emphasizing the configurations with cycloidal and epicycloidal paths.
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In 2016, Ref. [14] studied ways to reduce vibration for a rigid rotor with moving
components simultaneously tilting, rotating and translating using the CPVA. To
the best knowledge of the authors, there has been no study that identifies the
optimum parameters of the CPVA applicable for eliminating torsional vibration of
the rotating systems.

A dynamic vibration absorber (DVA), or tuned mass damper (TMD), is a well-
known device used to eliminate vibration. The absorber consists of a moving mass
attached to the main structure through springs and dampers. The description of use
of the DVA, or the TMD, as an additional tool for eliminating torsional vibration of
the rotating systems is very limited in the literature. Until 2017, Ref. [21] used the
fixed-point method to give optimal parameters of the DVA in the form of a passive
mass-spring-disc for the rotating shafts. When designing absorbers to eliminate
vibration for the main system, one can apply diverse shapes of the absorbers,
depending on the type of structure to be installed. Therefore, in [22] the author
studied how to eliminate torsional vibration of rotating shafts with a symmetric
TMD in the form of mass-spring-pendulum by using the principle of minimum
kinetic energy. The studies in references [21, 22] only considered the shaft rotating
at a constant angular velocity. In reality, however, many rotating systems do not
always rotate with constant angular velocities. Because of unstable current or due
to sudden acceleration and deceleration, the angular velocity of rotating shafts
can vary with time. It is this variability in rotation of the rotating systems that
generate the moment of inertial force, causing the rotating systems to have torsional
deformation. But due to the elasticity of the material, the rotating systems produce
torsional vibration. Therefore, the research results in references [4–14, 21–23] were
developed to overcome the limitations of the rotating systems. In this paper, the
author continues the work aimed at finding the optimal parameters of the DVA
for the case of the rotating shaft that varies with time. The optimum parameters
are found in an explicit analytical solutions, helping the scientists to easily find
the optimal parameters when applicable for eliminating torsional vibration of the
rotating shafts. The results presented in this paper enrich knowledge of optimal
control and help to eliminate torsional vibration of the rotating systems.

2. Shaft modelling and vibration equations

Fig. 1 shows a rotating shaft which has an attached passive mass-spring-disc
dynamic vibration absorber (DVA). Fig. 2 shows the passive mass-spring-disc
dynamic vibration absorber [21]. The parameters of the rotating shaft with DVA
are listed in the Nomenclature.

By using the second-order Lagrange equation, the motion equations of the
system are written as follows [21]

(Jr + Ja) ϕ̈r + Ja ϕ̈a + ks (ϕr −Ω0t) = M (t),

Ja ϕ̈r + Ja ϕ̈a + nkae2
1ϕa + ncae2

2ϕ̇a = 0
(1)
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Fig. 1. The rotating shaft with DVA

Fig. 2. Modeling of the DVA

where

Jr = mr ρ
2
r , Ja = ma ρ

2
a ,

ϕ = Ω0t .
(2)

Because the rotating shaft varies with time: ϕ = ϕ(t), we have

ϕr − ϕ(t) = θ → ϕr = θ + ϕ(t), ϕ̇r = θ̇ + ϕ̇(t), ϕ̈r = θ̈ + ϕ̈(t),
M (t) = 0.

(3)

By substituting equations (2), (3) into equations (1), the motion equations of
the system are represented as(

mr ρ
2
r + ma ρ

2
a

)
θ̈ + ma ρ

2
a ϕ̈a + ksθ = −(mr ρ

2
r + ma ρ

2
a)ϕ̈(t), (4)

ma ρ
2
a θ̈ + ma ρ

2
a ϕ̈a + ncae2

2ϕ̇a + nkae2
1ϕa = −ma ρ

2
a ϕ̈(t). (5)
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To write the equations in non-dimensional form, the following symbols are
introduced

ka = maω
2
a , ks = mr ρ

2
rΩ

2
s , ma = µmr , ρa = ηρr ,

e1 = γρr , e2 = λρr , ωa = αΩs , ca = ξmaωa .
(6)

The symbols in the expressions of equation (6) are described in Nomenclature.
By substituting the expressions of equation (6) into equations (4), (5) the latter

can be rewritten in the matrix form:



1 + µη2 µη2

µη2 µη2





θ̈

ϕ̈a


+



0 0
0 nξαΩsµλ

2





θ̇

ϕ̇a



+



Ω
2
s 0

0 nα2
Ω

2
sµγ

2





θ

ϕa


=




−1 − µη2

−µη2



ϕ̈(t).

(7)

3. Determination of optimal parameters by using the minimum
quadratic torque method (MQT)

The minimum quadratic torque method is applied when the angular accelera-
tion of the rotating shaft, ε(t), is assumed to have a form of a white noise of spectral
density Sε . This method, which bases on the calculation of quadratic torque, has
been presented in [1]. From the vibration equation (7), the equation of state is
constructed:

q̇1(t) = A q1(t) + Nεε(t), (8)

where q1(t), ε(t), respectively, are the response of the system and the angular
acceleration of the rotating shaft, they are defined as follows

q1(t) =
{
θ ϕa θ̇ ϕ̇a

}T
, (9)

ε(t) = ϕ̈(t). (10)

Using equations (7)–(10), the matrices A and Nε are determined, respectively

A =



A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44



, (11)

Nε =
[
0 0 − 1 0

]T
(12)
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in which

A11 = 0, A21 = 0, A31 = −Ω
2
s , A41 = Ω

2
s ,

A12 = 0, A22 = 0, A32 = nα2
Ω

2
sµγ

2 , A42 = −

(
1 + µη2

)
nα2Ω2

sγ
2

η2 ,

A13 = 1, A23 = 0, A33 = 0, A43 = 0,

A14 = 0, A24 = 1, A34 = nξαΩsµλ
2 , A44 = −

(
1 + µη2

)
nα2Ω2

sλ
2

η2 .

(13)

According to [1], the quadratic torque matrix, L, is a solution of Lyapunov
equation in equation (14).

A L + L AT + SεNεNT
ε = 0. (14)

By solving the system of equations (11)–(14), the matrix L is determined as

L =



L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44



(15)

where

L11 =
1
2



γ4α4n2
(
1 + µη2

)4
+

(
nξ2λ4

(
µη2 + 1

)
+η2γ2

(
µη2 − 2

) ) (
1 + µη2

)2
nα2 + η2


Sε

nξαΩ3
sµλ2η4

, (16)

L32 = −
1
2

(
1 + µη2

)2
Sε

η2Ω2
sµ

, (17)

L33 =
1
2



γ4n2
(
1 + µη2

)3
α4 +

(
µη2 + 1

) (
nξ2λ4

(
µη2 + 1

)
−2η2γ2

)
nα2 + η4


Sε

nξαΩSµλ2η4 , (18)

L34 =
1
2

[
γ2n

(
1 + µη2

)2
α2 − η2

]
Sε

nξαΩSµλ2η2 . (19)

In the quadratic torque matrix L, the response of the main system is L11. The
smaller the L11 is, the faster the torsional vibration of the system turns off. So, the
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minimum conditions are expressed as

∂L11
∂α

�����αMQT
opt =α

= 0, (20)

∂L11
∂ξ

�����ξMQT
opt =ξ

= 0. (21)

By solving the system of equations (16), (20), (21), the optimal parameters of
the DVA, αMQT

opt and ξMQT
opt , can be obtained as

αMQT
opt =

1
2
η
√

2n
(
2 − µη2)

γn
(
1 + µη2) , (22)

ξMQT
opt =

η3
√

4µγ + 3µ2η2 − µ3η4(
1 + µη2) λ2

√
2nη

(
2 − µη2) . (23)

4. Determination of optimal parameters by using the maximization
of equivalent viscous resistance method (MEVR)

The objective of this method is to maximize the equivalent resistance coef-
ficient of the system [2]. The greater the equivalent resistance coefficient of the
system, the faster the decay of vibration of the system. Firstly, it is necessary to
determine the equivalent resistance torque of the DVA acting on the main system.
Using equations (4), (5), (10) gives

mr ρ
2
r θ̈ + ksθ = nkae2

1ϕa + ncae2
2ϕ̇a − mr ρ

2
rε(t). (24)

From (24), the equivalent resistance torque of the DVA acting on the main
system is obtained as

Meqv = nkae2
1ϕa + ncae2

2ϕ̇a . (25)

According to [2], the equivalent resistance coefficient of the DVA acting on
the main system is determined as follows

ceqv = −

〈
Meqvθ̇

〉〈
θ̇2

〉 = −
nkae2

1

〈
ϕa θ̇

〉
+ ncae2

2

〈
ϕ̇a θ̇

〉〈
θ̇2

〉 . (26)

In this method, the angular acceleration of the rotating shaft, ε(t), is assumed
to have a form of white noise with spectral density Sε . Therefore the average values
of equation (26) are the components of the matrix L in equation (14). In this case,
we have

ceqv = −
nkae2

1L32 + ncae2
2L34

L33
. (27)
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By substituting equations (6), (17)–(19) into equation (27), the equivalent
resistance coefficient can be determined as

ceqv =
−ρ2

rmaη
4nξαΩsλ

2

γ4n2 (
γ2µ+1

)3
α4+

(
γ2µ+1

)
n
(
λ4ξ2 (

γ2µ+1
)

n−2η2γ2) α2+η4
. (28)

The conditions for the equivalent resistance coefficient of the DVA, ceqv, yield
maximum value as follows

∂ceqv

∂α

�����αMEVR
opt =α

= 0, (29)

∂ceqv

∂ξ

�����ξMEVR
opt =ξ

= 0. (30)

By solving the system of equations (28)–(30), the optimal parameters of the
DVA, αMEVR

opt , ξMEVR
opt , are determined as

αMEVR
opt =

η

γ
(
1 + µη2) √n

, (31)

ξMEVR
opt =

γη2√µ

λ2
√

n
(
1 + µη2) . (32)

5. Determination of optimal parameters by using
the fixed-point method (FP)

In this method, one considers the rotating shaft whose angular velocity varies
with time. The angular acceleration is presented in the harmonic form:

ϕ̈(t) = ϕ0eiΩt . (33)

By solving the system of equations (7), (33), the torsional angle of the rotating
shaft, θ(t), can be obtained as

θ(t) = θ̂eiΩt (34)

where

θ̂ =



ξα βλ2n
(
µη2 + 1

)
i

+
(
α2η2γ2µn + α2γ2n − β2η2

) 
ϕo

/
Ω2

s



αβξλ2n
(
µβ2η2 + β2 − 1

)
i

+
(
α2 β2η2γ2µn + α2 β2γ2n − β4η2 − α2γ2n + β2η2

) 

. (35)
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The amplitude of torsional vibration of the rotating shaft is

���θ̂
��� =

√√√√√√√√√√√√√√√√√√√√√√
[
ξα βλ2n

(
µη2 + 1

)]2

+
[
α2η2γ2µn + α2γ2n − β2η2

]2 [
ϕ0

/
Ω

2
s

]2

[
αβξλ2n

(
µβ2η2 + β2 − 1

)]2

+
[
β2

(
α2η2γ2µn + α2γ2n − β2η2 + η2

)
− α2γ2n

]2

. (36)

Using equation (36), we determine the amplitude magnification factor of the
rotating shaft as follows

D =

√√√√√√√√√√√√√√√√√√√√√√
[
ξα βλ2n

(
µη2 + 1

)]2

+
[
α2η2γ2µn + α2γ2n − β2η2

]2

[
αβξλ2n

(
µβ2η2 + β2 − 1

)]2

+
[
β2(α2η2γ2µn + α2γ2n − β2η2 + η2) − α2γ2n

]2

. (37)

Fig. 3 presents the graphs of the amplitude magnification factor D versus the
frequency ratio β corresponding to some different values of the DVA’s damping
ratio ξ.

Fig. 3. Graphs of the amplitude magnification factor versus the frequency ratio β

Fig. 3 shows that the curve D = f (β) always passes through two points M ,
N which are fixed and independent of the viscous resistance coefficient ξ. So, it is
possible to apply the fixed-point method to find the optimal parameters to reduce
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harmful vibrations of the rotating shaft. According to [3], the peak of the smallest
amplitude of vibration can be achieved by choosing such coefficients of the two
points M , N that have equal values and reach the maximum value at that point.
We have

∂D
∂ξ
= 0, (38)

DM = DN . (39)

By solving the system of equations (37)–(39), the optimal parameters, αFP
opt and

β, are identified as

αFP
opt = α =

η
√

2
(
2 − µη2)

2γ
√

n
(
µη2 + 1

) , (40)

β2
1 =

2 + η
√

2µ
2
(
µη2 + 1

) , (41)

β2
2 =

2 − η
√

2µ
2
(
µη2 + 1

) . (42)

Then, the optimum absorber damping can be identified from the following
condition

∂D
∂ β
= 0. (43)

By solving the system of equations (37), (40)–(43), the DVA’s damping ratios
can be determined as

ξ2
1 =

µ
(
1 + µη2

)2 (√
2η√µ + 6

)
γ2η4

2nλ4 (
2 + 5µη2 + 3µ2η4 − µ3η6 − µ4η8) (44)

and

ξ2
2 =

µγ2η4
(
µη2 + 1

) (
6 + η

√
2µ

)
2nλ4 (

2 + 3µη2 − µ3η6) . (45)

The optimal value of ξ is found as

ξFP
opt = ξopt =

√
ξ2

1 + ξ
2
2

2
. (46)

By substituting equations (44) and (45) into equation (46), the optimal param-
eter of DVA, ξFP

opt, is determined as

ξFP
opt =

γη2

2λ2

√√√√2µ(µη2 + 2)
(
6 − 2η

√
2µ − µη2

)
n(µη2 − 2)

(
η
√

2µ − 2
) . (47)



290 Nguyen Duy Chinh

From equations (22), (23), we obtain the optimal parameters of the DVA
by using the minimum quadratic torque method. Based on the maximization of
equivalent viscous resistance method, the optimal parameters of the DVA are given
in equations (31), (32). The fixed-point method is used for finding the optimal
parameters of the DVA, which are defined in equations (40) and (47). The optimal
expressions (equations (22), (23), (31), (32) and (40), (47)) for DVA are used
to eliminate the torsional vibration of the rotating shaft that varies with time.
These optimal expressions are different from the optimal expressions that have
been found in reference [21]. From this fact it follows that the optimal parameters
determined to eliminate torsional vibration of the rotating shafts are different for
shafts rotating with constant and variable velocity. Therefore, when applying the
optimal parameters to eliminate torsional vibration of the rotating shaft we have
to consider if the shaft rotates at a constant or variable angular velocity to use
the proper optimal expressions for determining the optimal parameters in order to
increase the effect of eliminating torsional vibration.

6. Numerical simulation

To evaluate the reliability of the optimal parameters that are found in this paper,
the author uses Maple software to simulate the vibration of the rotating shaft with
the DVA when it is optimally designed.

The author performs calculations to eliminate the torsional vibration of the
rotating shaft with the input data taken from [21] which are summarized in Table 1.

Table 1.
The input data of the rotating shaft and the DVA

Parameter mr ρr ks ma ρa e1 e2 N

Value 5 kg 0.1 m 104 Nm/rad 0.05 kg 0.1 m 0.06 m 0.08 m 5

Based on the parameters in Table 1 and the expressions of equation (6), the
non-dimensional parameters of the system are determined and summarized in
Table 2.

Table 2.
The non-dimensional parameters of the system

Parameter µ η γ λ

Value 0.01 1.0 0.6 0.8

By applying equations (6), (22), (23), (31), (32), (40), (47) and parameters
from Table 2, the optimal parameters of the DVA are defined in Table 3.

Based on the parameters from Table 1 and Table 3, and using Maple software,
we simulate the torsional vibration of the rotating shaft, as shown in Figs 4–12.
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Table 3.
The optimal parameters of the DVA

The minimum quadratic torque method

Parameter α
MQT
opt ξ

MQT
opt ka ca

Value 0.736 0.054 5418.86 N/m 0.89 Ns/m

The maximization of equivalent viscous resistance method

Parameter αMEVR
opt ξMEVR

opt ka ca

Value 0.738 0.042 5446.09 N/m 0.688 Ns/m

The fixed-point method

Parameter αFP
opt ξFP

opt ka ca

Value 0.736 0.042 5418.86 N/m 0.692 Ns/m

Fig. 4. The vibration of the rotating shaft with θ0 = 0.01 (rad) of the minimum quadratic torque
method

Fig. 5. The vibration of the rotating shaft with θ̇0 = 5.0 (rad/s) of the minimum quadratic torque
method
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Fig. 6. The vibration of the rotating shaft with θ0 = 0.01 (rad) and θ̇0 = 5.0 (rad/s) of the minimum
quadratic torque method

Fig. 7. The vibration of the rotating shaft with θ0 = 0.01 (rad) of the maximization of equivalent
viscous resistance method

Fig. 8. The vibration of the rotating shaft with θ̇0 = 5.0 (rad/s) of the maximization of equivalent
viscous resistance method
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Fig. 9. The vibration of the rotating shaft with θ0 = 0.01 (rad) and θ̇0 = 5.0 (rad/s) of the
maximization of equivalent viscous resistance method

Fig. 10. The vibration of the rotating shaft with θ0 = 0.01 (rad) of the fixed-point method

Fig. 11. The vibration of the rotating shaft with θ̇0 = 5.0 (rad/s) of the fixed-point method
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Fig. 12. The vibration of the rotating shaft with θ0 = 0.01 (rad) and θ̇0 = 5.0 (rad/s) of the
fixed-point method

7. Comparison of the effect of three methods

In order to compare the effect of eliminating torsional vibration when applying
the optimal parameters found by the three methods, the author presents simulation
results of torsional vibrations of the rotating shaft in the same graph, as shown in
Figs. 13–15.

Fig. 13. The vibration of the rotating shaft with θ0 = 0.01 (rad) of the three methods

Figs. 13–15 show the maximization of equivalent viscous resistance method
and the fixed-point method, which give the same effect for reducing the torsional
vibration. Within the first 0.12 s, the vibration amplitudes of the maximization of
equivalent viscous resistance method and the fixed-point method are smaller than
those of the minimum quadratic torque method. But, from 0.12 s onwards, the
vibration amplitudes of the minimum quadratic torque method are smaller than
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Fig. 14. The vibration of the rotating shaft with θ̇0 = 5.0 (rad/s) of the three methods

Fig. 15. The vibration of the rotating shaft with θ0 = 0.01 (rad) and θ̇0 = 5.0 (rad/s) of the three
methods

those of the maximization of equivalent viscous resistance method and the fixed-
point method. Overall, however, among the three methods the minimum quadratic
torque method has the greatest effect on eliminating torsional vibration.

8. Conclusions

This paper aims at determining the optimal parameters of the dynamic vibration
absorber in order to eliminate torsional vibration of the rotating shaft that varies
with time. The optimum parameters of the dynamic vibration absorber which are
determined by using the minimum quadratic torque method are shown in equations
(22) and (23). The optimal parameters of the dynamic vibration absorber that are
chosen in order to maximize the equivalent resistance coefficient of the system
are presented in equations (31) and (32). The optimum parameters of the dynamic
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vibration absorber given in equations (42) and (47) are obtained by using the
fixed-point method. To evaluate the effect of eliminating torsional vibration, the
author uses Maple software to simulate the vibration of the rotating shaft when
it is optimally designed. Through vibration simulation, we find that the vibration
amplitude of the rotating shaft is eliminated when the dynamic vibration absorber
is installed. This confirms that the optimal parameters of the dynamic vibration
absorber found in this paper are reliable and accurate.
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