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Energy losses in big band saw machines – analysis
and optimization

In this paper, the energy losses in big band saw machines are investigated. These
losses are caused by the geometric and angular inaccuracies with which the leading
wheels are made. Expressions for calculating the kinetic energy of the mechanical
system in the ideal and the real cases are obtained. For this purpose, expressions for
calculating the velocities of the centers of the masses in two mutually perpendicular
planes are obtained. A dependence for calculation of the kinetic energy losses of
the mechanical system in final form is received. Optimization procedure is used to
determine the values of the parameters atwhich these losses haveminimumvalues. The
proposed study can be used tominimize energy losses in other classes of woodworking
machines.

1. Introduction

Band saw machines are the most common woodworking machines. These
machines are used in various technological operations, which leads to the necessity
of designing different classes of machines. They can be classified into three groups,
based on general principles:

• Band saw machines for sawing logs and prisms. They are also called the
log band saw machines or the big band saw machines. The diameters of the
leading wheels are between 1100 and 3500 [mm] and the width of the band
is from 140 to 360 [mm];

• Deal band saw machines. They are used for sawing prisms, thick boards
and covers. These machines have great performance. The diameters of the
leading wheels are between 1000 and 1500 [mm] and the width of the band
is from 70 to 175 [mm];
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• Ordinary band saw machines. They are used for cutting up and processing
curvilinear surfaces. The diameters of the leading wheels are between 400
and 1000 [mm] and the width of the band is up to 40 [mm].

Scientific studies related to energy efficiency of different classes of woodwork-
ing machinery are published in the technical literature. Measurement of specific
cutting energy (ESP) for evaluating the efficiency of band sawing of different work-
piece materials is investigated by Sarwar et al. [1]. It is found that measuring the
ESP is a better way for determining the efficiency of the cutting process compared
to the other methods, such as determining tool wear, cutting forces, etc. It has been
also found that the increase in ESP reflects the degradation of the cutting perfor-
mance. Mandic et al. [2] have made a comparative analysis of two methods for
the power consumption measurement in circular saw cutting of laminated particle
board. The features of construction and the shape characteristics of the circular saw
determine possible relationship between the power consumption, acoustic emission
and the cutting process progress. Kopecký et al. [3] offer an innovative approach to
predicting energy effects of wood cutting process with circular-saw blades. In the
classical approach, energy effects of wood sawing process are generally calculated
on the basis of the specific cutting resistance. In this article, a new computational
model using the approach of modern fracture mechanics is presented. Orlowski et
al. [4] use fracture mechanics for predicting energy effects in wood sawing. In the
classical approach, energy effects of wood sawing process are generally calculated
on the basis of the specific cutting resistance. In this paper, it is proved that cutting
power models based on modern fracture mechanics can be used for estimation of
energy effects of sawing of every kinematics. Iskra et al. [5] investigate the energy
balance of the orthogonal cutting process. As a result of their study, the authors
reach the following conclusions:

• The contribution of the amount of pure cutting energy in relation to electri-
cal energy consumed during orthogonal machining rises significantly when
cutting speed increases.

• Thermal output is the most significant undesirable phenomenon accompa-
nying cutting. Up to 28% of input energy can be dissipated by heating of the
tool and chips during orthogonal machining.

In this article, energy losses in big band saw machines are analysed. These
machines are widely used in the woodworking industry because of their high
productivity. Their work, however, is characterized by high-energy consumption,
which is mostly because main links of the machine are very large. Due to this fact,
there appear corresponding linear and angular inaccuracies in both wheels, which
cannot be avoided.

The purpose of the proposed study is to determine the energy losses in the me-
chanical system resulting from these inaccuracies. In order to achieve this purpose,
the following basic tasks must be fulfilled:

• obtaining expressions for calculating the kinetic energy of the mechanical
system in the absence of linear and angular inaccuracies;
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• obtaining expressions for calculating the kinetic energy of the mechanical
system in the presence of linear and angular inaccuracies;

• obtaining an expression to calculate the kinetic energy loss of themechanical
system in the real case.

Another purpose of this study is to present various optimization solutions
that can reduce the actual energy consumption of the band saw machines in the
operation mode. In this case, it is necessary to use optimization procedures, as well
as to compile the appropriate objective functions. These functions are used by the
optimization procedures to calculate the optimal parameter values. In this way, it
can be ensured that the band saw machines will operate in the optimal mode with
minimum energy losses.

2. Solution principles

In this part, in order to solve the problems posed, a principle scheme of band
saw machine and the corresponding dynamic models are presented in Figs.1, 2 and
3. These models are used to determine the kinetic energy of the mechanical system
in the absence and in the presence of linear and angular inaccuracies.

2.1. Principle scheme of the band saw machine

The scheme of the band saw machine is shown in Fig. 1 [6]. The following
symbols are defined: 1, 2, 5, 6 – belt pulleys, E – electric motor, 3 and 4 – leading
wheels, A – band-saw blade, 7 and 8 – chain-wheels.
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Fig. 1. Principle scheme of band saw machine
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2.2. Kinetic energy of the mechanical system in the absence of linear
and angular inaccuracies – ideal case

In this case, we use the dynamic model shown in Fig. 2.
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C3≡O3

a1 b1 c1 d1

x

y

z

ω

Fig. 2. Dynamic model in absence of linear and angular inaccuracies

The kinetic energy of the mechanical system can be calculated from the fol-
lowing dependence [7–9]:

Tp =
1
2

Jpω2, (1)

where Jp is the mass moment of inertia of the system with respect to the axis of
rotation, i.e., toward the axis z. We can calculate it from the following expression:

Jp = J2 + J3 + J5 + Jsh . (2)

In the above expression, J2 and J5 are the mass moments of inertia of the belt
pulleys 2 and 5, J3 is the mass moment of inertia of the leading wheel 3 and Jsh is
the mass moment of inertia of the main shaft with respect to the axis of rotation. ω
is the angular velocity of the mechanical system around the same axis.

2.3. Kinetic energy of the mechanical system in the presence of linear
and angular inaccuracies – real case

Due to their large dimensions, the leading wheels are made with the corre-
sponding geometric and angular inaccuracies. In this case, these inaccuracies are:
geometric deviation e = O3C3, where C3 is the centre of mass of the disc 3 and
angular deviation α. These deviations can be seen in Fig. 3 [10].



Energy losses in big band saw machines – analysis and optimization 339

A B

3 25

a1 b1 c1 d1

C3

x

y

z

ωz'

O3

α

ζ

ξ

η

Fig. 3. Dynamic model in presence of linear and angular inaccuracies

The kinetic energy of the mechanical system can be calculated from the fol-
lowing dependence:

Tr =
1
2

Jrω2 +
1
2

m3
[
( ẏ1(z1, t))2 + ( ẋ1(z1, t))2

]
+

+
1
2

m5
[
( ẏ2(z2, t))2 + ( ẋ2(z2, t))2

]
+

1
2

m2
[
( ẏ3(z3, t))2 + ( ẋ3(z3, t))2

]
, (3)

wherem3,m5 andm2 are themasses of the three disks. The coordinates zi (i = 1 ÷ 3)
have the following values: z1 = 0, z2 = a1 + b1, z3 = a1 + b1 + c1 + d1 = l. Jr is
the mass moment of inertia of the system in the presence of linear and angular
deviations, i.e., in the real case. This moment can be calculated from the following
expression:

Jr = J2 + J ′3 + J5 + Jsh . (4)

The mass moment of inertia of the leading wheel with respect to the axis of
rotation is denoted by J ′3 and can be calculated using the formulas known from
technical literature [7].

J ′3 = Jζ cos2 αζ + Jξ cos2 αξ + Jη cos2 αη + m3ρ
2
C , (5)

where ρC = e cos α. The angles between the axis z′ and the axes ζ , ξ and η
are marked with αζ , αξ , αη . These angles take the following values: αζ = α,
αξ =

π

2
+ α, αη =

π

2
. In this way, the expression (5) takes the following form:

J ′3 = Jζ cos2 α + Jξ sin2 α + m3e2 cos2 α, (6)

where Jζ and Jξ are the mass moments of inertia of the leading wheel with respect
to the principal axes of inertia ζ and ξ.



340 Boycho Marinov

Other variables used in the expression for the kinetic energy are: ẏ1(z1, t),
ẏ2(z2, t) and ẏ3(z3, t) – the velocities of the mass centers of the three disks relative
to the axis y, ẋ1(z1, t), ẋ2(z2, t) and ẋ3(z3, t) – the velocities of the mass centers of
the three disks relative to the axis x.

These velocities can be determined by expressions for the transverse vibrations
of the main shaft in the vertical plane O3yz and the horizontal plane O3xz.

With respect to the fixed coordinates zi (i = 1 ÷ 3), these expressions can be
written as follows:

y1(z1, t) = Z21 sinωt, x1(z1, t) = Z11 cosωt,
y2(z2, t) = Z22 sinωt, x2(z2, t) = Z12 cosωt,
y3(z3, t) = Z23 sinωt, x3(z3, t) = Z13 cosωt .

(7)

The above expressions include the variables Z2i and Z1i (i = 1 ÷ 3). These
variables can be determined by the following dependencies:

Z21 =
(
R̄1 + V̄1

)
, Z11 =

(
L̄1 + P̄1

)
,

Z22 =
(
R̄2 cosω0z2 + S̄2 sinω0z2 + V̄2 coshω0z2 + W̄2 sinhω0z2

)
,

Z12 =
(
L̄2 cosω0z2 + M̄2 sinω0z2 + P̄2 coshω0z2 + Q̄2 sinhω0z2

)
,

Z23 =
(
R̄3 cosω0z3 + S̄3 sinω0z3 + V̄3 coshω0z3 + W̄3 sinhω0z3

)
,

Z13 =
(
L̄3 cosω0z3 + M̄3 sinω0z3 + P̄3 coshω0z3 + Q̄3 sinhω0z3

)
,

(8)

where R̄i, S̄i, V̄i, W̄i, L̄i, M̄i, P̄i and Q̄i (i = 1 ÷ 3) are the constants of integration.
ω0 is a parameter that can be calculated from a dependency known from technical
literature [11].

The expressions for the velocities of the mass centers can be written in the
final form.

ẏ1(z1, t) = Z21ω cosωt, ẋ1(z1, t) = −Z11ω sinωt,
ẏ2(z2, t) = Z22ω cosωt, ẋ2(z2, t) = −Z12ω sinωt,
ẏ3(z3, t) = Z23ω cosωt, ẋ3(z3, t) = −Z13ω sinωt .

(9)

Taking into account the fact that the constants of integration for the two planes
are equal to one another, i.e., R̄i = L̄i, S̄i = M̄i, V̄i = P̄i and W̄i = Q̄i (i = 1÷3), we
conclude that the variables Z2i and Z1i (i = 1 ÷ 3) are also equal, i.e., Z21 = Z11,
Z22 = Z12, Z23 = Z13.

The constants of integration can be calculated from the following dependen-
cies:

R̄i =
∆R̄i

∆B
, S̄i =

∆S̄i

∆B
, V̄i =

∆V̄i

∆B
, W̄i =

∆W̄i

∆B
, (i = 1, 2, 3), (10)

where ∆B, ∆R̄i
, ∆S̄i , ∆V̄i

and ∆W̄i
(i = 1 ÷ 3) are determinants that take different

values at different values of the linear and geometric inaccuracies, i.e., at different
values of e and α.
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In expression (12), the following symbols are used: E is the modulus of
elasticity, J = Jx = Jy is the axial moment of inertia of the main shaft. Abm, Bbm
and Mbm can be calculated from the dependencies shown below.

Abm =
1

2(b1+c1)

[
ω2(Jξ − Jς ) sin 2α − 2ω2m3(a1 + b1 + c1 + e sin α)e cos α

−
(
Rn
b + RΣ

)
e cos α

]
,

Bbm =
1

2(b1+c1)

[ (
Rn
b + RΣ

)
e cos α + 2ω2m3(a1 + e sin α)e cos α (14)

− ω2(Jξ − Jς ) sin 2α
]
,

Mbm =
1
2
[(

Rn
b + RΣ

)
e cos α − ω2

(
Jξ − Jς − m3e2

)
sin 2α

]
,

where RΣ is the total resistance force acting between the workpiece and the band
saw machine. This force is calculated for each individual case. Rn

b is the normal
force loading the workpiece. This force can be calculated from expressions that are
available from various sources [6, 12] and written below.

Rn
b =

mK∆(λ)bH u
V

, (15)

where V is the cutting speed, His the thickness of the workpiece, u is the feeding
speed, b is thewidth of the cutter.m is a coefficient that changeswithin the following
limits 0 6 m 6 1. K∆(λ) is the specific work of the cutting. It is determined from
the expressions below [13].

K∆ = k +
aρp
uz∆
+
α∆H

b
, Kλ = k +

aρps
buzλ

+
αλH

b
. (16)

The symbol α∆(λ) (α∆ for stage-set teeth and αλ for part-set teeth) is the friction
intensity of the shavings on the cutting walls, aρ is a coefficient of the blunt teeth,
s is the thickness of the band saw blades. The fictitious pressure on the front side
of the teeth is marked with k and p is the fictitious specific force on the back side
of the teeth. The feeding of one tooth is marked with uz∆, uzλ.

In order to obtain an expression for the kinetic energy of the mechanical system
in the final form, we substitute the expressions (9) in expression (3), taking into
account the explanations given above.

Tr =
1
2

Jrω2 +
1
2

m3 Z2
21ω

2 +
1
2

m5 Z2
22ω

2 +
1
2

m2 Z2
23ω

2 . (17)

We write this expression in its final form.

Tr =
1
2

(
Jr + m3 Z2

21 + m5 Z2
22 + m2 Z2

23

)
ω2. (18)
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2.4. Kinetic energy loss of the mechanical system resulting from linear
and angular inaccuracies

The loss of kinetic energy can be calculated from the following expression:

∆T = Tr − Tp . (19)

We replace Tr and Tp with their equal expressions written in (18) and (1) and
get the following expression:

∆T =
1
2

(
Jr + m3 Z2

21 + m5 Z2
22 + m2 Z2

23

)
ω2 −

1
2

Jpω2. (20)

We transform the above expression and get the following dependency:

∆T =
1
2
[(

J ′3 − J3
)
+ m3 Z2

21 + m5 Z2
22 + m2 Z2

23

]
ω2. (21)

We record expression (21) in a more detailed form.

∆T =
1
2
[ (

Jζ cos2 α + Jξ sin2 α + m3e2 cos2 α − J3
)
+ m3 Z2

21

+ m5 Z2
22 + m2 Z2

23

]
ω2. (22)

In the above expression, we take into account the fact that J3 ≡ Jζ , when there
are no linear and angular inaccuracies, i.e., when e = 0 and α = 0. Thus, we can
write the expression for kinetic energy loss in the presence of linear and angular
inaccuracies in the following form:

∆T =
1
2
[(

Jξ − Jζ
)

sin2 α + m3e2 cos2 α + m3 Z2
21 + m5 Z2

22 + m2 Z2
23

]
ω2. (23)

We replace the dependencies Z2i (i = 1−3) with their equivalents and ob-
tain the expression for the loss of kinetic energy in the presence of linear and
angular inaccuracies in the final form. This expression is presented below as the
dependence (24).

∆T =
1
2



(
Jξ − Jζ

)
sin2 α + m3e2 cos2 α + m3

(
∆R̄1

∆B
+
∆V̄1

∆B

)2
ω2+

+
1
2

[
m5

(
∆R̄2

∆B
cosω0z2 +

∆S̄2

∆B
sinω0z2 +

∆V̄2

∆B
coshω0z2+

+
∆W̄2

∆B
sinhω0z2

)2
ω2 +

1
2

[
m2

(
∆R̄3

∆B
cosω0z3 +

∆S̄3

∆B
sinω0z3+

+
∆V̄3

∆B
coshω0z3 +

∆W̄3

∆B
sinhω0z3

)2
ω2. (24)

This expression allows calculating the loss of kinetic energy at different values
of the linear and angular deviations, as well as different values of the mass, and
geometric and kinematic characteristics of the mechanical system.



Energy losses in big band saw machines – analysis and optimization 347

3. Optimization solutions

3.1. Optimization solutions reducing energy losses

As can be seen from the expression (24), the loss of kinetic energy of big
band saw machines depends on different parameters. The purpose of this part of
the study is to propose optimization solutions that minimize these losses. We use
optimization procedure with constraints-fmincon [14]. This procedure looks for
the minimum of a multidimensional function with the corresponding constraints.
In this case, the interval of constraints in which the parameters e and α change
must be determined. These constraints are expressed by the following inequalities:
lb 6 [e, α] 6 ub, where lb and ub are the lower and upper bounds. It is also
necessary to determine the initial approximation x0 around which the function
has a local minimum. If the initial approximation is inappropriate, the procedure
selects a new initial approximation. The way in which the optimization procedure
is applied is shown below. In order to start the procedure, it is necessary to create
an objective function, which uses Eq. (24).

function F_def
x0 = [Initial Approximation];
lb = [Lower Bounds];
ub = [Upper Bounds];
ops = optimset(’LargeScale’,’off’);
[x,fval,exitflag,output]=fmincon(@def1,x0,A,b,Aeq,beq,lb,ub,nonlcon,ops),
function F1=def1(x)
.
objective function
.
.
F1 = [expression for calculating the loss of kinetic energy – see Eq. (24)].

3.2. Optimization procedure – application

Due to the large dimensions of the leading wheels, they are always produced
with corresponding inaccuracies. The magnitudes of these inaccuracies depend
on many factors, such as different manufacturing technologies, different assembly
technologies, different operating conditions, and more. For this reason, we use the
allowable technological boundaries in which the parameters e and α are enclosed,
i.e., emin 6 e 6 emax, αmin 6 α 6 αmax. These boundaries determine the zone in
which the band saw machine can operate. This zone is called the working zone.
The area under the working zone is called the initial zone and the area above the
working zone is called the final zone. We can apply the optimization procedure for
the three zones. However, this is not always necessary. The most important area in
which we look for an optimization solution is the working zone. In order to obtain



348 Boycho Marinov

the optimal values of the parameters e and α, in which the loss of kinetic energy is
minimal, we use the following input data [6, 13, 15–17]:

ω = 50 [s−1], V = 40 [m/s], u = 0.5 [m/s], ω0 = 0.6026 [1/m],
β = 0.2 [rad], γ = 0.1 [rad], H = 0.42 [m], a1 = 0.6 [m],

b1 = 0.6 [m], c1 = 0.6 [m], d1 = 0.4 [m], z1 = 0 [m],
z2 = 1.2 [m], z3 = 2.2 [m], r1 = 0.12 [m], r2 = 0.25 [m],
r3 = r4 = 0.8 [m], r5 = 0.1 [m], r6 = 0.16 [m], b = 2.5 [mm],
g = 9.81 [m/s2], m2 = 145 [kg], m3 = 810 [kg], m5 = 85 [kg],

Jξ = 171 [kgm2], Jς = 336 [kgm2], m = 0.5,
J = Jx = Jy = 121 × 10−8 [m4], ρ = 7850 [kg/m3], Ne = 43.4 [kW],

K∆ = 80 · 106 [J/m3], E = 2.06 × 1011 [Pa], RΣ = 2400 [N], Rn
b = 525 [N].

We can calculate the values for the change of kinetic energy using the obtained
expression (24), as well as the input data shown above. In this case, the parameter
e changes from 0 to 0.0015 with step 0.0001 and the parameter α changes from 0
to 0.025 with step 0.0025. The obtained values are presented below as a matrix.

∆T = 103×



0.0000 0.0249 0.0996 0.2241 0.3984 0.6224 0.8962 1.2197 1.5929 2.0157 2.4882

0.0003 0.0302 0.1099 0.2395 0.4188 0.6479 0.9267 1.2552 1.6335 2.0613 2.5388

0.0010 0.0360 0.1208 0.2553 0.4397 0.6738 0.9577 1.2913 1.6745 2.1074 2.5899

0.0023 0.0423 0.1321 0.2717 0.4611 0.7003 0.9892 1.3278 1.7160 2.1540 2.6415

0.0040 0.0491 0.1439 0.2886 0.4830 0.7272 1.0211 1.3648 1.7581 2.2010 2.6936

0.0063 0.0564 0.1563 0.3060 0.5054 0.7547 1.0536 1.4023 1.8006 2.2486 2.7462

0.0091 0.0642 0.1691 0.3239 0.5284 0.7826 1.0866 1.4403 1.8437 2.2967 2.7993

0.0124 0.0725 0.1825 0.3423 0.5518 0.8111 1.1201 1.4789 1.8873 2.3453 2.8529

0.0162 0.0814 0.1964 0.3612 0.5757 0.8401 1.1541 1.5179 1.9313 2.3944 2.9070

0.0204 0.0907 0.2107 0.3806 0.6002 0.8695 1.1886 1.5574 1.9759 2.4440 2.9617

0.0252 0.1005 0.2256 0.4005 0.6251 0.8995 1.2237 1.5975 2.0210 2.4941 3.0168

0.0305 0.1109 0.2410 0.4209 0.6506 0.9300 1.2592 1.6380 2.0666 2.5447 3.0725

0.0363 0.1217 0.2569 0.4418 0.6765 0.9610 1.2952 1.6791 2.1127 2.5958 3.1286

0.0426 0.1330 0.2732 0.4632 0.7030 0.9925 1.3317 1.7207 2.1593 2.6475 3.1853

0.0495 0.1449 0.2901 0.4851 0.7299 1.0245 1.3688 1.7627 2.2064 2.6996 3.2424

0.0568 0.1572 0.3075 0.5076 0.7574 1.0570 1.4063 1.8053 2.2540 2.7522 3.3001



.

The obtained values show that the loss of kinetic energy changes significantly
when the two parameters change. For this reason, we are looking for a solution in
which the dynamic system will work in optimal mode. For this purpose, we apply
the optimization procedure.
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• working zone
For this zone, we define the bounds within which the parameters e and α

change. It is also necessary to determine the lower and upper bounds lb and ub as
well as the initial approximation x0.

x0 = [0.0125 0.00075];
lb = [0.005 0.0003];
ub = [0.020 0.0012].

The following results are obtained after executing the procedure.

e = 4 × 10−4 [m], α = 0.00524 [rad], ∆T = 155.42 [J].

• initial zone
In this zone, the parameters e and α change within the following boundaries:

0 6 e 6 0.0015, 0 6 α 6 0.0050. We can define the lower and upper bounds lb
and ub. It is necessary to determine the initial approximation around which the
function ∆T has a local minimum. The results for this zone are presented below.

e = 0, α = 0, ∆T = 0.

• final zone
For this zone, the bounds within which the parameters change are: 0 6 e 6

0.0015, 0.020 6 α 6 0.025. We can determine the lower and upper bounds lb and
ub as well as the initial approximation x0. The kinetic energy losses are the largest
in this case. For this reason, the dynamic system should not operate in this zone.
The minimum and maximum values of ∆T are written below.

e = 0, α = 0.020 [rad], ∆T = 1.5929 × 103 [J],
e = 1.5 × 10−3 [m], α = 0.025 [rad], ∆T = 3.3001 × 103 [J].

4. Analysis of the obtained results

The calculated numerical data show the change of the function ∆T depending
on the change of linear and angular inaccuracies. These parameters depend on the
operating conditions under which the two leading wheel work. The most important
zone is theworking zone. Theminimumenergy loss for this zone is ∆T = 155.42 [J].
This value is calculated by the optimization procedure at the corresponding values
of the two parameters. These values are the optimization values and can be used
in the operating mode. Having technological capabilities for measuring the real
values of e and α, one can determine how far these values differ from the optimal
ones. It can also be determined to what extent the real value of the function ∆T
differs from its minimum value. This allows determining whether the real machine
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is operating in optimal mode with minimum energy loss. If the difference is very
large, technological solutions can be proposed to reduce this difference.

The initial zone is the most desirable zone in which the band saw machine can
operate. In this case, the minimum energy loss is ∆T = 0. This value is obtained
in the absence of linear and angular inaccuracies. Unfortunately, this case is unreal
and cannot be applied. The band saw machine can operate in this area assuming
high-grade work of the two leading wheels, as well as very precise technology of
their assembling. However, this is difficult to achieve and often the abovementioned
parameters have arandom character.

The last zone in which the band sawmachine can operate is the final zone. This
is the most undesirable area because the energy loss is much greater than that in the
other two zones. In this case, the calculated values change in the following interval:
1.5929× 103 6 ∆T 6 3.3001× 103 [J]. Such conditions may occur after prolonged
operation of the band saw machine. In the operating mode, large dynamic and
shock forces and moments occur that exert loads on the two leading wheels. These
loads can change the magnitudes of the linear and angular inaccuracies, i.e., of
the parameters e and α. If the values of these parameters exceed the maximum
permissible values determined in the design of the machine, it is necessary to
propose technological solutions for their reduction. In this way, one can guarantee
the work of the band saw machine in the work zone with minimal energy loss.

5. Conclusion

In this article, we examined the loss of kinetic energy in big band sawmachines.
The main objectives of the study are formulated and the corresponding main tasks
are solved. Expressions have been obtained to calculate the kinetic energy of the
mechanical system in the ideal and the real case.With the help of these expressions,
the final dependence for determining the energy losses for the studied class of
machines was obtained. This dependence shows the influence of linear and angular
inaccuracies, i.e., of the parameters e and α. A number of optimization solutions
have been proposed that allow to calculate the values of both parameters that ensure
a minimum value of energy loss.

The results obtained in the study may find application in the design of new
band saw machines. The function ∆T may take different values for each specific
choice of the correspondingmass, inertial, geometric and kinematic characteristics.
This means that the designers could change the characteristics of the main links
of the machines, in particular: masses, mass moments of inertia, axial moments
of inertia, linear dimensions as well as cutting speeds, feeding speeds and angular
velocities, so that the working operation can be carried out with minimum energy
consumption.

In conclusion, this research can be seen as a contribution to the contemporary
knowledge on energy conservation and design of energy-saving machines. It may
contribute to better understanding of these problems and prove useful for many



Energy losses in big band saw machines – analysis and optimization 351

researchers. In particular, the proposed approach can be used in the design of other
classes of big woodworking machines, as well as in the study of energy losses for
this class of machines.

Manuscript received by Editorial Board, June 15, 2020;
final version, September 03, 2020.
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