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Static behaviour of functionally graded plates resting on
elastic foundations using neutral surface concept

In this study, static behaviors of functionally graded plates resting on Winkler-
Pasternak elastic foundation using the four-variable refined theory and the physical
neutral surface concept is reported. The four-variable refined theory assumes that
the transverse shear strain has a parabolic distribution across the plate’s thickness,
thus, there is no need to use the shear correction factor. The material properties of
the plate vary continuously and smoothly according to the thickness direction by a
power-law distribution. The geometrical middle surface of the functionally graded
plate selected in computations is very popular in the existing literature. By contrast, in
this study, the physical neutral surface of the plate is used. Based on the four-variable
refined plate theory and the principle of virtual work, the governing equations of the
plate are derived. Next, an analytical solution for the functionally graded plate resting
on the Winkler-Pasternak elastic foundation is solved using the Navier’s procedure.
In numerical investigations, a comparison of the static behaviors of the functionally
graded plate between several models of displacement field using the physical neutral
surface is given, and parametric studies are also presented.

1. Introduction

In recent years, together with the advancement in material sciences, a new
kind of material is proposed called the functionally graded materials (FGMs).
This type of material consists of two ceramic and metal constituents, thus, it has
many advantages such as high strength, toughness, and good capacity of corrosion
and thermal resistance, etc. [1–3]. Besides, material properties of the functionally
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graded (FG) structure can vary smoothly and continuously according to its one or
more directions, hence, thismaterial may correct the disadvantages of the laminated
composite material in terms of peeling laminate off and focusing stresses. Recently,
functionally graded structures have been widely applied in various industries such
as civil engineering, aerospace engineering, nuclear, automotive, mechanics [4–9].

Interestingly, studies on the static and dynamic behaviors of the plate structures
have always attractedmany researchers in recent years. Until now, several models of
plate theories for static and dynamic behaviors have been proposed. The classical
plate theory (CPT) based on the Kirchhoff’s assumptions is the simplest, but is
suitable only for the thin plates due to ignoring the transverse shear deformation
effects [2, 10]. To overcome the limitation of the classical plate theory, there are
some models of the shear deformation plate theories introduced. For example,
the first-order shear deformation plate theory (FSDT) including the effect of the
transverse shear deformation was proposed. However, this plate theory needs an
additional assumption that transverse shear deformation strain through the thickness
of the plate is constant [11]. This phenomenon causes that the FSDT theory doesn’t
satisfy the zero traction boundary conditions on the bottom and the top surfaces
of the plate. In the next stage, the higher-order shear deformation plate theories
(HSDTs) were proposed to correct the inconvenience of the FSDT theory. Studies
on static behaviors and free vibration of the FG plates using the HSDTs maybe
be found in the literature [6, 12–16]. Besides, investigations of static and dynamic
behaviors of the FG plates on elastic foundations have also been getting attention.
A series of studies on the functionally graded plates resting on elastic foundation
has been carried out. However, most of these studies use the geometrical middle
surface for calculations. Actually, the geometrical middle surface does not coincide
with the physical neutral surface of the FG plate, due to the material properties of
functionally grade plate are not symmetric throughout its thickness, they can be
found in several works on static and dynamic characteristics of the FG plate based
on the neutral surface concept in the existing literature [17–21]. In many studies,
Zhang and Zhou [17], Thai and Uy [22], Khalfi et al. [23], Bellifa et al. [24] showed
that the stretching – bending coupling is equal to zero when the reference surface
selected is the neutral surface of FG plate. Therefore, the equations and calculations
for the FG plate are simpler than those of other approaches.

Based on the above reviews, this study focuses on static analysis of the func-
tionally graded plates resting on theWinkler-Pasternak elastic foundation using the
four-variable refined plate theory (RPT) together with the physical neutral surface
concept. By using Navier’s procedure, an analytical solution for the simply sup-
ported FG plate resting on the elastic foundation is found. Especially, in this paper,
comparisons of static behaviors (i.e., deflection and stress components) of several
models of displacement field using neutral surface concept are studied and some
useful comments are given.

This paper has four sections and they will be presented in the following. In
section 2, theoretical formulations used to derive the governing equations of the
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plate resting on elastic foundation, and aNavier’s procedure for static analysis of the
FG plate will be presented. In section 3, some comparisons to show the influences
of several models of displacement field on static behaviors (i.e., deflection, stress
results) of the FG plate will be given. Next, some effects of several relevant factors
(i.e., fraction volume index, geometric dimensions, and elastic foundation) on the
deflection and stress components will be also presented in section 3. In the last
section, some conclusions are given.

2. Theoretical formulations and solution methodology

2.1. Materials, kinematic and constitutive relations

A rectangular plate made of functionally graded material in the reference
coordinate system (x, y, z) is considered as shown in Fig. 1a. Symbols a, b, h
stand for length, width, and thickness of the plate, respectively. Symbols z and zns
denote the distances according to thickness direction from a certain point to the
geometrical middle surface and neutral surface of the FG plate as shown in Fig. 1b.
The material properties of the FGM (Young’s modulus, mass density), except the
Poisson’s ratio are assumed to be graded through the thickness direction of the
plate according to a simple power-law as follows [2, 23, 25]:

P(z) = Pm + (Pc − Pm)
(

z
h
+

1
2

)p
= Pm + (Pc − Pm)

(
zns + z0

h
+

1
2

)p
, (1)

where Pm and Pc are the material properties of the metal and ceramic constituents,
respectively; p is the volume fraction index and the parameter z0 is the shift of the
neutral surface from the physical middle surface of the FG plate. The variation of
material properties through the thickness of the plate with various volume fraction
index is illustrated in Fig. 2.

The bottom surface is metal-rich and the top surface is ceramic-rich, as shown
in Fig.1b. As we know, besides the concept of geometric middle surface, there

(a) A functionally graded plate resting on the
Winkler–Pasternak foundation

(b) The geometrical middle surface and
neutral surface of the FG plate

Fig. 1. Schematic of a functionally graded plate resting on the Winkler–Pasternak foundation
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Fig. 2. The variation of material properties through the thickness of the plate

is the concept of physical neutral surface, in which normal stresses are zero. The
position of the neutral surface can be determined by [23, 25]:

z0 =

h/2∫
−h/2

E(z)z d z

h/2∫
−h/2

E(z) d z

, (2a)

z∗ =

h/2∫
−h/2

E(z) f (z) d z

h/2∫
−h/2

E(z) d z

. (2b)

where E(z) is Young’s modulus of FGM, and the function f (z) is defined in
bellow, Eq. (3). Based on the physical neutral surface concept and the four-variable
refined plate theory, the displacement fields of the FG plate are assumed to be in
the form [23, 25, 26]:

u(x, y, z) = u0(x, y) − (z − z0)
∂wb

∂x
−

[
f (z) − z∗

] ∂ws

∂x
,

v(x, y, z) = v0(x, y) − (z − z0)
∂wb

∂y
−

[
f (z) − z∗

] ∂ws

∂y
,

w(x, y, z) = wb (x, y) + ws (x, y).

(3)

where f (z) = −
1
4

z+
5
3

z3

h2 ; u0, v0 is the displacement components of a point located
on the neutral surface in the x- and y-directions, respectively; The total transverse



Static behaviour of functionally graded plates resting on elastic foundations using . . . 9

displacement of the midplane of the plate is w, symbols wb and ws are the bending
and shear components of mid-plane transverse displacement, respectively.

In this study, two models of the displacement field for the higher-order shear
deformation theory are considered and compared as follows:

• Model 1 (M1): z0 , 0, z∗ = 0. In this case, the reference surface is the
neutral surface of the FG plate, displacement fields based on the expressions
of Bousahla et al. [18] and Khalfi et al. [23].

• Model 2 (M2): z0 , 0, z∗ , 0. In this model, the reference surface is the
neutral surface of the FG plate, however, displacement fields based on the
expressions of Zhang [21], Shahverdi and Barati [25].

It is assumed that nonlinear components of the strain field are ignored in this
study. The linear strains of the FG plate can be defined by [21, 25]:




εx

εy

γxy



=




ε0
x

ε0
y

γ0
xy



+ (z − z0)




kb
x

kb
y

kb
xy



+

[
f (z) − z∗

] 


ks
x

ks
y

ks
xy



, (4a)




γyz

γxz



= g(z)




γsyz
γsxz



. (4b)

where

ε0
x =

∂u0
∂x

, kb
x = −

∂2wb

∂x2 , ks
x = −

∂2ws

∂x2 , (5a)

ε0
y =

∂v0
∂y

, kb
y = −

∂2wb

∂y2 , ks
y = −

∂2ws

∂y2 , (5b)

γ0
xy =

∂u0
∂y
+
∂v0
∂x

, kb
xy = −2

∂2wb

∂x∂y
, ks

xy = −2
∂2ws

∂x∂y
, (5c)

γsyz =
∂ws

∂y
, γsxz =

∂ws

∂x
, (5d)

g(z) = 1 − f ′(z) =
5
4
− 5

( z
h

)2
. (5e)

The constitutive relation of the FG plate is given by:




σx

σy

σxy

σyz

σxz




=



Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55






εx

εy

γxy

γyz

γxz




, (6)

with

Q11 = Q22 =
E(z)

1 − υ2 , Q12 =
νE(z)
1 − υ2 , Q44 = Q55 = Q66 =

E(z)
2(1 + υ)

. (7)



10 Van-Loi Nguyen, Minh-Tu Tran, Van-Long Nguyen, Quang-Huy Le

The force and moment resultants in the FG plate are defined by:

*....
,




Nx

Ny

Nxy




,




Mb
x

Mb
y

Mb
xy




,




Ms
x

Ms
s

Ms
xy




+////
-

=

h/2∫
−h/2




σx

σy

σxy




(
1, z − z0, f (z) − z∗

)
d z, (8a)




Qyz

Qxz



=

h/2∫
−h/2




σyz

σxz



g(z) d z. (8b)

The matrix form of the Eq. (8) can be written as follows:




N
Mb

Ms



=



A B Bs

B D Ds

Bs Ds Hs






ε

kb

ks



, S = Asγ, (9)

where




N =
{

Nx Ny Nxy

}t
,

Mb =
{

Mb
x Mb

y Mb
xy

}t
,

Ms =
{

Ms
x Ms

y Ms
xy

}t
,

(10a)




ε =
{
ε0
x ε0

y γ0
xy,

}t

kb =
{

kb
x kb

y kb
xy

}t
,

ks =
{

ks
x ks

y ks
xy

}t
,

(10b)

S =
{

Qs
yz Qs

xz

}t
, (10c)

γ =
{
γyz γxz

}t
, (10d)

As =



As
44 0
0 As

55


, (10e)

M =



M11 M12 0

M12 M22 0

0 0 M66



, M = A, B, D, Bs, Ds, Hs . (10f)
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here, the coefficients Ai j , Bi j , Di j , Bs
i j , Ds

i j , Hs
i j , As

i j are defined by:

{
Ai j, Bi j, Di j

}
=

h/2∫
−h/2

{
1, (z − z0) , (z − z0)2

}
Qi j d z,

(i j) = (11, 12, 22, 66), (11a)

{
Bs
i j, Ds

i j, Hs
i j

}
=

h/2∫
−h/2

{ [
f (z) − z∗

]
, (z − z0)

[
f (z) − z∗

]
,

[
f (z) − z∗

]2 }Qi j d z, (i j) = (11, 12, 22, 66), (11b)

As
i j =

h/2∫
−h/2

g2(z)Qi j d z (i j) = (44, 55). (11c)

2.2. Governing equations

To obtain governing equations of the functionally graded plate resting on the
Winkler-Pasternak elastic foundation using the four-variable refined theory and
the physical neutral surface concept, the principle of virtual work is applied. The
analytical form of the principle of virtual work can be stated by:

δ
(
Up +Uf +Ω

)
= 0, (12)

where Up, Uf and Ω are the strain energy of the FG plate, the potential energy
due to the elastic foundation, and the potential energy due to the transverse applied
load, respectively.

The strain energy of the FG plate can be given by [27]:

Up =
1
2

∫
A

*...
,

Nxε
0
x + Nyε

0
y + Nxyγ

0
xy + Mb

x κ
b
x+

+Mb
y κ

b
y + Mb

xyκ
b
xy + Ms

x κ
s
x + Ms

y κ
s
y+

+Ms
xyκ

s
xy +Qs

yzγ
s
yz +Qs

xzγ
s
xz

+///
-

d x dy. (13)

The potential energy corresponding to the elastic foundation is defined by:

Uf =
1
2

∫
A




Kw (wb + ws)2 + Ks



(
∂ (wb + ws)

∂x

)2
+

+

(
∂ (wb + ws)

∂y

)2




d x dy. (14)
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The potential energy of the plate due to the applied transverse load is given by:

Ω = −

∫
A

q (wb + ws) d x dy. (15)

where, Kw , Ks are the transverse and shear stiffness coefficients of the elastic
foundation; and q is transverse applied load.

By substituting Eqs. (13)–(15) into Eq. (12), and then collecting the coefficients
(δu0, δv0, δwb, δws), governing equations of the FG plate resting elastic foundation
using four-variable refined theory can be obtained as follows [6, 27]:

δu0 :
∂Nx

∂x
+
∂Nxy

∂y
= 0, (16a)

δv0 :
∂Nxy

∂x
+
∂Ny

∂y
= 0, (16b)

δwb :
∂2Mb

x

∂x2 + 2
∂2Mb

xy

∂x∂y
+
∂2Mb

y

∂y2

−Kw (wb + ws) + Ks∇
2(wb + ws) + q = 0,

(16c)

δws :
∂2Ms

x

∂x2 + 2
∂2Ms

xy

∂x∂y
+
∂2Ms

y

∂y2 +
∂Qs

xz

∂x
+
∂Qs

yz

∂y

−Kw (wb + ws) + Ks∇
2(wb + ws) + q = 0.

(16d)

2.3. Navier solution

In this paper, static behavior of the simply supported FG plate is solved using
the Navier-type solution. The simply supported boundary conditions at ends of the
FG plate are given by:

v0 = wb = ws = Nx = Mb
x = Ms

x = 0, at x = 0, a,

u0 = wb = ws = Ny = Mb
y = Ms

y = 0, at y = 0, b.
(17)

Based on Navier’s procedure, the four unknowns of the displacement field
and the transverse applied load are assumed to be the double trigonometric series
[28–33] satisfying the simply supported boundary conditions as follows:




u0

v0

wb

ws




=

∞∑
m=1

∞∑
n=1




umnX ′m(x)Yn(y)
vmnXm(x)Y ′n (y)
wbmnXm(x)Yn(y)
wsmnXm(x)Yn(y)




(18)
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and

q =
∞∑

m=1

∞∑
n=1

qmnXm(x)Yn(y) (19)

with

qmn =
4

ab

a∫
0

b∫
0

q0(x, y)Xm(x)Yn(y) d x dy =
16q0

mnπ2 , (20)

for the uniformly distributed load, where umn, vmn, wbmn, wsmn are arbitrary
coefficients; and Xm(x) = sin(αx), Yn(y) = sin(βy) together with α = mπ/a,
β = nπ/b.

Substituting Eqs. (18) and (19) into Eq. (16), together with displacement
components, we get linear algebraic equations as follows:



S11 S12 S13 S14

S12 S22 S23 S24

S13 S32 S33 S34

S14 S24 S34 S44



×




umn

vmn

wbmn

wsmn




=




0
0

qmn

qmn




, (21)

where



S11 = A11α
2 + A66 β

2,

S12 = A12 β
2 + A66 β

2.

S13 = −B11α
2 − B12 β

2 − 2B66 β
2,

S14 = −Bs
11α

2 − Bs
12 β

2 − 2Bs
66 β

2,

(22a)




S21 = A66α
2 + A12α

2,

S22 = A66α
2 + A22 β

2,

S23 = −2B66α
2 − B12α

2 − B22 β
2,

S24 = −2Bs
66α

2 − Bs
12α

2 − Bs
22 β

2,

(22b)




S31 = −B11α
4 − 2B66α

2 β2 − B12α
2 β2,

S32 = −B12α
2 β2 − 2B66α

2 β2 − B22 β
4,

S33 = D11α
4 + 2D12α

2 β2 + 4D66α
2 β2

+D22 β
4 + Kw + Ksxα

2 + Ksy β
2,

S34 = Ds
11α

4 + 2Ds
12α

2 β2 + 4Ds
66α

2 β2

+Ds
22 β

4 + Kw + Ksxα
2 + Ksy β

2,

(22c)
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S41 = −Bs
11α

4 − 2Bs
66α

2 β2 − Bs
12α

2 β2,

S42 = −Bs
12α

2 β2 − 2Bs
66α

2 β2 − Bs
22 β

4,

S43 = Ds
11α

4 + 2Ds
12α

2 β2 + 4Ds
66α

2 β2

+Ds
22 β

4 + Kw + Ksxα
2 + Ksy β

2

S44 = Hs
11α

4 + 2Hs
12α

2 β2 + 4Hs
66α

2 β2 + Hs
22 β

4

+As
55α

2 + As
44 β

2 + Kw + Ksxα
2 + Ksy β

2.

(22d)

Once the coefficients (umn, vmn,wbmn,wsmn) are determined, all involved
quantities relating to the static behaviors (i.e., deflection and stress components)
of the FG plate can be obtained. In the following sections, the numerical results of
the static analysis of the FG plate will be presented in detail.

3. Results and discussions

Unless otherwise stated, in the next sections, a simply supported FG rectangular
plate made of aluminum (as the metal) and alumina (as the ceramic) is considered.
The Young’s elastic moduli of the metal and the ceramic are Em = 70 GPa and
Ec = 380 GPa, respectively. The Poisson’s ratio of the plate is assumed to be
constant and ν = 0.3. For convenience, the normalized parameters are denoted
by [27]:

w̄ =
100D0

q0a4 w

(
a
2
,

b
2

)
, z̄ =

z
h
,

σx(y) = −
h2

q0a2σx(y)

(
a
2
,

b
2
,−

h
2

)
,

τ̄xy =
h2

q0a2 τxy

(
0, 0,−

h
2

)
,

τ̄yz =
h

q0a
τyz

(
a
2
, 0,

h
6

)
,

τ̄xz =
h

q0a
τxz

(
0,

b
2
, 0

)
,

Kw = K0
E0h3

a4 , Ksx = υJ0
E0h3

a2 , Ksy = υJ0
E0h3

b2 ,

E0 = 1 GPa; D0 =
Ech3

12(1 − υ2)
.

(23)

Note that Ksx , Ksy are shear stiffness coefficients of the elastic foundation in x-
and y-directions.
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3.1. The shift of the neutral surface from the middle surface

To investigate the shift of the neutral surface of the FG plate, in this example,
two types of materials are used, they are Al/Al2O3 (Em = 70 GPa, Ec = 380 GPa)
and Al/ZrO2 (Em = 70 GPa, Ec = 200 GPa). Fig. 3 illustrates the variation of the
normalized shift (z0/h) of the neutral surface with respect to the volume fraction
index.

 

Fig. 3. The normalized shift of the neutral surface with respect to the volume fraction index

It could be noted that the shift of physical neutral surface calculated according
to Eq. (2a) is independent of the dimensional parameters of the plate (a, b), however,
it depends on the volume fraction index and the material properties (Ec, Em) of
the plate, and these relations are shown clearly in Fig. 3. Besides, the normalized
shift is equal to zero for the case of homogeneous material (i.e., p = 0), and getting
the maximum values when the volume fraction index p = 2÷5. The maximum
values of the shift of the neutral surface are significant, which means they assume
approximately 10% and 16% of the plate thickness.

3.2. Comparisons on static behaviors of the FG plate

In this section, an example is presented to compare between results of sev-
eral models of displacement field (i.e., model M1, model M2, and model of the
geometrical middle surface [27]) of the FG plate for static behaviors. Herein, the
normalized deflection and stress components of the simply supported FG rectan-
gular plate subjected to uniformly distributed load resting on the elastic foundation
(using the physical neutral surface concept) are compared with those of Thai and
Choi [27] based on the refined plate theory (without using the physical neutral sur-
face concept), and these results are given in Table 1. The geometrical dimensions
of the FG plate used are a/h = 10 and a/b = 3. As Table 1 shows, the obtained
results are identical, which confirms the reliability of the present approach.
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Table 1.
The normalized deflections and stress components of the FG plate resting on the elastic foundation

subjected to uniformly distributed load
Power law
index K0 J0 Method w̄ σ̄x σ̄y τ̄xy τ̄yz τ̄xz

p = 5

Ref. [27] 3.8506 0.5223 0.1785 0.2103
0 0 Present – M1 3.8506 0.5223 0.1785 0.2103 0.5363 0.5887

Present – M2 3.8506 0.5223 0.1785 0.2103 0.5363 0.5887
Ref. [27] 3.5620 0.4816 0.1633 0.1996

100 0 Present – M1 3.5620 0.4816 0.1633 0.1996 0.5164 0.5514
Present – M2 3.5620 0.4816 0.1633 0.1996 0.5164 0.5514
Ref. [27] 3.0972 0.4168 0.1394 0.1814

0 100 Present – M1 3.0972 0.4168 0.1394 0.1814 0.4822 0.4889
Present – M2 3.0972 0.4168 0.1394 0.1814 0.4822 0.4889
Ref. [27] 2.9046 0.3897 0.1294 0.1740

100 100 Present – M1 2.9046 0.3897 0.1294 0.1740 0.4680 0.4641
Present – M2 2.9046 0.3897 0.1294 0.1740 0.4680 0.4641

3.3. Discussion

In this section, the FG plate using model 2 (M2) of displacement field is
selected to investigate some influences of material and geometric parameters, and
elastic foundation on the static behaviors of the FG plate. In the next investigations,
unless otherwise stated, the geometrical dimensions of the FG plate used are
a/b = 1, a/h = 10.

3.3.1. Effects of the volume fraction index on the stress components

To show the effects of the volume fraction index and elastic foundation
on stress components, some investigations relating to normal stress components

σ̄x

(
a
2
,

b
2
, z

)
, σ̄y

(
a
2
,

b
2
, z

)
, and shear stress τ̄xy (0, 0, z) and τ̄xz

(
0,

b
2
, z

)
with var-

ious volume fraction indexes (i.e., p = 0, 1, 2, 5, 15) are plotted in Figs. 4, 5, 6
and 7.

The variation of normalized stress σx (a/2, b/2) across the thickness for the
FG plate not resting on elastic foundation (i.e., K0 = 0, J0 = 0) and resting on
elastic foundation (i.e., K0 = 100, J0 = 100) are shown in Fig. 4a and Fig. 4b,
respectively. Similarly, the variation of normalized stress σy (a/2, b/2) across the
thickness of the FG plate not resting on and resting on elastic foundation are plotted
in Fig. 5a and Fig. 5b.

As can be seen, the stresses vary nonlinearly through the thickness direction,
except for the case of homogenous material (i.e., p = 0) where the stresses vary
linearly. On the other hand, the stress levels of the FG plate resting on elastic
foundation are smaller than those of the FG plate not resting on elastic foundation.
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(a) without elastic foundation

 
(b) with elastic foundation

Fig. 4. Variation of the normalized stress σx (a/2, b/2) through the thickness of the FG plate

 
(a) without elastic foundation

 
(b) with elastic foundation

Fig. 5. Variation of the normalized stress σy (a/2, b/2) through the thickness of the FG plate

This is because the stiffness of the plate resting on elastic foundation increases in
comparison with that of the plate not resting on elastic foundation.

Fig. 6 shows the variation of the normalized shear stress τ̄xy (0, 0) with respect
to the thickness of the FG plate. It can be observed that, due to the effect of the
volume fraction index, the stresses vary nonlinearly through the thickness direction,

 
(a) without elastic foundation

 
(b) with elastic foundation

Fig. 6. Variation of the normalized shear stress τ̄xy (0, 0) through the thickness of the plate
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(a) without elastic foundation

 
(b) with elastic foundation

Fig. 7. Variation of the shear stress τ̄xz (0, b/2) through the thickness of the FG plate

except for the case of homogeneous material (i.e., p = 0), in which the stresses
vary linearly. Besides, the stress levels of the FG plate resting on elastic foundation
are smaller than those of the FG plate not resting on elastic foundation. Next, the
variation of normalized shear stress τ̄xz (0, b/2) with respect to the plate thickness
with some volume fraction indexes is plotted in Fig. 7. It can be seen that the
shear stresses satisfy the zeros conditions at the top and the bottom surfaces of
the FG plate. In the case of homogeneous material (i.e., p = 0), the shear stresses
τ̄xz (0, b/2) are the parabolic curves. Besides, the maximum values of the shear
stress for the case of isotropic material occur at the geometrical middle surface
(z = 0), however, the in other cases they do not occur at the middle surface of the
FG plate, as shown in Fig. 7.

3.3.2. Effects of the geometrical parameters on the plate deflection

To show the effects of the geometrical parameters on the normalized deflections
of the FG plate, two cases, the results of the deflection at the center of the plate
corresponding to the a/b and a/h ratios are investigated. The influences of the a/b
ratio on the normalized deflection of the FG plate are illustrated in Fig. 8, whereas
the effects of a/h ratio on the normalized deflection are shown in Fig. 9.

As Figs. 8 and 9 show, in both two cases, the normalized deflections of FG
plate decrease when the geometrical parameters a/b and a/h increase. The nor-
malized deflections of the FG plate decrease sharply as the geometrical parameters
(a/b, a/h) are small, as shown in the figures. It can be said that the deflection of the
FG plate is sensitive to the small changes in geometrical parameters (a/b, a/h).

By contrast, from Figs. 8 and 9, one can note that the normalized deflections
of the FG plate generally increase when the volume fraction indexes increase.
This phenomenon is due to the overall stiffness of the FG plate decrease when
the ceramic content in the FG plate decreases (i.e., volume fraction indexes rise).
Moreover, comparisons between results from Figs. 8a and 8b, and between results
from Figs. 9a and 9b, show that the elastic foundation leads to decreasing in
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(a) without elastic foundation

 
(b) with elastic foundation

Fig. 8. The effect of a/b ratio on the normalized deflection at the center of the FG plate

 
(a) without elastic foundation

 
(b) with elastic foundation

Fig. 9. The effect of a/h ratio on the normalized deflection at the center of the FG plate

deflections of the FG plate. It is because the elastic foundation is found to enhance
the overall stiffness of the plate.

4. Conclusions

In this paper, a study on static behaviors (i.e., deflection and stress components)
of the simply supported functionally graded plate resting on the elastic foundation
based on the four-variable refined theory and the physical neutral surface concept
is presented using the Navier’ procedure. In the numerical results, comparisons
of static behaviors between several models of displacement field are illustrated,
and several numerical investigations relating to the effects of parameters (volume
fraction index, dimension ratios, and elastic foundation) on the results of the FG
plate are given.

Based on numerical investigations, some key points can be given: (i) The
maximum values of the normalized shift of the neutral surface of the FG plate
are significant in comparison with the plate thickness. (ii) The results of the static
behaviors based on the physical neutral surface concept (both M1 and M2 models)
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of the FG plate exhibit insignificant differences in comparison with those of the
geometrical middle surface. (iii) The normalized deflections of the functionally
graded plate increase when the volume fraction indexes increase, due to decrease
in the stiffness of the FG plate as the ceramic content decreases. (iv) The small
geometrical ratios a/b and a/h are sensitive to the deflection of the FG plate, and
the deflection decreases sharply with the small a/b and a/h ratios. (v) The effect of
the elastic foundations leads to decreasing in the defection and the normal stresses
of the FG plate, which is due to heightening of the overall stiffness of the FG plate
resting on elastic foundation.

Besides, based on the present study, some potential research topics relating to
nonlinear analysis of the FG plate and shell structures using the physical neutral
surface concept can be investigated in future works.
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