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CHARACTERIZATION OF CORROSION AND STRESS CORROSION CRACKING OF AE44 MAGNESIUM ALLOY 

The paper presents the susceptibility of AE44 magnesium alloy to electrochemical corrosion and stress corrosion cracking 
(SCC). The evaluation of the intensity of the interaction of the corrosive environment was carried out using the corrosion tests and 
the Slow Strain Rate Test (SSRT). Corrosion tests performed in 0.1 M Na2SO4 solution (immersion in solution and under cathodic 
polarization conditions) revealed that the layer of corrosion products was much thicker after immersion test. The results of SSRT 
showed that the AE44 alloy deformed in the solution was characterized by higher plasticity compared to the alloy deformed in 
the air after immersion in solution. Moreover, the fractures were characterized by different morphology. In the case of an alloy 
deformed in the solution under cathodic polarization many microcracks on the fracture were observed, which were not observed 
in the case of the alloy deformed in the air.

Keywords: magnesium alloy, fractography, stress corrosion cracking (SCC), AE44

1. Introduction

Magnesium alloys are characterized by poor corrosion 
resistance, what limits their wide application [1-4]. There are 
two main reasons of poor corrosion resistance [5]: (i) oxide 
and hydroxide layer on the alloy surface do not protect against 
the environment and (ii) precipitates of secondary phases and 
impurities may lead to galvanic corrosion. The main phenomena 
associated with the electrochemical corrosion is oxidation of 
metal (M → M++ e–), releasing of the atomic hydrogen (during 
the contact with the electrolyte and cathodic protection) and its 
adsorption on metal surface [6-11]: (H3O+ + M + e– → MHads 
+ H2O or H2O + M + e– → MHads + OH–). The next stage is 
absorption of atomic hydrogen (MHads → MHabs). When the alloy 
is mechanically loaded, the absorbed hydrogen leads to stress 
corrosion cracking (SCC) [12-26]. The occurrence of hydrogen in 
the structure of magnesium and its alloys has a negative effect. In 
general, hydrogen leads to classical, unfavorable changes in the 
microstructure and properties of magnesium alloys exposed to 
hydrogen, such as decrease in their strength or plastic properties. 
So far, literature data on stress corrosion cracking are most often 
devoted commonly used alloys from the Mg-Al and Mg-Al-Zn 
systems. Rare earth elements (RE) are used as an additive to 
magnesium alloys to improve their strength properties at elevated 
temperatures. Also they improve their castability and corrosion 

resistance. Literature data dedicated to the SCC of magnesium 
alloys containing RE are rare. In addition, among the available 
works occur contradictory information. Some literature data con-
firms the beneficial effect of the additive of RE on the resistance 
of magnesium alloys to SCC, while other authors report their high 
susceptibility to SCC [23-26]. Therefore, detailed investigations 
that can determine the susceptibility of magnesium alloys with 
RE to SCC seems necessary.

2. Material and methodology

The research material was AE44 casting magnesium alloy 
containing rare earth elements (RE). The chemical composition 
of the alloy was as follows (wt. %): 4.2 Al, 0.2 Mn, 0.1 Si, 4.2 RE, 
Mg – balance. The material was manufactured by die-casting 
method in a form of bars (12 mm in diameter). 

The experiment consisted of two basic stages:
1. Analyzes morphology, chemical and phase composition of 

corrosion products (without mechanical loads),
2. Morphology of fracture surface in conditions stress corro-

sion cracking (SSC) analysis.
In the first stage of research, cubic-shape samples were used 

to evaluation of corrosion resistance in 0.1M Na2SO4 solution 
during two corrosion tests: (i) immersion test in the time of 24 h, 
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72 h, 168 h and 336 h (OCP – Open Circuit Potential) and (ii) 
corrosion test under cathodic polarization conditions (current 
density 50 mA/cm2).

In the second stage of research, the samples for SCC 
tests were turned from the bars (the gauge length: 20 mm, the 
gauge diameter: 5 mm). To evaluate the susceptibility for SCC, 
the slow strain rate tests (SSRT) were carried out (Standard 
ASTM G129 (2006): “Standard Practice Slow Strain Rate 
Testing to Evaluate the Susceptibility of Metallic Materials to 
Environmentally Assisted Cracking”). The strain rate (ε·) was 
set as 9 ∙10–7 s–1 and the SSRT was performed in four variants: 
(i) in air; (ii) in air after 24 h of immersion in 0.1M Na2SO4 
solution; (iii) in 0.1M Na2SO4 solution in OCP conditions; (iv) 
in 0.1M Na2SO4 solution during in situ hydrogenation under 
conditions of cathodic polarization (current density 50 mA/
cm2). The corrosion products after SSRT were removed from 
the fractures by the solution containing CrO3 (200 g/dm3) and 
AgNO3 (10 g/dm3). Then the fractures were rinsed in acetone 
using ultrasonic cleaner. The microstructure of samples were 
investigated by scanning electron microscope (SEM) Hitachi 
S-3400N equipped with energy dispersive X-ray spectrometer 
(EDS) Thermo Noran. The analysis of phase composition was 
performed by JEOL JDX-7S X-ray diffractometer. 

3. Results and discussion

Morphology, chemical and phase composition of corrosion 
products (without mechanical loads)

As a result of immersion of the samples in the 0.1M Na2SO4 
solution (OCP conditions), typical corrosion changes were ob-

served. After 24 h of exposure to the corrosive environment, the 
formation of local areas affected by corrosion changes of the 
α-Mg matrix was observed (Fig. 1a). After 72 h of immersion, 
the areas of the corrosion covered almost the entire surface of 
the sample (Fig. 1b). After 168 h of immersion, areas affected 
by corrosion changes merged to form a continuous layer of 
corrosion products, covering the entire surface of the sample 
(Fig. 1c). After 336 h of exposure, the entire surface of the 
sample was still covered with a continuous layer of corro-
sion products (Fig. 1d). It should be noted that the corrosion 
products formed on the surface of the immersed samples were 
characterized by the large number of cracks. Nevertheless, no 
signs of scaling of corrosion products from samples were ob-
served, regardless of the time of their exposure to the corrosive 
environment.

Observations of the surface layer of the samples on cross-
sections (Fig. 2) showed that with the increase of exposure time 
of the AE44 alloy to Na2SO4 solution, the range of corrosion 
changes into the material also increased. After 24 h (Fig. 2a), the 
average thickness of corrosion layer was 4.0 ± 1.4 μm. After 72 h 
(Fig. 2b), the average thickness of corrosion products increased 
to 6.4 ± 1.0 μm, while after 168 h (Fig. 2c) – to 13.4 ± 2.7 μm. 
After 336 h (Fig. 2d), the average thickness of corrosion layer 
into the alloy reached 34.3 ± 5.8 μm. It shows that the layer of 
corrosion products formed on the alloy surface provides only 
partial protection against corrosive environment. It may be 
caused by the numerous cracks in the layer which facilitate the 
contact of the environment with metallic substrate.

Analysis of the chemical composition (EDS) of corrosion 
layer on the AE44 alloy after immersion in Na2SO4 solution 
showed that its main components are: magnesium, oxygen, 
aluminum, lanthanum, cerium, manganese and sulfur (Fig. 3). 

Fig. 1. Microstructure of the samples made of AE44 alloy after corrosion test in OCP conditions (0.1M Na2SO4 solution): (a) 24 h; (b) 72 h; (c) 
168 h; (d) 336 h of immersion

Fig. 2. Microstructure of cross-sections of samples made of AE44 alloy after corrosion test in the OCP conditions (0.1M Na2SO4 solution): (a) 
24 h; (b) 72 h; (c) 168 h; (d) 336 h of immersion
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Analysis of the phase composition of the AE44 alloy after 168 h 
of exposure to Na2SO4 solution showed that the surface layer of 
the sample consisted of α-Mg (matrix), Mg(OH)2 and Al11La3 
phase (Fig. 3).

On the surface of the AE44 alloy after exposure to the 0.1M 
Na2SO4 solution in the cathodic polarization conditions, gradual 
formation of the corrosion layer on the samples was observed 
(Fig. 4). The number and size of areas changed by corrosion did 
not change significantly as the exposure time increased, what 
confirm good corrosion resistance of this alloy. 

Observations on cross sections confirmed the presence 
of a layer formed on the surface of the alloy (Fig. 5) after 8 h 
of exposure (Fig. 5d). The average thickness of the layer was 
0.7 ± 0.3 μm. With the increase of time, the thickness of the layer 
formed on the surface slightly increased. After 16 h of exposure 
(Fig. 5e) the thickness increased to 1.1 ± 0.2 μm, whereas after 
24 h of exposure (Fig. 5f) – up to 1.5 ± 0.2 μm. 

Morphology of fracture surface in conditions stress 
corrosion cracking (SSC)

Stress-strain curves obtained as a result of four variants of 
SSRT are shown in Fig. 6. The obtained curves are typical, with 
zones of elastic and plastic deformation, but without a physical 
yield point. Therefore, the proof stress Rp0.2 was determined, 
whose value regardless of the variant of the SSRT was similar 
and amounted to about 100 MPa. In the case of one of the samples 
deformed in the air (Fig. 6 – AE44-I-1), this value was slightly 
higher and amounted to 110 MPa. The highest tensile strength 
(Rm ≈ 170 MPa) was found in case of samples deformed in the 
air. Slightly lower strength (Rm ≈ 140 MPa) was found for the 
samples deformed in air after immersion in Na2SO4 solution and 
samples deformed in the Na2SO4 solution under OCP conditions 
(Rm ≈ 150 MPa). The lowest strength (Rm ≈ 110 MPa) reveal the 
samples deformed in solution under cathodic polarization condi-
tions. The change in elongation was very significant: samples 

Fig. 3. Results of analysis of chemical composition (EDS) and phase composition (XRD) of corrosion layer on AE44 magnesium alloy

Fig. 4. Microstructure of the samples made of AE44 alloy after corrosion test in cathodic polarization conditions (0.1M Na2SO4 solution): (a) 
before test; (b) 2 h; (c) 4 h; (d) 8 h; (e) 16 h; (f) 24 h
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deformed in air after immersion in solution were characterized 
by the elongation lower about 34÷39% in comparison to samples 
deformed in solution (OCP conditions). This unexpected result 
seems to confirm that AE44 alloy is less susceptible to SCC in 
OCP conditions than in air after immersion in corrosive solution.

Investigation of the fractures after SSRT reveals some pores 
with varying sizes (Fig. 7). This porosity was created during the 
die-casting of the AE44 alloy and it is typical for this process. 
The presence of many cracks on the fractures was also found 
(Fig. 7). 

Fig. 5. Microstructure of cross-sections of samples made of AE44 alloy after corrosion test in cathodic polarization conditions (0.1M Na2SO4 
solution): (a) before test; (b) 2 h; (c) 4 h; (d) 8 h; (e) 16 h; (e) 24 h

Fig. 6. Stress-strain curves (ε· = 9 ∙10–7 s–1) for the samples made of AE44 alloy after SSRT in air, in air after immersion in Na2SO4 solution, in 
Na2SO4 solution (OCP) and in Na2SO4 solution (cathodic polarization)

Fig. 7. Typical fracture images of AE44 alloy: (a) SSRT in air; (b) SSRT in air after immersion in Na2SO4 solution; (c) SSRT in Na2SO4 solution 
(OCP); (d) SSRT in Na2SO4 solution (cathodic polarization)
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The detailed analysis of the fractures morphology (Fig. 8) 
showed that:
• SSRT in the air leads to the intergranular fractures with few 

small micro cracks;
• SSRT in air (after immersion in Na2SO4 solution) or in 

solution (OCP and cathodic polarization conditions) leads 
to transgranular fractures with brittle areas and many micro 
cracks;

• the microcracks of the fractures were mainly transgranular, 
but there were also rare intergranular cracks;

• secondary cracks visible on the fractures were small and 
were located only close to surface of the samples.

4. Summary

In the summary of electrochemical corrosion results (two 
corrosion tests: (i) immersion test in the time of 24 h, 72 h, 
168 h and 336 h (OCP – Open Circuit Potential) and (ii) corro-
sion test under cathodic polarization conditions (current density 
50 mA/cm2) and stress corrosion cracking (SSC) (four variants 
SSRT: (i) in air; (ii) in air after 24 h of immersion in 0.1M  Na2SO4 
solution; (iii) in 0.1M Na2SO4 solution in OCP conditions; (iv) in 
0.1M Na2SO4 solution during in situ hydrogenation under condi-
tions of cathodic polarization (current density 50 mA/cm2)) and 
of the qualitative evaluation of fracture surfaces after the SSRT 
tests, the following conclusions were formulated for AE44 alloy:
1. Analysis of corrosion products on the AE44 alloy in the 

0.1M Na2SO4 solution (OCP conditions) in OCP conditions 
and under cathodic polarization conditions (current density 
50 mA/cm2) showed that: 
– in OCP conditions with increasing immersion time of the 

samples in the solution (from 24 h to 336 h), the corro-
sion products (locally on the surface after 24h to almost 
total surface coverage after 72 hours) were observed 
with a characteristic network of cracks reaching up to 
the metallic alloy matrix, and under cathodic polarization 
conditions gradual formation of the corrosion layer on 
the samples was observed, and the number and size of 
areas changed by corrosion did not change signifi cantly 
as the exposure time increased,

– in OCP conditions – the thickness of corrosion products 
has changed since 4.0 μm after 24 h, to 6.4 μm after 72 h, 
13.4 μm after 168 h and 34.3 μm after 336 h, a under 

cathodic polarization conditions – 0.7 μm after 8 h, 
1.1 μm after 16 h i 1.5 μm after 24 h, 

– analysis of chemical and phase composition showed that 
the corrosion products contained mainly: magnesium, 
oxygen, aluminum, lanthanum, cerium, manganese and 
sulfur, and in terms of phase composition: α-Mg (matrix), 
Mg(OH)2 and Al11La3 phase.

2. The impact of mechanical loads and the corrosive envi-
ronment (in three variants SSRT) under stress corrosion 
cracking SSC conditions on the properties of AE44 took 
the form of deterioration in mechanical properties with 
different levels depending on the test condition.

3. The qualitative fractography analysis of the fracture surfaces 
of the AE44 specimens after the SSR tests in air and in the 
corrosive solution under three variants conditions revealed 
intergranular fractures with few small microcracks in air 
and transgranular fractures with brittle areas and many 
microcracks in the case of the specimens tested in the 
corrosive environment, the microcracks of the fractures 
were mainly transgranular, but there were also rare inter-
granular.
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