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Abstract. Irregular systems with long-range interactions and multiple clusters are considered. The presence of clusters leads to excessive com-
putational complexity of conventional fast multipole methods (FMM), used for modeling systems with large number of DOFs. To overcome 
the difficulty, a modification of the classical FMM is suggested. It tackles the very cause of the complication by accounting for higher intensity 
of fields, generated by clusters in upward and especially in downward translations. Numerical examples demonstrate that, in accordance with 
theoretical estimations, in typical cases the modified FMM significantly reduces the time expense without loss of the accuracy.
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after spatial discretization of BIE for a continuous media (in 
micromechanics). For certainty, the following discussion is per-
formed in terms of continuum mechanics.

In the both cases, a discretized system may be strongly 
irregular due to the presence of clusters of field concentra-
tion. Then the number of translations, performed on up and 
downward travels a hierarchical tree, and consequently the 
total time expense for the translations, becomes unacceptable. 
The objective of the paper is to develop a general, simple and 
easily implemented means to drastically reduce the number of 
translations of any FMM, when a system is strongly irregular.

We suggest an improvement of the classical FMM, employ-
ing the very cause of the difficulty, which is the presence of 
clusters with high intensity of sources. To this end, we evaluate 
the intensities of objects and compare them when performing 
up- and downward translations on iterations of solving the sys-
tem. Translations from objects of relatively small intensity are 
excluded from execution.

The structure of the paper is as follows. In Section 2, the 
essence of the problem and the main suggestion are presented. It 
is noted that for homogeneous, in particular regular, systems, all 
the intensities are the same, and a FMM works in a usual way. 
In contrast, for a system with significant difference of intensi-
ties, the number of translations is unavoidably reduced. From 
general considerations it appears that in limit all the transla-
tions may be excluded what suggests that the gain may be quite 
significant. Section 3 contains general comments on numerical 
realization of the improvement suggested. It explains that the 
implementation requires just complementing a computational 
program of any FMM with a simple subroutine(s) evaluating 
intensities and comparing them with a threshold. In Section 4, 
illustrative examples are given to reveal the extent of possible 
decrease in the number of translations in practical calculations. 
They show that indeed in typical cases of systems with clusters, 
the number of translations and consequently the time expense 
for their execution drastically decreases. Brief conclusions are 
summarized at the end of Section 4. They emphasize that the 

1.	 Introduction

In nano- and micromechanics, numerical simulation unavoid-
ably leads to the need to consider multiple pair-wise interac-
tions between discrete particles (in nano-mechanics), or ele-
ments which appear after discretization of partial differential 
equations for a continuous medium (in micromechanics). Direct 
accounting for each of interactions would lead to immense time 
expense. Thus in practice, the interactions are divided on those 
within an area containing close neighbors (short-range inter-
actions), and those including elements beyond this area (long-
range interactions). For rapidly decreasing potentials of Len-
nard-Jones type, merely the first group is of essence [9, 10, 15]. 
Then interactions involve merely quite a limited number of 
close neighbors, the interaction matrix is low-populated and 
well-developed methods for such matrices (e.g. [21, 26]) are 
available and widely used. They reduce the computational com-
plexity to the order of the number N of the system DOF. This 
makes the time expense acceptable even if N is large.

However, for Coulombian and gravitational potentials in 
nano-mechanics, and for kernels (potentials), corresponding to 
fundamental solutions of Laplace or Kelvin type in boundary 
integral equations (BIE) of continuum mechanics, the long-
range interactions cannot be neglected. To account for them with 
non-excessive time cost, special methods are developed (see, 
e.g. [2, 5, 14, 23, 24]). Such are methods of Ewald՚s type [23], 
employing Fourier transform, and, in a general case, fast mul-
tipole methods (FMM), initiated by Greengard and Rokhlin [5] 
and further developed in analytical (A-FMM) (e.g. [14, 17‒19]) 
and kernel independent (KI-FMM) (e.g. [2, 12, 13, 24, 25]) 
forms. FMM are equally applicable to physically discrete 
systems (in nano-mechanics) and to discrete systems, arising 
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implementation of the improvement suggested is quite simple 
and requires quite small changes in a code of a conventional 
FMM. For a system without clusters, the calculations are auto-
matically performed as usual.

2.	 Essence of the problem and the main suggestion

Consider a conventional FMM, analytical or kernel indepen-
dent. The concepts and terminology, used in the following 
discussion, are those explained in the works [14, 24, 25]. The 
key idea of a FMM consists of removing the complexity N 2 
of matrix-to-vector multiplications, performed on iterations of 
solving the system of equations. The number N of DOFs in 
evaluations of the complexity appears now in the first degree 
as O(N ) instead of O(N 2). Then the complexity is actually 
defined by multiply repeated up- and downward runs, each of 
which requires performing translations. The complexity of an 
individual translation is of order p2, where p is the number of 
expansion terms in the A-FMM, or the number of nodal values 
of equivalent densities in the KI-FMM. For a scalar potential, 
the number p is at least 10 in 2D problems; it is at least 100 
in 3D. Although the complexity of an individual translation 
is not high, one needs to perform MT translations on each of 
MIT iterations. Thus the total complexity is of order p2MT MIT. 
It becomes unacceptable, if the number of translations is too 
large. In the product p2MT MIT , each of the factors may be 
minimized by, respectively, (i) developing special methods of 
matrix-to-vector multiplication, (ii) using improved precondi-
tioners and/or initial guess, and (iii) reduction of the number MT 
of translations. Each of these items has been a subject of special 
researches. The reduction of the complexity p2 of individual 
translations, in some cases, may be achieved by SVD acceler-
ation [2, 24] or by using ad hoc methods in particular cases. 
For instance, as shown in the paper [6], Coulombian potential 
in 3D may be represented by repeated integral evaluated via 
specially designed quadrature rules. This reduces the complex-
ity from p2 to nearly p, while the great number of terms in the 
quadrature rules notably decreases the computational efficiency 
of the method.

The second path (using improved preconditioner and/or ini-
tial guess) refers mostly to boundary element methods (BEM), 
which require iterations to find unknown densities. It is strongly 
dependent on a particular potential (kernel of a boundary inte-
gral) and on a particular problem (e.g. [16]).

The third way (reducing the number MT of translations) 
suggests means less sensitive to the form of a potential than the 
two previous. When there is an occasion, it may be employed 
together with them. Thus it is of importance to develop 
approaches, which reduce the number of translations. From 
now on, we focus on this topic.

In any FMM, the greatest number of translations is per-
formed on the bottle-neck stage of a downward run. These 
are M2L translations on each hierarchical level for each box 
belonging to this level. The classical def initions of M2L 
translations, interaction and V lists (e.g. [14, 24]) imply that 
the number of M2L translations to a cell B on some level of 

a hierarchical tree equals to the number of entries in its V-list. 
The number of entries is maximal when there are no empty 
cells in a tree (this is the case for homogeneous distribution 
of sources). In this case, V-lists introduced in [24] (see also 
[25]) for non-uniform distributions, coincide with the interac-
tion lists, considered in [14] for nearly uniform distributions. 
Then the interaction list of a cell B includes all the cells, which 
belong to the neighbors of the B parent, but which are not 
neighbors of B itself. In Fig. 1, the contour of the cell B is 
shown by bold solid line; the contour of its parent by thinner 
solid line; and contours of other cells by dashed lines. The 
cells of the B՚s interaction list are marked by crosses. From 
Fig. 1, it is easy to infer that in 2D, the number of such cells 
equals to (52 ¡ 32) + (72 ¡ 52)/2 ¡ 1 = 27. Similarly, in 3D, 
the maximal number of cells in an interaction list of a cell B 
equals to (53 ¡ 33) + (73 ¡ 53)/2 ¡ (7 ¡ 1)3 = 189. Therefore, 
the maximal number NM2L of M2L translations is NM2L = 27 
in 2D and NM2L = 189 in 3D (see also, e.g. [22]). The maximal 
numbers of other translations (M2M and L2L) for each parent 
on each hierarchical level is 4 in 2D and 8 in 3D. This explains 
why M2L translations take the greatest part of the time expense 
on up and downward runs.

Fig. 1. Types of objects around a box B on its hierarchical level. Grey: 
the box B and its neighbors. White with crosses: objects in interaction 
list of B (require M2L translations). White: objects, whose influence 

is accounted for by the parent of B

The simplest general approach to reduce the number of 
M2L translations consists of exclusion from translations those 
cells of an interaction list, which are sufficiently far from the 
center of the cell՚s parent (e.g. [1, 7, 22]). The influence of 
the excluded cells is translated to the parent of the cell con-
sidered. This method, called the level-skip M2L, reduces the 
utmost number of M2L translations in 3D from 189 to 119 
(e.g. [22]). Such reduction is available for any distributions of 
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locations and intensities of sources. It may be performed before, 
simultaneously or after employing some approach tending to 
reduce the number of translations when distributions are inho-
mogeneous. In particular, for the cases, when distribution of 
source locations is strongly inhomogeneous, an approach, able 
to reduce the number of M2L translations, is suggested in [4] 
with the aim to simplify parallel computations. The approach 
employs asymmetric building a hierarchical tree by dividing 
branches onto cells, containing the equal number of sources, 
instead of the conventional dividing onto cells of the same 
sizes. While the locations of cells may be arbitrary, the method 
assumes that their intensities are the same. An extension of the 
method to sources of various intensities would unavoidably 
lead to rebuilding the hierarchical tree when the intensities are 
changed on iterations of a BEM. Thus, it is of essence to reduce 
the number of translations for cases when the distribution of 
intensities is inhomogeneous, as well. An approach to reach this 
objective without rebuilding a hierarchical tree may employ the 
following considerations.

For a homogeneous distribution of sources, all M2L trans-
lations are to be performed when using a conventional FMM. 
However, for inhomogeneous spatial distribution of sources, 
some of the well-separated cells are empty, and they do not 
enter interaction lists and, consequently, they do not participate 
in translations. Note, that an empty cell may be considered to 
be a cell of zero intensity. Clearly, a cell may be neglected, as 
well, when its intensity, while non-zero, is small enough (say, 
goes to zero in limit). In a classical FMM, a cell of arbitrary 
small intensity still participates in translations. Our suggestion 
consists in excluding a cell from translations, if its intensity, 
being non-zero, is relatively small. As clear from the discussion 
above, in some cases, the number of M2L translations for an 
object may be diminished to zero.

For a system with clusters, the total portion of cells with 
relatively small intensity, may be significant. Then their exclu-
sion from M2L translations will provide similarly significant 
reduction of the time expense for the bottle-neck operation. 
This is the key concept of our paper.

It remains to strictly define (i) the measure of a cell inten-
sity, and (ii) a criterion to conclude which intensity is small 
enough to exclude its bearer from translations. These defini-
tions may be problem dependent. From physical considerations, 
it is clear that for a A-FMM, a proper measure of the cell inten-
sity is zero-order moment. In a KI-FMM, it corresponds to the 
integral from the equivalent density over the equivalent surface. 
What concerns with the criteria for exclusion a cell from M2L 
translations for a given box, it has to account for compara-
tive intensities of (i) the parent of the box (e.g. on Fig. 1, the 
box bounded by thin continuous lines), (ii) other cells in the 
same interaction list and (iii) cells in the U list (the box and 
its neighbors).  

Comment. An approach to cut off the area of strong influ-
ence in dependence on the intensity of the source has been 
successfully used in the paper [20]. It served to reduce the 
time expense for calculations of stresses, induced by a large 
group of already activated flaws (possible sources of seismic 
events), at locations of flaws, which may be activated by the 

stresses. In this case, the linear size of the activated flaw was 
chosen as a measure of intensity to assign the cut-off radius of 
its influence.

3.	 Computational implementation

Computational implementation of the improvement suggested is 
illustrated by considering a plane harmonic problem for a piece-
wise homogeneous medium with arbitrary interface conditions 
on contacts of structural elements (Fig. 2). The complex vari-
able singular and hypersingular BIE for this class of problems, 
derived in [3], are, respectively
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where L is the total boundary of the system of blocks (the con-
tact between surfaces of adjacent blocks is treated as a single 
line, in which thermal and mechanical values may experience 
discontinuity); z = x + iy, z 2 L is the complex coordinate of 
a field point; τ is the complex coordinate of an integration point; 
the symbol ∆ in front of a value, denotes its jump across the 
contour; T is the potential; qn is the normal component of the 
flux at an element of L with the normal n; k is the conductivity 
(k ¸ 0); αz(ατ) is the angle between an element dz (dτ) and 
the x-axis; the upper index "plus" ("minus") refers to the side, 
with respect to which the normal n is outward (inward). The 
A-FMM to solve (1) in frames of the CV-BEM is developed 
and described in details in [19].

For certainty, the discussion below is given in terms of 
a thermal problem. Thus the potential T corresponds to the 
temperature, the flux q is the heat flux and k is thermal con-

Fig. 2. Piece-wise homogeneous blocky structure
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ductivity. The computer code presented in [19] is comple-
mented with simple subroutines evaluating the number of M2L 
translations and comparing intensities of cells. In accordance 
with Section 2, the intensities of cells are found as zero-order 
moments, which are factors at the kernel of the lowest order at 
infinity. This kernel is log(z ¡ zc) in the singular equation (1) 
and 1/(z ¡ zc) in the hypersingular equation (2) with zc being 
the center of an object of the hierarchical tree. Thus for the 
hypersingular equation, used in numerical examples, the inten-
sity of a leaf-cell is defined as

M = 
j=1

m
∑

Z

Lj

∆qndt ¼ 
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m
∑
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k
∑ cs
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where m is the number of boundary elements in a leaf, Lj is the 
contour of the j-th element in the leaf, cs

j are the weights of 
a quadrature rule used for integration over Lj, ∆qs

j are the nodal 
values of the density on Lj. For a parent-cell on any level, its 
intensity is evaluated as the sum of intensities of its children.

Computational implementations for 3D problems and 
KI-FMM follow the same pathway as that sketched above for 
a representative 2D problem solved by the complex variable 
A-FMM. Specifically, for any A-FMM in both 2D and 3D, 
the path stays exactly the same. What concerns with KI-FMM 
(in both 2D and 3D), all the calculations are also performed 
as usual, except for evaluation of intensities, used to exclude 
translations from objects with relatively small intensity. For 
a KI-FMM, the intensity, corresponding to zero-order moment, 
is given by the integral

	 MB = 
Z

SBe

qBe dS� (3)

where SBe is the equivalent surface of an object B, qBe is the 
equivalent density on the surface SBe. In particular, the sketched 
line with the definition (3) is used in the example 3 of Section 3. 
This example refers to 3D problems for an elastic medium with 
cracks. The problems are solved by KI-FMM with a hypersing-
ular potential, defining far-fields of stresses. In these problem, 
the unknown values are displacement discontinuities (DD) on 
crack surfaces. Then the equivalent densities qBe in (3) have the 
meaning and dimension of equivalent DD.

Comment. In practical calculations, it may happen that 
although the exact values of moments (in A-FMM), or densi-
ties (in KI-FMM), corresponding to the final solution are high, 
their approximate values stay small on a number of succes-
sive iterations after starting an iterative process. This occurs, 
in particular, when starting from the commonly used simplest 
initial guess of zero initial values. Then the gain, reached by 
neglecting relatively weak neighbors, is lost; it appears only 
after a sufficient number of iterations. Therefore, to use the 
improvement to utmost extent, it is reasonable to start iterations 
with initial values, which better approximate the solution than 
the zero-values guess. A better initial approximation may be 
obtained by finding it as the solution of a problem close to the 
considered problem, but in contrast with that, has low popu-

lated matrix. For example it may be a system with the matrix 
whose non-zero entries correspond to nodes merely in leaves 
and their neighbors.

4.	 Numerical results and conclusions

Consider examples for plane problems of steady heat flow in 
infinite and finite regions with cracks. The cracks are ther-
mally non-conductive, so that the normal component qn of the 
flux on their surfaces is zero (∆qn = qn

+ ¡ qn
¡ = 0), while the 

temperature is discontinuous (∆T = T + ¡ T¡). In these cases, 
equation (2) is sufficient to solve a problem. For certainty, the 
conductivity is set unit (k = 1).

Example 1. Consider the system with distinct domination of 
clusters represented by two vertical large cracks of the length 
2l and 62 vertical small cracks of the length 0.04l with cen-
ters uniformly placed in the area around clusters. The centers 
of large cracks are at the distance 4l along the x-axis and the 
distance 2l along the y-axis (Fig. 3). The flux at infinity has 
the direction of the x-axis (qx

1 = q = 1, qy
1 = 0). By super-

position, the problem is reduced to that with zero flux at 
infinity, while the normal components of the flux on cracks 
become qn

+ = qn
¡ = –qnx, where nx is the x-th component of 

the unit normal to a crack. The discontinuities ∆qn = 0 and 
∆T = T + ¡ T¡ on crack surfaces do not change. The equation 
(2) is sufficient for finding the discontinuity ∆T on each crack 
for a given flux qn

+ = qn
¡ = – nx at its surfaces. In the example 

considered, nx = 1; then qn
+ = qn

¡ = –1.
In numerical experiments, each of cracks was represented 

by 4 boundary elements with 3 nodes each, what corresponds to 
second order approximation of densities. Thus the total number 
of unknowns was 768. The parameters of the A-FMM were set 
in accordance with results of the paper [19]: maximal number 
of nodes in a leaf was 4; the CV series employed in translations 

Fig. 3. Irregular systems of cracks set uniformly in an infinite region
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were truncated to the 15th term. This yielded the number of lev-
els equal to 4, and the number of real unknowns, found in each 
of translations, equal to p = 30. Thus the typical complexity of 
a translation is p2 = 900. An iteration was performed by using 
GMRES procedure. The assigned tolerance was 10–4.

Starting from the commonly used simplest guess of zero 
initial values, solving the problem to the accuracy accepted 
required 70 iterations. On each of the iterations the number 
of M2L translations was 2630. The solution for the tempera-
ture discontinuity ∆T gave 0.1248 and 0.1249 at the center of 
the left and right large cracks, respectively. For small cracks, 
the discontinuity ∆T at their centers was in the narrow range 
from 0.0021 to 0.0029. The magnitudes of zero-moments were 
of order 2 ¢ 10–3 for leaves containing clusters, while for the 
remaining leaves it was much less being of order 5 ¢ 10–5. When 
starting from zero-values initial guess, the differences between 
absolute values of ∆T on large and small cracks on first iter-
ations were negligible. Still, the differences of zero-moments 
for large and small cracks became quite distinct on the itera-
tions much before the end of the iterative process. Many other 
numerical simulations have confirmed that the differences in 
moments become much more evident in iterations than the 
differences in absolute values of densities. This justifies the 
definition of the intensity, accepted in Section 2 for A-FMM, 
which associates it with zero-moments.

The notable contrast in zero-moments of objects (both leaves 
and cells), belonging to the same level of the tree, suffices using 
the approach suggested in Section 2 for diminishing the num-
ber of M2L translations. In the case considered, the simplest 
criterion for exclusion from translations is as follows. A cell is 
excluded if its intensity is less than an assigned threshold of 
the average intensity of all cells entering the same interaction 
list. For the threshold 0.1, the criterion appears quite safe and 
it is assumed in calculations discussed. In practice, it neglects 
far-fields, translated by M2L procedures, of those objects which 
do not contain clusters.

With this criterion, the number MT of M2L translations 
decreased from 2630 to merely 52 on each of iterations. The 
resulting values of ∆T became 0.1267 for the large cracks 
(error 1.5%) and stayed practically unchanged for small cracks, 
being in the range from 0.0021 to 0.0030 at their centers. Thus, 
as expected, the loss of the accuracy was insignificant, while 
the time expense for M2L translations reduced 50-fold.

In this example, the size of small cracks is nearly two orders 
less than the size of large cracks. Thus it may be expected 
that when the number N of unknowns, defined by the presence 
of many small cracks, grows, the number of M2L translations 
would grow proportionally to N. This refers to M2L transla-
tions performed both conventionally and with the approach 
suggested. As a result, the relative reduction in the number 
of translations should stay actually unchanged. Indeed, our 
calculations with growing number of unknowns (2000, 6000 
and 18 000) have shown proportional growth of the number of 
translations (5148, 18 590 and 65 836). The relative reduction 
stayed on the level mentioned (some 50-fold).

Note that the example refers to infinite area with evident 
domination of clusters. It is quite favorable for reduction of 

M2L translations, because there are no external boundaries, 
which themselves present clusters. The opposite case, when 
the region is finite and the presence of its boundaries notably 
restricts the possibility to reduce the number of M2L transla-
tions, is studied in Example 2.

Clearly, a reduction of the number of translations depends 
also on the intensity threshold assigned. Specifically, for 
infinite threshold, translations will be excluded at all; then 
the accuracy of calculations may become unacceptable. In the 
opposite extreme case of zero threshold, all the translations 
of a conventional FMM will be performed; consequently, the 
accuracy will be that of the conventional FMM. For a thresh-
old equal to the greatest of compared intensities, the number 
of translations is between these extremes depending on a par-
ticular distribution of compared intensities; in particular, for 
a homogeneous system, there will be no reduction. Evidently, 
a proper choice of the criteria for exclusion depends both on 
distribution of sources in the system considered and on required 
accuracy of calculations of local fields. Thus, as mentioned in 
Section 2, a proper choice is problem-dependent and, as usual 
in such cases, it should be left to a perspective user to assign it 
as an input parameter. Still, also as usual, general recommen-
dations may be made for sufficiently wide particular classes of 
problems. We illustrate the influence and proper choice of the 
threshold some later, when discussing Example 3.

Example 2. Consider steady heat flow in a square region con-
taining randomly seeded small cracks and two clusters. The 
sizes of small and large cracks are the same as in the previous 
example (respectively, 0.04l and 2l). The square side is A = 16l. 
The number of small cracks is 198. Their centres are distributed 
with the uniform density function along the axes x, y parallel 
to the square sides. The angles of normals with the x-axis are 
also distributed randomly with uniform density function in the 
interval [0, π ]. The angle of the normal to the x-axis for the 
both large cracks is π/4 (Fig. 4). As above, the flux through 

Fig. 4. Irregular systems of cracks set uniformly in an infinite region
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cracks surfaces is zero. The mixed boundary conditions corre-
spond to the homogenization problem of finding the effective 
conductivity of a representative volume with cracks. Specifi-
cally, we prescribe constant temperature Tl = 0 and Tr = 1 at 
the left and right vertical sides of the square, respectively; and 
zero fluxes through the horizontal sides. Each side of a square 
is represented by 30 straight boundary elements of the length 
0.53l. Each of them has 3 nodes providing the second order 
density approximation. The total number of unknowns is 2760. 
The maximal number of nodes in a leaf is set 6. This yields the 
number of levels equal to 4. Other parameters of the A-FMM 
(the number of expansion terms, complexity of a translation, 
tolerance for GMRES) are the same as in the previous example.

In the case considered, areas of high intensity include not 
only the large cracks but also the square sides. The total number 
of M2L translations is now 4228; solving the problem requires 
720 iterations when starting from zero initial values. The quite 
large number of iterations is explained by the combined influ-
ence of the poor initial guess and mixed boundary conditions. 
Specifically, assigning zero fluxes at horizontal boundaries, 
implies that, in contrast with Example 1, the correct order of 
unknown values (assumed zero by initial guess), is not reached 
on the first iteration; now it is reached rather slowly. The values 
of ∆T at centers of large cracks are 0.08178 and 0.07988 for the 
left and right crack, respectively. The total fluxes through the 
left and right side of the square are 0.98969 and 0.99133; the 
difference between them is 0.00164. Since for an exact solu-
tion, the difference should be zero, this implies that the relative 
integral error of the flux is on the level of 0.2%.

Neglecting inputs of small intensities leads to reduction 
of M2L translations from 4228 to 1514, that is 2.5-fold. The 
number of iterations stays the same. There is no signif icant 
changes in the calculated quantities: the values of ∆T differ 
from those, evaluated without reduction of the translations, 
merely in the fourth significant digit, both for large and small 
cracks. There is also no changes in the total f lux through the 
vertical sides of the square; this implies that there is no dif-
ference in the effective conductivity defined by the total f lux. 
We see that even in the case quite unfavorable for reducing the 
number of M2L translations, there is a noticeable gain without 
loss of the accuracy.

Similar to the first example, the size of small cracks is much 
less than that of large ones. Thus, again, increasing the number 
of small cracks has led to proportional growth of the num-
ber of M2L translations both for conventional and improved 
FMM. Like in Example 1, the relative reduction stayed actually 
unchanged (about 2.5-fold).

Example 3. The two previous examples referred to 2D prob-
lems and to cases of small cracks with sizes much (50-fold) 
less than the size of large cracks. To illustrate the performance 
of the approach in 3D, we consider an elasticity problem for 
a cluster represented by a large rectangular crack with the unit 
short side (aL = 1) and the longer side 5aL. The crack is located 
in an infinite medium with the elasticity modulus E = 104 MPa 
and the Poisson՚s ratio ν = 0.25. Fifty small square cracks with 
the sides aS = 0.5aL are seeded in the vicinity of the large crack 

in the rectangular parallelepiped of sizes 5aL£aL£aL symmet-
rically about the center of the large crack. The uniaxial tension 
σ11 = 1 MPa acts at infinity in the direction orthogonal to the 
plane of the large crack. The vertical cross-section through the 
middle of the large crack is shown in Fig. 5.

The hypersingular BIE for 3D problems of the kind and the 
BEM for them are given in [8, 11]. The resulting algebraic sys-
tem is solved by the kernel independent FMM suggested in [24] 
(see also [25]). The large crack is represented by 320 square 
boundary elements; each of small cracks is represented by 16 
square elements. With three unknown displacement discontinu-
ities at each boundary element, the total number of unknowns 
is 3 (320 + 50£16) = 3360. When applying the FMM, the 
assigned maximal number of elements in a leaf was taken 20. 
Then for the problem considered, the number of levels in the 
oct-tree was 6; the total number of cells was 202; the total 
number of M2L translations was 4306; and the average number 
of entries in a V-list was 22.

In contrast with two previous examples, the short side of 
the large crack is merely 2-fold longer than the sides of small 
cracks. This impels using more restrictive rule for assigning 
cut-off intensities to reduce the number of M2L translations. 
We exclude some of the M2L translations in a quite restrictive, 
while safe and general, way by assigning the maximal relative 
error ε , caused by the reduction. The reduction is executed as 
follows.

On an iteration step of the FMM, when performing the 
upward run, we calculate current intensity q of each cell (leaf 
or branch). These intensities are used on the downward run 

Fig. 5. Vertical cross-section of the systems of cracks through the 
middle of the large crack

σ11 = 1

σ11 = 1

aL0.75aL

5aL
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when performing M2L translations to each cell on each level 
starting from the level 3 (or 2, if using the level-skip method). 
For the cell, we analyze intensities qi (i = 1, …, NV) of NV cells 
belonging to its V-list. We arrange qi in the order of non-in-
creasing intensities:

	 q1 ¸ q2 ¸ ¢¢¢ ¸ qNV� (4)

(commonly, qi may be assumed positive with changing the sign  
when appropriate). Then the total intensity Q of the far-field, 
translated by NV translations M2L, is Q = ∑NV

i =1 qi. When 
abridging the sum to Na first terms, the approximate intensity of 
the far-field is Qa = ∑Na

i =1 qi, and the absolute error ErQa of the 
approximation is the sum of remaining terms ErQa = ∑NV

i = Na + 1 qi,  
when Na < NV, and ErQa = 0 when Na = NV. In view of (4), for 
an assigned relative error ε  of the far-field, the relative error of 
the approximation Qa will not exceed ε  when

	 ErQa < εQ .� (5)

The inequality (5) defines a simple algorithm for excluding 
translations from cells of relatively small intensities. It consists 
of successive summation of intensities qi, ordered according 
to (4), in inverse order: from the smallest intensity qNV. The 
summation is continued till (5) is met. The critical intensity 
qa, starting from which the inequality (5) is violated, defines 
the threshold qa and the tolerance δ  = qa/Q, corresponding 
to the assigned relative error ε . We may safely exclude M2L 
translations from those cells of the V-list, whose intensities 
are less than the threshold qa. The error of the far-field will 
not exceed ε .

Underline, that the criterion described is quite conservative, 
because an error of M2L translations may have insignificant 
influence on the accuracy of final results, as compared with 
the influence of L2L translations. Consequently, for particular 
problems, it is possible to assign rather large relative error ε  (up 
to 0.75 and even 1) by performing just a few tests with succes-
sively growing values of ε . (Recall that ε  = 1 corresponds to 
exclusion all M2L translations of far-fields to the given cell).

For the example considered, three values of ε  have been 
used: ε  = 0.1; 0.5; 0.75. With these values, the total number 
of M2L translations decreased from 4306 (for the conven-
tional FMM) to, respectively, 2230, 830 and 384. Accordingly, 
the time for their executions was reduced 2-fold, 5-fold and 
11-fold. Notably, even for ε  = 0.75, the final calculated open-
ings (both on large and small cracks) were practically the same 
as those obtained by the conventional FMM. This implies that 
in problems of the type considered, quite large value of ε  may 
be used to reach notable reduction of the time expense for M2L 
translations without loss of the accuracy of final results.

Conclusions. In all the tests with the improved FMM, the accu-
racy of the final results was actually the same as that of the 
conventional FMM. This confirms that the improvement sug-
gested is of value for solving large-scale problems for irregular 
systems. Emphasize that its implementation is quite simple and 
requires rather small changes in a code of conventional FMM. 

For a system without clusters, the calculations are automatically 
performed as usual.
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