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Abstract The paper is devoted to study the e�ect of gravity, magnetic
�eld and laser pulse on the general model of the equations of generalized
thermoelasticity for a homogeneous isotropic elastic half-space. The formu-
lation is applied under four theories of generalized thermoelasticity: the
coupled theory, Lord-Schulman theory, Green-Lindsay theory as well as
Green-Naghdi theory. By employing normal mode analysis, the analytical
expressions for the displacement components, temperature and the (me-
chanical and Maxwell’s) stresses distribution are obtained in the physical
domain. These expressions are also calculated numerically and correspond-
ing graphs are plotted to illustrate and compare the theoretical results. The
e�ect of gravity, magnetic �eld and laser pulse are also studied and displayed
graphically to show the physical meaning of the phenomena. A comparison
has been made between the present results and the results obtained by the
others. The results indicate that the e�ects of magnetic �eld, laser pulse
and gravity �eld are very pronounced.
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1 Introduction

The subject of generalized thermoelasticity has drawn the attention of re-
searchers due to its relevance in many practical applications. The gen-
eralized thermoelasticity theories involve hyperbolic type governing equa-
tions and admit �nite speed of thermal signals. The extensive literature
on the topic is now available and we can only mention a few recent inter-
esting investigations [1�7]. Generalized theories of thermoelasticity have
been developed to overcome the in�nite propagation speed of thermal sig-
nals predicted by the classical coupled dynamical theory of thermoelastic-
ity [8]. The non-classical theories of thermoelasticity, so-called generalized
thermoelasticity, have been developed to remove the paradox of the phys-
ically impossible phenomenon of in�nite velocity of thermal signals in the
conventional coupled thermoelasticity, Lord-Shulman theory [9] and Green-
Lindsay theory [10]. In the 1990s, Green and Naghdi (G-N) have formulated
three models (I, II, III) of thermoelasticity for homogeneous and isotropic
material [11]. The model I of G-N theory after linearization reduces to the
classical thermoelasticity theory. The model II of G-N theory [12] does not
allow dissipation of the thermoelastic energy. In this model, the consti-
tutive equations are derived by starting with the reduced energy equation
and by including the thermal displacement gradient among the constitu-
tive variables. The e�ect of gravity in the classical theory of elasticity is
generally neglected. The e�ect of gravity on the problem of propagation
of waves in solids, in particular on an elastic globe, was �rst studied by
Bromwich [13]. Ailawalia and Narah [14] depicted the e�ects of rotation
and gravity in the generalized thermoelastic medium. Othman et al. [15]
studied the in�uence of the gravitational �eld and rotation on the gen-
eralized thermoelastic medium using a dual-phase-lag model. Das et al.
[16] investigated the surface waves under the in�uence of gravity in a non-
homogeneous medium. Othman and Hilal [17] studied the rotation and
gravitational �eld e�ect on two-temperature thermoelastic material with
voids and temperature-dependent properties using G-N III. Abd-Alla et al.
[18] investigated the propagation of a thermoelastic wave in a half-space
of a homogeneous isotropic material subjected to the e�ect of gravity �eld.
Abd-Alla et al. [19] studied the rotational e�ect on thermoelastic Stoneley,
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Love and Rayleigh waves in �bre-reinforced anisotropic general viscoelas-
tic media of higher order. The interplay of the Maxwell electromagnetic
�eld with the motion of deformable solids is largely being undertaken by
many investigators owing to the possibility of its application to geophys-
ical problems and certain topics in optics and acoustics. Moreover, the
earth is subject to its own magnetic �eld and the material of the earth
may be electrically conducting. Thus, the magneto-elastic nature of the
earth’s material may a�ect the propagation of waves. Many authors have
considered the propagation of electro-magneto-thermoelastic waves in an
electrically and thermally conducting solid. A comprehensive review of the
earlier contributions to the subject can be found in the study by Puri [20].
Abo-Dahab et al. [21] discussed the in�uence of thermal stress and mag-
netic �eld in thermoelastic half-space without energy dissipation. Abd-Alla
and Mahmoud [22] investigated the magneto-thermoelastic problem in ro-
tating non-homogeneous orthotropic hollow cylinder under the hyperbolic
heat conduction model.

The ultra short lasers are those with the pulse duration ranging from
nanoseconds to femtoseconds. The high intensity, energy �ux, and ultra-
short duration laser beam have been studied in situations where very large
thermal gradients or an ultra-high heating rate may exist on the bound-
aries, this in the case of ultra-short-pulsed laser heating [23,24]. Marin [26]
investigated the temporally evolutionary equation for elasticity of microp-
olar bodies with voids.

Marin and Stan [27] obtained the weak solutions in elasticity of dipo-
lar bodies with stretch. Marin and Baleanu [28] studied the vibrations in
thermoelasticity without energy dissipation for micropolar bodies. The mi-
croscopic two-step models that are parabolic and hyperbolic are useful for
modifying the material thin �lms. When a metal �lm is heated by a laser
pulse, a thermoelastic wave is generated due to thermal expansion near the
surface.

The present paper aims to study the e�ect of gravity, magnetic �eld and
laser pulse on the general model of the equations of generalized thermoe-
lasticity for a homogeneous isotropic elastic half-space. The formulation
is applied under four theories of generalized thermoelasticity: the coupled
theory (CT), Lord-Schulman (L-S) theory, Green-Lindsay (G-L) theory as
well as Green-Naghdi (G-N II) theory. By employing normal mode analysis,
the analytical expressions for the temperature, displacement components
and the (mechanical and Maxwell’s) stresses distribution are obtained in
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the physical domain. These expressions are also calculated numerically and
corresponding graphs are plotted to illustrate and compare theoretical re-
sults. The e�ect of gravity, magnetic and laser pulse �eld are also studied
and presented graphically to show the in�uence of new parameters on the
phenomena.

2 Formulation of the problem and basic equations

Following the constitutive equations and �eld equations for a linear isotropic
generalized thermoelasticity in the context of four theories, we consider
a Cartesian coordinate system (x; y; z) having originated on the surface
y = 0 and z-axis pointing vertically into the medium of a half space (x � 0).
For two-dimensional problems, we assume the dynamic displacement vector
as �!u = (u; 0; w), and all the considered quantities are functions of the time
variable t and of the coordinates x and z.

The basic governing equations of linear generalized thermoelasticity
with rotation and magnetic �eld in the absence of heat sources are given
by [22,24]:
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The plate surface is illuminated by the laser pulse given by the heat input
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where I0 is the absorbed energy, r is the beam radius, and 
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where t0 is the pulse rising time.
Due to the application of initial magnetic �eld H = H0n, resulting in

an induced magnetic �eld h and an induced electric �eld E, the simpli�ed
linear equations of electrodynamics of slowly moving medium for a homo-
geneous, thermally and electrically conducting elastic solid are:

curl
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E ; (6)

curl
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h ; (7)

div
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The basic governing equations of a linear, homogenous thermoelastic medium
under the in�uence of a laser pulse and the gravitational �eld will be in the
forms:
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Introducing the following dimensionless variables:
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Eqs. (6)�(8) will be rewritten into the non-dimensional form (with dropping
primes for convenience):
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Here "1; "2, and "3 are the coupling constants.
Using the expressions relating the displacement components u (x; z; t),

and w (x; z; t) to each of the potential functions  1 (x; z; t) and  2 (x; z; t)
in the dimensionless forms
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The constitutive relations will be:
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3 The normal mode analysis

We can decompose the solution of the physical quantities in terms of the
normal mode as follows:
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where
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Equation (32) can be factored as
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where k2
n (n = 1; 2; 3) are the roots of the characteristic equation of the

homogeneous equations (32)�(34).
The general solutions of (32)�(34) bound as x ! 1 are given by:
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where Rn (n = 1; 2; 3) are some unde�ned coe�cients.
To obtain the components of the displacement vector, substituting (36)

and (37) into (18) gives:
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where M1n = �kn � iaH1n ;M2n = ia� knH1n ; n = 1; 2; 3:
To get the components of the stress tensor, substitute (39), (40), and

(38) into (23)�(27):
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4 Boundary conditions

In this section, we determine the constants Rn (n = 1; 2; 3). The boundary
conditions under consideration should suppress the positive exponentials
to avoid unboundedness at in�nity. The coe�cients R1; R2; R3 are chosen
such that the boundary conditions on the surface at x = 0 are:

I The mechanical boundary conditions

�zz + �zz = �p1 exp (!t+ iaz) ; �xz = 0 : (46)

II The thermal boundary condition on the surface of the half space

@T
@x

= 0 ; (47)

where p1 is the magnitude of the mechanical force.
Substituting the expressions of the considered variables in the above

boundary conditions, we can obtain the following equations satis�ed by the
parameters:

3X

n=1
(H5n +H7n)Rn = �p ; (48)

3X

n=1
H6nRn = 0 ; (49)
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3X

n=1
�knH2nRn = 0 : (50)

Invoking the boundary conditions (45) and (46) at the surface x = 0 of
the plate, we get a system of three equations (47)�(49). Solving the above
system of the algebraic equations (47)�(49) by using Cramer’s rule we then
obtain values of the three coe�cients Rn (n = 1; 2; 3) :

R1 =
�1

�
; R2 =

�2

�
; R3 =

�3

�
; (51)

where

� = (H51 +H71)(�k3H62H23 + k2H22H62)
+ (H52 +H72)(�k1H62H23 + k3H23H63)
+ (H53 +H73)(�k2H61H22 + k1H21H62) ;

�1 = �P (�k3H62H23 + k2H63H22) ;

�2 = P (�k3H61H23 + k1H63H21) ;

�3 = �P (�k2H61H22 + k1H62H21) :
Hence, we obtain the expressions for the displacements, the temperature
distribution, and the other physical quantities of the plate surface.

5 Numerical results and discussion

For numerical computations, following Dhaliwal and Singh [25] the magne-
sium material was chosen. All units of the parameters used in the calcula-
tion are given in SI units.

The constants of the problem are taken as:
� = 2:17 � 1010 N/m2; � = 3:278 � 1010 N/m2; K = 1:7 � 102 W/mK ;

� = 1:74 � 103 kg=m3; ; Ce = 1:04 � 103 J=kgK ; !� = 3:58 � 1011=s ;
�0 = 4 � � � 10�3 ; T0 = 298 K.
The laser pulse parameters are:
I0 = 102 J=m2 ; r = 0:2 ; 
 = 25=m ; t0 = 10:
The comparisons were carried out for:
p1 = 0:25 N=m2 ; k� = 100 W=mK ; a = 0:5 ; ! = 2:9 rad=s ; z = 2 m ;
t = 0:9 s ; g = 9:8 m=s2, and x = 0�3.5 m.

The obtained 2D curves describe the change of behavior of the values of
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the real part of the temperature distribution T , components of displacement
u and w, normal stresses �xx; �zz and tangential stress �xz with distance
x, for CT, L-S, G-L, and G-N theories have been shown in generalized
thermoelasticity medium with constants H0 = 9 � 105; g = 9:8; t = 0:9,
on the other hand with di�erent values of gravity, laser pulse and mag-
netic �eld. These distributions are shown graphically in Figs. 1�32 for
time t = 0:9 with respect to a wide range of 0 � x � 3:5. These �g-
ures represent the solution obtained using the CT theory: n0 = 0 ; n1 =
1 ; �0 = 0 ; #0 = 0, L-S theory: n0 = 1 ; n1 = 1 ; �0 = 0:2 ; #0 = 0,
G-L theory: n0 = 0 ; n1 = 1 ; �0 = 0:2 ; #0 = 0:3, and G-N theory:
n0 = 0 ; n1 = 1 ; �0 = 1 ; #0 = 0. We notice that the results for the temper-
ature, displacement, and stress distributions when the relaxation time is
included in the heat equation are distinctly di�erent from those when the
relaxation time is not included in the heat equation, because the thermal
waves in Fourier’s theory travel with an in�nite speed of propagation as op-
posed to the �nite speed in the non-Fourier case. This demonstrates clearly
the di�erence between the coupled and the generalized theories of thermoe-
lasticity. Also, these distributions are shown graphically in Figs. 9�16 with
di�erent values of gravity: g = 0; 5; 7, and 9.8. Also, these distributions
are shown graphically in Figs. 17�24 with di�erent values of laser pulse:
t = 0; 0:3; 0:6;, and 0.9, and in Figs. 25�32 with di�erent values of mag-
netic �eld: H0 = 0; 2 � 105; 3 � 105; and 5 � 105. The distributions of all
physical quantities converge to zero as the distance x tends to in�nity.

Figure 1 shows the distribution of displacement component u with re-
spect to x-axis. The e�ects of parameters of the theories on the curves are
the strongest for the G-N theory, after that L-S after that G-L, and the
smallest e�ects concern the theory CT.

Figure 2 displays the distribution of displacement component w with
respect to x-axis. We note the di�erence in e�ects according to di�erent
theories where the e�ects are strong in the theory of G-N while in other
theories are weak.

Figures 3, 4, and 7 illustrate the distribution of normal stress �xx, �zz
and �zz + �zz with respect to x-axis. The e�ects of parameters of the the-
ories on the curves are the strongest for the G-N theory, while in other
theories are weak.
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Figure 1: Displacement u distribution versus x calculated with the help of four theories.

Figure 2: Displacement w distribution versus x calculated with the help of four theories.
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Figure 3: Stress distribution �xx versus x calculated with the help of four theories.

Figure 4: Stress distribution �zz versus x calculated with the help of four theories.
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Figure 5 shows the distribution of tangential stress �xz with respect to
x-axis. It is clear that all curves always begin from zero for the four theo-
ries to satisfy the boundary condition at x = 0, We note the di�erence in
e�ects according to di�erent theories, where the e�ects are strong in the
theory of G-N, while in other theories are weak.

Figure 6 illustrates the distribution of normal stress �zz with respect
x-axis. The e�ects of parameters of the theories on the curves are the
strongest for the CT theory, while in other theories are weak.

Figure 8 displays the distribution of temperature T with respect to
x-axis. We note the di�erence in e�ects according to di�erent theories where
the e�ects are strong in the theory of CT while in other theories are weak.

Figures 9 and 10 show the distribution of displacement components u,
w with respect to x-axis for di�erent values of gravity �eld g. It is observed
that the displacement component u decreases with the increasing gravity
�eld in the interval [0; 3] except at g = 0 in the interval [1:8; 3], while it
tends to zero in the interval [3, 3.5]. The displacement component w de-
creases with the increasing gravity �eld in the interval [0,3] and it tends to
zero in the interval [3, 3.5].

Figures 11 and 12 show the distribution of normal stress components
�xx; �zz with respect to x-axis for di�erent values of gravity �eld g. It is
observed that the normal stress component �xx decreases with the increas-
ing gravity �eld in the interval [0, 0.5], while it increases with the increasing
gravity �eld in the interval [0.5, 3]. It tends to zero in the interval [3; 3:5].
The normal stress component �zz increases with the increasing gravity �eld
in the interval [0,3], while it approaches zero in the interval [3, 3.5].

Figure 13 describes the distribution of tangential stress component �xz
with respect to x-axis for di�erent values of gravity �eld g. It is observed
that the tangential stress component increases with the increasing gravity
�eld in the interval [0, 3.2], while it tends to zero in the interval [3.2, 3.5].

Figures 14 and 15 illustrate the distribution of magnetic stress compo-
nent �zz and total magnetic and normal stress �zz + �zz with respect to
x-axis for di�erent values of gravity �eld g. An increase of these quantities
is observed with the increasing gravity �eld in the interval [0,3], while tend
to zero in the interval [3, 3.5].
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Figure 5: Stress distribution �xz versus x calculated with the help of four theories.

Figure 6: Stress distribution �zz versus x calculated with the help of four theories.
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Figure 7: Stress distribution �zz + �zz versus x calculated with the help of four theories.

Figure 8: Temperature distribution T versus x calculated with the help of four theories.
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Figure 9: Displacement distribution u versus x under the e�ect of gravity force.

Figure 10: Displacement distribution w versus x under the e�ect of gravity force.
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Figure 11: Stress distribution �xx versus x under the e�ect of gravity force.

Figure 12: Stress distribution �zz versus x under the e�ect of gravity force.
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Figure 13: Stress distribution �xz versus x under the e�ect of gravity force.

Figure 14: Stress distribution �zz versus x under the e�ect of gravity force.
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Figure 15: Stress distribution �zz + �zz versus x under the e�ect of gravity force.

Figure 16: Temperature distribution T versus x under the e�ect of gravity force.
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Figure 16 shows the distribution of temperature T with respect to x-axis
for di�erent values of gravity �eld g. The temperature has an oscillatory
behavior for a thermoelastic medium in the interval [0; 3]. It is observed
that the temperature increases with the increasing gravity �eld in the in-
terval [0, 0.5], while it decreases with the increasing gravity �eld in the
interval [0.5, 3]; and it tends to zero in the interval [3, 3.5].

Figures 17 and 18 present the distribution of displacement components
u, w with respect to x-axis for di�erent values of laser pulse t. It is observed
that the displacement component u increases with the increasing laser pulse
in the interval [0,3], while it decreases with the increasing the laser pulse
in the interval [0.3, 1.4], and tends to zero in the interval [1.4, 3.5]. The
displacement component w increases with the increasing laser pulse in the
interval [0, 1.1], while it decreases with the increasing the laser pulse in the
interval [1.1, 2.3], and approaches zero in the interval [2.3, 3.5].

Figures 19 and 20 show the distribution of normal stress components
�xx; �zz with respect to x-axis for di�erent values of laser pulse t. The
normal stress components have an oscillatory behaviour for a thermoelas-
tic medium in the interval [0, 2.5]. It is observed that the normal stress
component �xx increases with the increasing laser pulse in the interval [0,
0.8], while it decreases with the increasing laser pulse in the interval [0.8,
2], and tends to zero in the interval [2, 3.5]. The normal stress component
�zz increases with the increasing laser pulse in the interval [0,3], while it
decreases with the increasing laser pulse in the interval [0.3, 1.5], as well
it increases with the increasing laser pulse in the interval [1.5, 2.5] and it
approaches zero in the interval [2.5, 3.5].

Figure 21 illustrates the distribution of tangential stress component �xz
with respect to x-axis for di�erent values of laser pulse t. The tangential
stress has an oscillatory behaviour for a thermoelastic medium in the inter-
val [0, 2.5]. It is observed that the tangential stress component decreases
with the increasing laser pulse in the interval [0, 1.4], while it increases with
the increasing laser pulse in the interval [1.4, 2.5], and it tends to zero in
the interval [2.2, 3.5].

Figures 22, 23 show the distribution of magnetic stress component �zz
and total magnetic and normal stress �zz + �zz with respect to x-axis for
di�erent values of laser pulse t. The magnetic stress component and total
magnetic and normal stress have an oscillatory behaviour for a thermoelas-
tic medium in the interval [0, 2.5]. It is observed that the magnetic stress
component decreases with the increasing laser pulse in the interval [0,1],
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while it increases with the increasing laser pulse in the interval [1, 2.2], and
it tends to zero in the interval [2.2,3.5]. The total magnetic and normal
stress increase with the increasing laser pulse in the interval [0, 0.4], while
they decrease with the increasing laser pulse in the interval [0.4, 1.6], they
increase with the increasing laser pulse in the interval [1.6, 2.5] and tend
to zero in the interval [2.5, 3.5].

Figure 24 exhibits the distribution of temperature T with respect to
x-axis for di�erent values of time t. The temperature has an oscillatory
behaviour for a thermoelastic medium in the interval [0,2]. It is observed
that the temperature decreases with the increasing laser pulse in the inter-
val [0, 0.8], while it increases with the increasing laser pulse in the interval
[0.8, 2], and it approaches zero in the interval [2, 3.5].

Figure 25 shows the distribution of displacement component u with re-
spect to x-axis for di�erent values of magnetic �eld H0. It is observed that
the displacement component u increases with the increasing magnetic �eld
in the interval [0, 0.1], while it decreases with the increasing magnetic �eld
in the interval [0.1, 1.4], increases with the increasing magnetic �eld in the
interval [1.4, 2.5], and it tends to zero in the interval [2.5, 3.5].

Figure 26 illustrates the distribution of displacement component w with
respect to x-axis for di�erent values of magnetic �eld H0. It is observed
that the displacement component increases with the increasing magnetic
�eld in the interval [0,1.2], while it tends to zero in the interval [1.2, 3.5].

Figures 27 and 28 show the distribution of normal stress components
�xx; �zz with respect to x-axis for di�erent values of magnetic �eld H0. The
normal stress components have an oscillatory behaviour for a thermoelastic
medium in the interval [0,2]. It is observed that the normal stress compo-
nent �xx increases with the increasing time in the interval [0, 0.8], while it
decreases with the increasing magnetic �eld in the interval [0.8, 1.7], and
it tends to zero in the interval [1.7, 3.5]. The normal stress component �zz
decreases with the increasing magnetic �eld in the interval [0, 1.5], while
it increases with the increasing magnetic �eld in the interval [1.5, 2] and it
tends to zero in the interval [2, 3.5].

Figure 29 exhibits the distribution of tangential stress component �xz
with respect to x-axis for di�erent values of magnetic �eld H0. The tangen-
tial stress has an oscillatory behaviour for a thermoelastic medium in the
in the interval [0, 2.2]. It is observed that the tangential stress component
decreases with the increasing magnetic �eld in the interval [0,1], while it
increases with the increasing magnetic �eld in the interval [1, 2.2], and it
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approaches zero in the interval [2.2, 3.5].
Figures 30 and 31 present the distribution of magnetic stress component

�zz and total magnetic and normal stress �zz + �zz with respect to x-axis
for di�erent values of magnetic �eld H0. The magnetic stress component
and total magnetic and normal stress have an oscillatory behaviour for a
thermoelastic medium in the interval [0, 2.5]. It is observed that the mag-
netic stress component decreases with the increasing magnetic �eld in the
interval [0,1], while it increases with the increasing magnetic �eld in the
interval [1, 2.2], and it tends to zero in the interval [2.2, 3.5]. The total
magnetic and normal stress decrease with the increasing magnetic �eld in
the interval [0, 1.4], while they increase with the increasing magnetic �eld
in the interval [1.4, 2.5], and tend to zero in the interval [2.5, 3.5].

Figure 32 shows the distribution of temperature T with respect to x-axis
for di�erent values of magnetic �eld H0. The temperature has an oscillatory
behaviour for a thermoelastic medium in the interval [0,2]. It is observed
that the temperature decreases with the increasing magnetic �eld in the
interval [0, 0.8], while it increases with the increasing magnetic �eld in the
interval [0.8, 2], and it approaches zero in the interval [2, 3.5].

Figure 17: Displacement distribution u versus x under the e�ect of laser pulse.
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Figure 18: Displacement distribution w versus x under the e�ect of laser pulse.

Figure 19: Stress distribution �xx versus x under the e�ect of laser pulse.
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Figure 20: Stress distribution �zz versus x under the e�ect of laser pulse.

Figure 21: Stress distribution �xz versus x under the e�ect of laser pulse.
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Figure 22: Stress distribution �zz versus x under the e�ect of laser pulse.

Figure 23: Stress distribution �zz + �zz versus x under the e�ect of laser pulse.
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Figure 24: Temperature distribution T versus x under the e�ect of laser pulse.

Figure 25: Displacement distribution u versus x under the e�ect of magnetic �eld.
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Figure 26: Displacement distribution w versus x under the e�ect of magnetic �eld.

Figure 27: Stress distribution �xx versus x under the e�ect of magnetic �eld.
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Figure 28: Stress distribution �zz versus x under the e�ect of magnetic �eld.

Figure 29: Stress distribution �xz versus x under the e�ect of magnetic �eld.
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Figure 30: Stress distribution �zz versus x under the e�ect of magnetic �eld.

Figure 31: Displacement distribution �zz +�zz versus x under the e�ect of magnetic �eld.



Magneto-thermoelastic problem in the context of four theories. . . 63

Figure 32: Temperature distribution T versus x under the e�ect of magnetic �eld.

6 Conclusions

The results of the present work can be summarized as:

1. The method which is presented in the paper is applicable to a wide
range of problems in thermodynamics and thermoelasticity.

2. The presence of a magnetic �eld plays a signi�cant role in all the
physical quantities. The temperature, displacement components, and
stress components decrease or increase. Therefore, the presence of
gravity �eld, laser pulse, and a magnetic �eld in the current model is
of signi�cance.

3. The results are graphically described for the medium of crystal. The
present theoretical results may provide interesting information for ex-
perimental scientists/researchers /seismologists working on this sub-
ject.

4. All the physical quantities satisfy the boundary conditions.
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5. The values of all physical quantities converge to zero with the increas-
ing distance x, and all functions are continuous.

6. The gravity �eld, magnetic �eld and time as a physical operator have
a signi�cant role in the considered physical quantities.

7. The result provides a motivation to investigate conducting magneto-
thermoelectric materials as a new class of applicable magneto-thermo-
electric solids. The results presented in this paper should prove useful
for researchers in material science, designers of new materials, physi-
cists as well as for those working on the development of magneto-
thermo-elasticity and in practical situations as in geophysics, optics,
acoustics, geomagnetic and oil prospecting, etc.

Received 8 April 2018
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