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Abstract For thin-walled structures invariably exposed to thermal and
noise environment, their dynamic response is an extreme concern in the
design of the component of advanced hypersonic aircraft. To address the
problem, three theoretical models are established with three typical graded
thermal distributions considered. By introducing the thermal moment,
membrane forces and acoustic loadings into the vibration equation of plate,
the governing equation is derived and it is solved combined with boundary
conditions of the plate, the modal function and velocity compatibility equa-
tions at the fluid-structure coupling surface. The accuracy of the theoretical
predictions is checked against finite element results with good agreement
achieved. The results show that not the physical parameters with variation
of temperature but the thermal moments and membrane forces, cause the
buckling phenomenon. It is noted that buckling phenomenon occurs not
only in uniform temperature field but also in graded temperature distribu-
tion filed. The mechanism analysis about modal snap-through and losing
phenomenon indicates that thermoacoustic loadings will affect the stiffness
matrix and mass matrix of structure. With the increase of temperature, the
lower modes of the plate are lost, the higher modes appear in advance, and
the losing phenomenon occurs in accordance with the order.
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1 Introduction

The problem with thermoacoustic environment of thin-walled structures
has aroused increasing attention [1–8] since it is subjected to severe en-
vironment, which may include mechanical loading, aerodynamic loading,
thermal loading and acoustical loading. In the early stage, Blevins et al.
[9] had investigated thermoacoustic loads and fatigue of hypersonic air-
craft skin panels, the thermal and acoustical analysis indicated that the
maximum temperature will exceed 1480 ◦C at the top of the ascent tra-
jectory and the sound levels will exceed 170 dB. As a result, loadings due
to engine acoustics and shock impingement dominate the design of many
trans-atmospheric aircraft skin panels. Marcus and Otto [10] also men-
tioned that the aircraft components, such as the inlet, near fuselage and
tail, are in a high-temperature and strong-noise environment. These load-
ings will induce the structures to respond in a nonlinear way, among which
the thin-walled structures are likely to snap through under thermoacoustic
loadings [11]. This phenomenon is dreadful for the lifetime of the struc-
tures, therefore it is necessary to make the structures work in low vibration
environment and normal temperature to protect devices in the aircrafts.
This work aims to develop a systematic theoretical model to investigate the
thermoacoustic dynamic response of a simply supported plate subjected to
combination of acoustical and thermal loadings, which could give essential
explanation and may provide some guidance for the design of thin-walled
aircraft structures.

Lots of literatures have been published to investigate the dynamic per-
formance of structures in thermal loadings. Previous studies by Spain et al.
[12] had revealed the phenomenon of reduction of natural frequency as the
temperature rises. Then, Amit et al. [13] studied the modal evolution
process exhibited by a curved plate model with clamped-clamped bound-
ary conditions in a high-amplitude random excitation with thermal load-
ing, and they have found that the total system matrix depends heavily
on the thermal loading and the average amplitude. They also expected
that the frequency of snap-through response need to be further investi-
gated to result in a metric which can be utilized for prediction of fatigue
life. Lately, Cheng et al. [14] analytically and experimentally investigated
high-temperature modal properties, and the results show that the thermal
stresses have a much greater effect on the modal characteristics than the
change of the material properties due to heating.

As for the dynamic characteristics of plates subjected to compound ther-
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moacoustic loadings, its effect on service life of thin-walled plate structure
is much more serious than the simple superposition of the single environ-
ment. Snap-through phenomenon is easily occurred for plates subjected
to compound thermal and acoustic excitations. In 1983, Marcus proposed
a simple criteria for the prediction of snap-through phenomenon [15]. Then,
NG and Clevenson [16] firstly observed the snap-through phenomenon of
thin-walled plate in thermal buckling state, then they proposed statistical
response characteristics of thin plate using single degree of freedom model.
[17,18] Subsequently, a lot of research on the statistical response of dis-
placement and strain for the single degree of freedom model had been done
by Lee [19–21] and Lee et al. [22]. As for numerical method, Locke [23]
had proposed finite element method (FEM) to solve the structural buckling
response of combined thermal and acoustic excitations. With the develop-
ment of commercial finite element software and thermal noise experiment,
the influence of temperature and noise on snap-through phenomenon, the
bounds of snap-through phenomenon, and the effect of snap-through of
structure on structural fatigue life are gradually investigated [23,24].

Although many of the prior work related to structures subjected to
combined thermal and acoustic excitations were concentrated on its vibro-
acoustic response [1,2], sound transmission performance [3], nonlinear ran-
dom response [5,6] and fatigue life characteristics [7,8], very few analytical
studies have been reported on the further mechanism for dynamic response
of plate that would be solved in this paper. To be specific, the natu-
ral frequencies and corresponding modal shapes would change under the
combination of thermal and acoustic excitations, which is an essential in-
vestigation for the following analyses.

The object investigated in this paper is a rectangular titanium alloy
plate, and there are many reasons for the material using of titanium al-
loy over other materials, such as, having a relatively low density, having
good resistance to corrosion, having a low thermal expansion coefficient
and having growing mechanical properties through heat treatment pro-
cesses. In the aeronautical industry, many parts are manufactured from
titanium alloy, such as frames, engine components including blades, discs,
casings and shafts [25]. Due to such characteristics and applications, the
research about the dynamic response of titanium alloy plate subjected to
thermoacoustic loadings is significant and profound.

In this paper, three analytical models to analyze dynamic response of
simply supported isotropic rectangular plates subjected to thermoacoustic
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loadings are established, from which the influence of combined three typical
graded thermal environments and acoustic excitations on natural frequen-
cies of plates are demonstrated. The layout of this paper is as follows:
in Sec. 2, three typical theoretical models are developed for the calculation
of natural frequencies under thermoacoustic loadings. Section 3 primarily
demonstrates validation of the theoretical model proposed in Sec. 2 and
gives an illustrative example only considering physical parameters with the
change of temperature, then presents results and discussions for different
kinds of thermal field distribution. Finally, conclusions are presented in
Sec. 4.

2 Analytical model

To mimic the thin-walled plate subjected to thermoacoustic loadings, three
rectangular plates are considered to investigate heat transferred from (i)
the external to the internal of the fuselage and (ii) one side to the other
side of the structure. With reference to Fig. 1, consider a finite, rectan-
gular aeroelastic simply supported plate having length a along x-direction,
width b along y-direction, and thickness h along z-direction, subjected to
combined acoustical and thermal excitation. The graded temperature en-
vironment in thickness direction of the plate is shown in Fig. 1a, with the
upper surface of the plate heated by constant temperature T1 and the lower
surface maintained at constant temperature T2. Figures 1b and 1c show
the graded temperature environment of the plate from one edge to the
opposite edge (in width direction of the plate and in length direction of
the plate), with one edge of the plate heated by constant temperature T1

and the opposite edge maintained at constant temperature T2. All of the
three models are subjected to the external loadings combined acoustical and
thermal excitation. The phenomenon of structural buckling, of which the
balance configurations of the structure change greatly, would occur where
there is a small increment of excitation when the loadings reach a certain
value.

As mentioned above, all of the three models with graded temperature
environment are governed by Fourier’s law of heat conduction, as:

ρC
∂T

∂t
= κ

∂2T

∂z2
, ρC

∂T

∂t
= κ

∂2T

∂y2
, ρC

∂T

∂t
= κ

∂2T

∂x2
, (1)

where T = T (x, y, z, t) is temperature as a function of space and time,
t is the time, x, y, z are the Cartesian coordinates, C is the specific heat
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Figure 1: Schematic illustration of a simply supported rectangular plate in acoustical and
graded thermal environment: Graded temperature distributed in a) thickness
direction, b) width direction and c) length direction.

and κ is the thermal conductivity of the plate material, with the thermal
boundary conditions specified as:
{

z = h
2 , T = T1

z = −h
2 , T = T2

;

{

y = 0, T = T1

y = b, T = T2
;

{

x = 0, T = T1

x = a, T = T2
. (2)

Then Eq. (1) has a solution:

T (z) =
T1 − T2

h
z +

T1 + T2

2
; (3)

T (y) =
T2 − T1

b
y + T1; T (x) =

T2 − T1

a
x+ T1 .

Considering the similarity of these situations, the detailed calculation pro-
cess of graded temperature distributed in upper-lower surface direction,
shown in Fig. 1a, is presented below.

2.1 Critical buckling temperature under thermal loading

Based on von Karman theory for large deflections of thin plate, neutral
plane deformation and bending deformation are considered when subjected
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to thermoacoustic loading. The membrane force is not only caused by the
direct action of neutral plane load, but also related to the deflection of the
neutral plane of the plate, which leads to the coupling properties of the
bending deformation and membrane stress.

For a simply supported plate, suppose the plane is heated in high tem-
perature fields without acting of other forces, the governing equation can
be written as

D∇4w+ρh
∂2w

∂t2
+

1

1 − ν
D∇2MT = Nxx

∂2w

∂x2
+Nyy

∂2w

∂y2
+2Nxy

∂2w

∂x∂y
, (4)

where D is the flexural rigidity, w is the transverse displacement, ρ is the
density of the plate, ν is the Poisson’s ratio, MT is the thermal moment
given by:

MT = α(T )E(T )

∫ h
2

−
h
2

T (z)zdz , (5)

where α(T ), and E(T ) are the thermal expansion coefficient and Young’s
modulus as a function of temperature T , and Nxx, Nyy, and Nxy are mem-
brane forces given by































Nxx = −α(T )E(T )
1−ν

∫

h
2

−
h
2

T (z)dz

Nyy = −α(T )E(T )
1−ν

∫

h
2

−
h
2

T (z)dz

Nxy = 0

. (6)

In uniform temperature field, the thermal moments are zero, thus Eq. (4)
can be written as

D∇4w = −E(T )α(T )h

1 − ν
θ

(

∂2w

∂x2
+
∂2w

∂y2

)

, (7)

where θ = T (x, y, z, t)−Tref . Here Tref is the reference temperature before
heating.

As shown in Fig. 1a, the plate is constrained by simply supported bound-
ary conditions, requiring:

I The displacement boundary condition: the deformation of the plate
edge is zero, the bending moment is zero:

x = 0, a : w = 0,
∂2w

∂x2
= 0 ; (8a)
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y = 0, b : w = 0,
∂2w

∂y2
= 0 . (8b)

II The stress boundary condition:

x = 0, a : Nyy = 0, Nxx = 0 ; (9a)

y = 0, b : Nyy = 0, Nxx = 0 . (9b)

Substituting Eqs. (8) and (9) into Eq. (7), transverse displacement func-
tion can be expressed as

D

[

(

π

a

)2

+

(

π

b

)2
]

=
E(T )α(T )hθ

1 − ν
. (10)

Then critical buckling temperature can be given by

T ∗
s =

π2h2

12αb2(1 + ν)

(

1 +
b2

a2

)

. (11)

2.2 Natural frequency under thermoacoustic loading

While considering combined thermal and acoustic excitations, the thermoa-
coustic governing equation extended from Eq. (4) can be written as

D∇4w + ρh
∂2w

∂t2
+

1

1 − ν
D∇2MT

−
(

Nxx
∂2w

∂x2
+Nyy

∂2w

∂y2
+ 2Nxy

∂2w

∂x∂y

)

= jω(ρ1Φ1 − ρ2Φ2) , (12)

where ω is angular frequency, j is the imaging unit (ρ1, ρ2) are the density
of fluid media, (Φ1, Φ2) are the acoustic velocity potential in the incident
and transmitted field defined as

Φ1(x, y, z, t) =
∑

m,n

Imnϕmne
−j(−k1z−ωt) +

∑

m,n

βmnϕmne
−j(−k1z−ωt) , (13)

Φ2(x, y, z, t) =
∑

m,n

εmnϕmne
−j(−k2z−ωt) , (14)

where Imn, βmn, and εmn are the mnth amplitude of the incident, reflected
and transmitted sound, respectively; ϕmn is the modal function given by

ϕmn(x, y) = sin
mπx

a
sin

nπy

b
. (15)
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The local acoustic velocities and sound pressure are related to the ve-
locity potentials by:

ci = −∇Φi, pi = ρ0
∂Φi

∂t
= jωρ0Φi (i = 1, 2) , (16)

where the subscript 0 represents air density.
Consider fluid-structure interaction at the air-panel interface, the follow-

ing velocity compatibility equations could be obtained to make the normal
velocity continuous:

−∂Φ1

∂z

∣

∣

∣

∣

z= h
2

= jωw, −∂Φ2

∂z

∣

∣

∣

∣

z=−
h
2

= jωw . (17)

Substituting Eq. (3) into Eqs. (5) and (6), then the thermal moments
and membrane forces can be expressed as:

MT =
(T1 − T2)α(T )E(T )h2

12
, (18)

Nxx = Nyy = −α(T )E(T )(T1 + T2)h

2(1 − ν)
. (19)

Based on Galerkin principle over the area of the plate, substituting
Eqs. (15) and (19) into Eq. (12), there is
∫∫

s
[D∇4w−ω2ρhw+

D

1 − ν
∇2MT −2Nxx−jω(ρ1Φ1−ρ2Φ2)]ϕmn(x, y)ds = 0 .

(20)
Due to the arbitrary δϕ, the mnth frequency can be written as

ωmn =







D

ρh

[

(

mπ

a

)2

+

(

nπ

b

)2
]2

+
Nxx

ρh

(

mπ

a

)2

+

(

nπ

b

)2

− tmn

ρh(1 − ν)

(

mπ

a

)2

+

(

nπ

b

)2
}

1

2

, (21)

where

tmn = 4MT
[1 − (−1)m − (−1)n + (−1)m+n]

mnπ2
. (22)

Accordingly, the results of graded temperature distributed in width di-
rection shown in Fig. 1b and in length direction shown in Fig. 1c can be
obtained using the similar derivation, which give the relationship between
the natural frequency of the plate with simply supported boundary condi-
tions and the different distribution of temperature field.
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3 Dynamic characteristic analysis and discussion

To determine the dynamic response analysis of a simply supported isotropic
rectangular plate under thermoacoustic environment, numerical calcula-
tions are carried out to quantify the effects of constant temperature en-
vironment and graded temperature environment. The acoustical loading
keeps unchanged in different models to investigate the influence of tem-
perature distribution to dynamic characteristics of plates. First of all, the
accuracy of model predictions is checked against the numerical results of
finite element method (FEM).

3.1 Computational comparison between FEM results and
analytical results

Since there are few experimental results as reference, to access the accu-
racy and feasibility of the proposed theoretical model, a FEM numerical
model adopting Ansys Workbench 15.0 is developed to calculate the natural
frequencies and critical buckling temperature of the plate, whose relevant
structural dimensions and physical parameters are listed in Tab. 1. All
of the models in Figs. 1a, 1b and 1c are validated, with T 1 = 1200 ◦C
and T 2 = 20 ◦C. In the numerical model, all the geometrical and physical
parameters of the plate are kept the same as those used in the theoreti-
cal model. In the numerical calculation, the element type of the plate is
shell181, the element type of the air is fluid220, and the fluid-structure in-
teraction coupling is applied to predict the response of the plate subjected
to acoustic excitations. The boundary condition of the plate is set as sim-
ply supported. The length of each element is less than 1/6 of the acoustic
wavelength at the highest frequency of interest to ensure the accuracy of
the numerical model [26]. The procedures of finite element analysis are as
follows: Firstly, the toolbox of Steady-State Thermal is applied to obtain
the total thermal distribution of the plate; then, acoustical response of the
plate is achieved by introducing extension of ExtAcoustics_150_42; next,
the prestress of the plate is got combined the two loadings above using
the toolbox of Static Structural; lastly, the modal analysis is operated. It
should be noted that the extension tool of ExtAcoustics_150_42 is a sup-
plement of Ansys Workbench to solve acoustic problems. In the analysis,
the extension tool is loaded by clicking on Extensions |Manage Extensions.
And then, double-click on Harmonic Response. Different from thermal dis-
tribution analysis of the plate, the air domain is added to simulate acoustic
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wave transmission in the air. After modeling, setting material properties
(titanium alloy and air) for different parts and meshing, the most important
step is to define acoustic radiation boundary condition and fluid-structure
interaction interface between air and the plate. Finally, the prestress due
to acoustic excitations is obtained.

Table 1: Structural dimensions and material properties.

Elastic plate

Length a = 0.6 m

Width b = 0.5 m

Thickness h = 0.018 m

Young’s modulus E = 96 GPa

Density ρ = 4620 kg/m3

Poisson ratio υ = 0.36

Thermal expansion coefficient α = 9.4×10−6 1/K

Acoustic field

Sound speed c0 = 343 m/s

Density ρ0 = 1.21 kg/m3

Table 2: Comparison of natural frequencies and the first critical buckling temperature.

Model Item 1st[Hz] 2nd[Hz] 3rd[Hz] 4th[Hz] 5th[Hz] T ∗

s [◦C]

1a Analytical 391.46 594.45 877.52 946.54 1381.1 1117

FEM 382.91 579.64 854.05 919.16 1341.42 1113

Error [%] 2.18 2.49 2.67 2.89 2.87 0.36

1b Analytical 368.43 594.69 880.34 924.51 1380.5 1079

FEM 360.13 578.45 854.68 896.01 1335.73 1073

Error [%] 2.25 2.73 2.91 3.08 3.24 0.56

1c Analytical 394.23 564.5 882.18 946.39 1354.2 1025

FEM 384.83 550.27 857.96 918.69 1312.60 1021

Error [%] 2.38 2.52 2.75 2.93 3.07 0.39

To validate the proposed theoretical model, Tab. 2 compares the analyti-
cal predictions with numerical calculations for the natural frequencies and
the first critical buckling temperature. The three proposed typical mod-
els, including graded temperature distributed in thickness direction, width
direction and length direction of the plate, are all conducted in the com-
putational comparison. The analytical results match well with numerical
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results for all the models for natural frequencies of the first five modes and
the first critical buckling temperature. The slight difference between the
result of FEM numerical model and analytical model may be the result of
the ideal boundary handling of the analytical model. To a great extent,
the comparisons prove the accuracy and feasibility of the theoretical model,
which can then be applied for the following analyses.

3.2 Dynamic analysis only considering physical parameters
with variation of temperature

There are two possible aspects of thermal loading influencing the modal
shape of the structure: (i) the variation of temperature will alter Young’s
modulus and coefficient of linear expansion of titanium alloy, (ii) the ap-
pearance of the thermal loading causes the change of internal mechani-
cal properties of the structure. Both of the two aspects will lead to the
change of structural stiffness, which directly affects the natural frequency
and modal shape distribution of structures. Therefore, the influence degree
of the two aspects is analyzed individually.

In order to evaluate the effect of physical parameters changing with
temperature on the modal shape of the plates, modal analysis only consid-
ering physical parameters with variation of temperature is carried out in
this subsection. The relationships between Young’s modulus and coefficient
of linear expansion of titanium alloy and temperature are shown in Fig. 2,
from which it can be seen that Young’s modulus decreases with the increase
of temperature, while the change of coefficient of linear expansion is just
the opposite. The results of the effect of physical parameters changing with
temperature on natural frequency of plates are shown in Tab. 3, the mnth
order natural frequency of the plate is written as (m,n) in order.

Table 3 demonstrates natural frequency of first five orders only con-
sidering physical parameters with the variation of temperature. It can be
found that the natural frequency of each order is reduced slightly as a func-
tion of temperature. Thus, the preliminary judgement could be drawn that
the physical parameters with variation of temperature are not the causes,
at least not the main factor, that facilitate the buckling phenomenon. In-
evitably, thermal moments and membrane forces are considered to be the
main causes for buckling and will be paid more attention to in the following
subsections.
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Figure 2: Young’s modulus and coefficient of linear expansion of titanium alloy with the
variation of temperature [27].

Table 3: Natural frequency of first five orders only considering physical parameters with
the variation of temperature.

Order
Frequency [Hz]

20 ◦C 100 ◦C 200 ◦C 300 ◦C 400 ◦C 500 ◦C

(1,1)
306.60 299.34 287.89 279.83 265.11 254.84

– 2.37% 6.10% 8.73% 13.53% 16.88%

(2,1)
683.56 647.31 635.16 608.28 573.23 543.64

– 5.30% 7.08% 11.01% 16.14% 20.47%

(1,2)
849.42 808.38 793.29 758.88 716.33 681.56

– 4.83% 6.61% 10.66% 15.67% 19.76%

(2,2)
1226.39 1190.35 1160.56 1120.33 1075.45 1030.36

– 2.94% 5.37% 8.65% 12.31% 15.98%

(3,1)
1311.83 1290.26 1260.96 1220.36 1180.10 1139.31

– 1.64% 3.88% 6.97% 10.04% 13.15%

Note: Each percentage represents the change rate of natural frequency at high temperature
(100 ◦C, 200 ◦C, 300 ◦C, 400 ◦C and 500 ◦C) compared with the natural frequency at 20 ◦C for
different orders.

3.3 Thermoacoustic modal analysis under uniform thermal
loading

From the above analysis, it is found that the variation of physical parameter
of the structure with changing temperature without considering thermal or
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acoustical induced force has no essential influence on natural frequencies.
In order to distinguish different factors on natural frequency and modal
shape distribution, the influence of thermal moments and membrane forces
are considered merely with the physical parameters including Young’s mod-
ulus and coefficient of linear expansion keeping constant.

When the structure is in a constant uniform temperature field, the ther-
mal moment, MT , in Eq. (5) is zero, while the membrane forces in Eq. (6)
are not equal zero. Thus, this subsection gives analysis on dynamic char-
acteristics of structures without considering the thermal moment. Figure
3 shows the variation of the mnth natural frequency of the plate with
the change of temperature. There are obviously three temperatures, or
so 569 ◦C, 1038 ◦C, and 1638 ◦C, at which the phenomena of buckling and
snap-through occur. It can be seen from Fig. 3 that the natural frequencies
of each order decrease with the increase of temperature before the critical
buckling temperature, and the amplitude of reduction is large. When the
critical buckling temperature is reached, the plate tends to be unstable,
and the natural frequency of (1,1) order is close to zero. At the same time,
natural frequency snap-through appears with the increase of temperature.
It is noted that the mnth natural frequency of the plate decreases with the
increase of temperature, and the losing phenomenon occurred in the order
of (1,1), (2,1), and (1,2) in the investigated region shown in Fig. 3.

Figure 3: Natural frequency only considering thermal forces induced.

In order to express the change of dynamic characteristics more clearly, the
modal shapes of vibration of first five orders under uniform temperature
field are shown in Tab. 4. There are six cases of temperature, before and
after the three buckling temperatures, are selected. Comparing the modal
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Table 4: Modal shape of first five orders under uniform thermal loading.

Sequence 1st 2nd 3rd 4th 5th

569°C

(1,1) (2,1) (1,2) (2,2) (3,1)

570°C

(2,1) (1,2) (2,2) (3,1) (3,2)

1038°C

(2,1) (1,2) (2,2) (3,1) (3,2)

1039°C

(1,2) (2,2) (3,1) (3,2) (1,3)

1638°C

(1,2) (2,2) (3,1) (3,2) (1,3)

1639°C

(2,2) (3,1) (3,2) (1,3) (4,2)

shape at 570 ◦C with that at 569 ◦C, the modal shape of (1,1) order is lost,
at the same time, the following orders are all moved a position forward.
The similar phenomena could be found at 1039 ◦C and 1639 ◦C, which are
after the second and the third buckling. The modal shape of the 1st order
at 1639 ◦C is the 4th order at 569 ◦C or before, and the higher orders are
all moved forward, which is in agreement with the results of Fig. 3. With



Dynamic response analysis of a thin-walled rectangular plate. . . 165

the increase of temperature, the losing phenomenon of vibration mode is
becoming more and more serious. It is remarkable that the loss is not
disorderly, but in order from the lower order to the higher order. It is noted
that the thermal moments, shown in Eq. (18), equal to zero in uniform
thermal environment. Thus, the membrane forces are the most important
factors that facilitate the occurrence of buckling in steady temperature
field. In order to investigate the loadings with nonzero thermal moments,
linear gradient thermal loading combined with acoustic loading are studied
in Subsection 3.4.

3.4 Thermoacoustic modal analysis under linear gradient
thermal loading

Most of the structures subjected to thermoacoustic loadings are under
graded temperature distribution, of which the models are presented in this
paper. And the previous Subsection 3.3, constant temperature distribution,
is just a special case of the theoretical model. There are three subsections:
Subsection 3.4.1, Subsection 3.4.2 and Subsection 3.4.3, focused on the tem-
perature gradient in thickness direction, in width direction and in length
direction of the plate, of which the diagrammatic sketches are shown in
Figs. 1a, 1b, and 1c. In order to investigate thermoacoustic modal under
linear gradient thermal loadings, the value of boundary temperatures, T1

and T 2, are set firstly, with T 2 = 20 ◦C. T1 is the higher temperature source
shown in x-axis in Figs. 4, 5, and 6. Then, the temperature distribution
field on the plate is calculated, the result of which combined with acoustic
loading are applied to the plate in form of full loadings. With thermoacous-
tic loadings, the thermal stress field and the acoustic induced stress field of
plate are obtained, which provide an essential prerequisite for the further
thermoacoustic modal analysis.

3.4.1 Temperature gradient in thickness direction of plate

Figure 4 shows the natural frequency of first five orders under linear gra-
dient thermal loading in thickness direction of the plate, from which it can
be seen that there is buckling phenomenon when the other boundary tem-
perature is set as 1117 ◦C. The modal shape of first five orders under linear
gradient thermal loading in thickness direction of the plate, 20–1117 ◦C
and 20–1118 ◦C, which are temperature configurations before and after the
buckling phenomenon, is shown in Tab. 5.
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Figure 4: Natural frequency with linear gradient thermal loading in thickness direction
of the plate.

Table 5: Modal shape of first five orders under linear gradient thermal loading in thick-
ness direction of the plate.

Modal Sequence 1st 2nd 3rd 4th 5th

20°C~1117°C

(1,1) (2,1) (1,2) (2,2) (3,1)

20°C~1118°C

(2,1) (1,2) (2,2) (3,1) (1,3)

It is obvious that the modal shape of first order is lost after buckling and
the following orders one step ahead appear, which is in accordance with
the results in Subsection 3.3. The losing phenomenon of vibration mode
is becoming more and more serious with the increase of temperature T 1

under linear gradient thermal loading in thickness direction of the plate.
When the structure is in higher temperature environment, the modal shape
of the structure has more complicated changes.
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3.4.2 Temperature gradient in width direction of plate

The natural frequency of first five orders under linear gradient thermal
loading in width direction of the plate is shown in Fig. 5. It can be seen
that there is buckling phenomenon at about 1079 ◦C. As a consequence, the
temperature configurations, including 20–1079 ◦C and 20–1080 ◦C, which
are before and after buckling phenomenon, are investigated. Accordingly,
the modal shape of first five orders under linear gradient thermal loading
in width direction is shown in Tab. 6.

Figure 5: Natural frequency with linear gradient thermal loading in width direction of
the plate.

Table 6: Modal shape of first five orders under linear gradient thermal loading in width
direction of the plate.

Modal Sequence 1st 2nd 3rd 4th 5th

20°C~1079°C

(1,1) (2,1) (1,2) (2,2) (3,1)

20°C~1080°C

(2,1) (1,2) (2,2) (3,1) (1,3)
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From the results, it is clear that the same losing phenomenon of vibration
mode is obtained comparing Tabs. 5, 6, and 7. However, the critical buck-
ling temperature is different in the two situations. Also, it is noticeable that
the vibration mode is not symmetric along the direction of linear gradient
thermal loading, for example, there are four half-wave in the (2,2) mode
shape, where the lower two have larger absolute value at extreme points
than the other upper two.

3.4.3 Temperature gradient in length direction of plate

Similarly, Fig. 6 shows the variation of the mnth natural frequency of the
plate with the change of temperature at one side, correspondingly. There
are obviously temperature configuration, or so 20–1025 ◦C, at which the
phenomena of buckling and modal snap-through occur. Accordingly, the
modal shape of first five orders under linear gradient thermal loading in
length direction is shown in Tab. 7.

Figure 6: Natural frequency with linear gradient thermal loading in length direction of
plate.

It is noticeable that the value of T1 is different when the losing phenomenon
of vibration modes happens with T 2 keeping at 20 ◦C. The temperature con-
figurations of thermal gradient in thickness direction, width direction and
length direction of the plate are 20–1117 ◦C, 20–1079 ◦C, and 20–1025 ◦C. It
is seen that linear gradient thermal loading in length direction is the easiest
to happen, while linear gradient thermal loading in thickness direction is
the hardest one. As there is no exact solution of critical buckling tempera-
ture for structures under nonuniform thermal loading, one possible reason
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Table 7: Modal shape of first five orders under linear gradient thermal loading in length
direction of the plate.

Modal Sequence 1st 2nd 3rd 4th 5th

20°C~1025°C

(1,1) (2,1) (1,2) (2,2) (3,1)

20°C~1026°C

(2,1) (1,2) (2,2) (3,1) (1,3)

for explaining the phenomenon is that larger length of linear temperature
distribution leads to earlier appearance of buckling phenomenon.

Also, the asymmetric distribution of vibration mode could also be found
with temperature gradient in length direction of the plate. Taking the mode
shape of (2,2) for an example, the left two have larger absolute value at
extreme points than the other right two of all the four half-wave.

The results in Subsection 3.4 show that the simultaneously existing
thermal moments and membrane forces would induce the occurrence of
structure buckling. Above all, the phenomena of modal snap-through and
losing phenomenon indicate that the modal shape of the plate will be in-
terlaced subjected to thermoacoustic loadings, that is to say, the thermal
loading will lead to the early appearance of a higher order of vibration
mode. The further mechanism is analysed in Subsection 3.5.

3.5 Mechanism of modal snap-through and losing phenomenon

The modal snap-through and losing phenomenon mainly occur at structures
with dense modes with very small parameter perturbations. To make it
more clear, the perturbation method is chosen when introducing a small pa-
rameter perturbation of external factors into vibration characteristic equa-
tion by analyzing the changes of eigenvalues before and after perturbation.
Based on the perturbation method, the mechanism of modal snap-through
and losing phenomenon of a simply supported plate mentioned above with
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the change of surrounding environments is explicated as follows.
Without considering damping and thermoacoustic loading, the vibra-

tion characteristic equation of system can be written as

[K0]
{

u
(i)
0

}

= λ
(i)
0 [M0]

{

u
(i)
0

}

, (23)

where [K0] is the stiffness matrix of structure, [M0] is the mass matrix of

structure, λ
(i)
0 is eigenvalue of i = 1, 2 . . . mode, u

(i)
0 is eigenvector with

corresponding eigenvalue, subscript 0 represents the original physical prop-
erties before imposing thermoacoustic loadings.

When a simply supported isotropic rectangular plate is subjected to
thermoacoustic loading, the stiffness matrix and mass matrix of structure
will change. After introducing a micro quantity of perturbation, ε, the
stiffness matrix and mass matrix of structure can be expressed as

[K] = [K0] + ε[K1] , (24)

[M ] = [M0] + ε[M1] , (25)

where ε[K1] is variation of stiffness matrix, ε[M1], is variation of mass ma-
trix, subscript 1 represents the first order perturbation.

Correspondingly, the relevant eigenvalue and eigenvector change with
variation of temperature. Then, the expression of eigenvalue and eigenvec-
tor are expanded in a power series by using a microquantity of perturbation
ε, which can be expressed as:

{

u(i)
}

=
{

u
(i)
0

}

+ ε
{

u
(i)
0

}

+O(ε2) , (26)

λ(i) = λ
(i)
0 + ελ

(i)
1 +O(ε2) , (27)

where
{

u(i)
}

and ελ
(i)
1 are the first order perturbation of eigenvector and

eigenvalue. For simplicity, a higher order of perturbation is not considered
in the calculation. Substituting Eqs. (24-27) into Eq. (23) results in

[K0]
{

u
(i)
1

}

+[K1]
{

u
(i)
0

}

= λ
(i)
0 [M0]

{

u
(i)
1

}

+λ
(i)
0 [M1]

{

u
(i)
0

}

+λ
(i)
1 [M0]

{

u
(i)
0

}

(28)

According to the expansion theorem, the expansion of
{

u
(i)
1

}

based on the

eigenvector
{

u
(s)
0

}

of the original system can be expressed as

{

u
(s)
0

}T
[K0]

{

u
(i)
0

}T
= δisλ

(s)
0 , (29)
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where T denotes the transpose. Substituting Eq. (29) into Eq. (28), the
first order perturbation of eigenvalue can be expressed as

λ
(i)
1 =

{

u
(i)
0

}T
[K1]

{

u
(i)
0

}

− λ
(i)
0

{

u
(i)
0

}T
[M1]

{

u
(i)
0

}

. (30)

Equation (30) shows that a micro quantity of perturbation has different
influence on the eigenvalue of different orders. When two neighboring

eigenvalues satisfy the requirement that λ
(i)
0 ≤ λ

(i+1)
0 , also the first order

perturbation meets the requirement that ε(λ
(i)
1 − λ

(i+1)
1 ) > (λ

(i)
1 − λ

(i+1)
1 ),

the result of λ(i) > λ(i+1) can be obtained. According to the definition of
structural dynamics, the modal order is strictly ordered according to the
eigenvalues, the eigenvalue of a lower mode would be higher than that of a
higher mode when a structural is subjected to perturbation, thus causing
the modal snap-through and losing phenomenon.

4 Conclusions

In this paper, three theoretical models for the dynamic response of a simply
supported rectangular plate subjected to combined thermal and acoustic
excitations are developed, and the analytical results are compared with
finite element method results. By analyzing the influence of different factors
on natural frequency of the structure, the curves of the natural frequency
versus temperature are obtained under different conditions of temperature
distribution, and the evolution law of modal shapes is investigated in depth.
Detailed conclusions can be summarized as follows:

1. Under uniform temperature field, the natural frequency of each or-
der of the plate decreases slightly with the increase of temperature,
only considering physical parameters with variation of temperature.
And the subsequent analysis indicates that physical parameters of the
plate are not a key factor that causes the buckling phenomenon.

2. Neglecting the influence of temperature on material parameters of
the plate, and keeping the acoustic loading constant, the influence
of membrane forces on natural frequency is considered merely in the
dynamic response analysis. The modal snap-through phenomenon at
the buckling temperature of 569 ◦C, 1038 ◦C, and 1638 ◦C is observed,
before which the natural frequency decreases with the increase of
temperature. Then it rises rapidly at the buckling temperature, and
decreases again after that.
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3. The results of three situations of thermoacoustic modal analysis under
linear gradient thermal loadings in thickness direction, width direc-
tion and length direction of the plate indicate that the simultaneously
existing thermal moments and membrane forces will also cause the
buckling phenomenon, which leads to the modal snap-through and
losing phenomenon. The mechanism analysis shows that thermoa-
coustic loadings will affect the stiffness matrix and mass matrix of
structure. With the increase of temperature, the lower modes of the
plate are lost, the higher modes appear in advance, and the losing
phenomenon occurs in order from the lower order to higher order.

The research in this paper is able to demonstrate the change regulation
of natural frequency of a simply supported rectangular plate subjected to
thermoacoustic loadings, with which the possible reasons for modal snap-
through, structural fatigue and destruction are obtained. What is more, it
could provide reference for the design of structures, which need vibration
protection, such as the thin fuselage structures subjected to simultaneous
acoustic and thermal excitations, which need stability avoiding structural
resonance to ensure the equipment’s normal function, and so forth. Further
analysis about the variation of acoustic loading would be conducted then.
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