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Abstract A general model of the equations of generalized thermo-micro-
stretch for an infinite space weakened by a finite linear opening mode-I
crack is solved. Considered material is the homogeneous isotropic elastic
half space. The crack is subjected to a prescribed temperature and stress
distribution. The formulation is applied to generalized thermoelasticity the-
ories, using mathematical analysis with the purview of the Lord-Şhulman
(involving one relaxation time) and Green-Lindsay (includes two relaxation
times) theories with respect to the classical dynamical coupled theory (CD).
The harmonic wave method has been used to obtain the exact expression
for normal displacement, normal stress force, coupled stresses, microstress
and temperature distribution. Variations of the considered fields with the
horizontal distance are explained graphically. A comparison is also made
between the three theories and for different depths for the case of copper
crystal.
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Nomenclature

CE – specific heat at constant strain (CE = 383.1 J/kg/k)
e – dilatation
eij – components of strain tensor
J – current density vector
K – thermal conductivity (K = 386 N/Ks)
mij – couple stress tensor
t – time
T – absolute temperature
T 0 – reference temperature chosen so that

∣

∣

T −T0

T0

∣

∣ < 1 (T 0 = 293 K)
u1 – components of displacement vector

Greek symbols

αt – coefficient of linear thermal expansions (αt = 1.78 x 10−5 N/m2)
α0, λ0, λ1 – microstretch elastic constants
δij – Kronecker delta
εijr – alternate tensor
λ, µ – Lame’s constants (λ = 7.76 × 1010 N/m2, µ = 3.86 × 1010 N/m2)
λ∗

i – first moment tensor
ν – Poisson’s ratio
ρ – density (ρ = 8954 kg/m3)
σij – components of stress tensor
τ0, ν0 – relaxation times (τ0 = 0.005 s, ν0 = 0.007 s)
ϕ – rotation vector
ϕ∗ – the scalar microstretch
k, α, β, γ – micropolar constants

1 Introduction

The linear theory of elasticity is of paramount importance in the stress anal-
ysis of steel, which is the most common engineering structural material. To
a lesser extent, linear elasticity describes the mechanical behavior of the
other common solid materials, e.g., concrete, wood and coal. However, the
theory does not apply to the behavior of many of the new synthetic ma-
terials of the clastomer and polymer type, e.g., polymethyl-methacrylate
(Perspex), polyethylene and polyvinyl chloride. The linear theory of mi-
cropolar elasticity is adequate to represent the behavior of such materials.
For ultrasonic waves, i.e., for the case of elastic vibrations characterized
by high frequencies and small wavelengths, the influence of the body mi-
crostructure becomes significant. This influence of microstructure results
in the development of new type of waves which are not in the classical
theory of elasticity. Metals, polymers, composites, solids, rocks, concrete
are typical media with microstructures. More generally, most of the nat-
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ural and manmade materials including engineering, geological and biolog-
ical media possess a microstructure. Eringen and Şuhubi [1] and Eringen
[2] developed a linear theory of micropolar elasticity. Othman [3] studied
the relaxation effects on thermal shock problems in elastic half space of
generalized magneto-thermoelastic waves under three theories. Othman [4]
construct a model of the two-dimensional equations of generalized magneto-
thermoelasticity with two relaxation times in an isotropic elastic medium
with the modulus of elasticity being dependent on the reference temper-
ature. Eringen [5] introduced the theory of microstretch of elastic solids.
This theory is a generalization of the theory of micropolar elasticity [2,6]
and a special case of the micromorphic theory. The material points of
microstretch elastic solids can stretch and contract independently of their
translations and rotations. The micro-stretch continua are used to charac-
terize composite materials and various porous media [7]. The basic results
in the theory of micro stretch elastic solids were obtained in the literature
[8-11].

The theory of thermo-microstretch elastic solids was introduced by Erin-
gen [7]. In the frame-work of the theory of thermos-microstretch solids Erin-
gen established a uniqueness theorem for the mixed initial-boundary value
problem. The theory was illustrated through the solution of one dimen-
sional waves and compared with lattice dynamical results. The asymptotic
behavior of solutions and an existence result were presented by Bofill and
Quintanilla [12]. A reciprocal theorem and a representation of Galerkin
type were presented by De Cicco and Nappa [13]. De Cicco and Nappa [14]
extended a linear theory of thermal microstretch elastic solids that permits
the transmission of heat as thermal waves at finite speed. The theory is
based on the entropy production inequality proposed by Green and Laws
[15]. In [14], the uniqueness of the solution of the mixed initial-boundary-
value problem is also investigated. The basic results and an extensive review
on the theory of thermo-microstretch elastic solids can be found in the book
of Eringen [8]. The coupled theory of thermoelasticity has been extended
by including the thermal relaxation time in the constitutive equations by
Lord and Shulman [16] and Green and Lindsay [17]. These theories elim-
inate the paradox of infinite velocity of heat propagation and are termed
the generalized theories of thermoelasticity.

Lotfy [18] studied a novel solution of fractional order heat equation
for photothermal waves in a semiconductor medium with a spherical cav-
ity. Lotfy [19] Response of a semiconducting infinite medium under the
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two temperature theory with photothermal excitation due to laser pulses.
Othman and Lotfy [20] studied the plane waves in generalized thermo-
microstretch elastic half-space by using a general model of the equations
of generalized thermo-microstretch for a homogeneous isotropic elastic half
space. Othman and Lotfy [21] studied the generalized thermo-microstretch
elastic medium with temperature dependent properties for different theo-
ries. Othman and Lotfy [22] studied the effect of magnetic field and inclined
load in micropolar thermoelastic medium possessing cubic symmetry un-
der three theories. The normal mode analysis was used to obtain the exact
expression for the temperature distribution, thermal stresses, and the dis-
placement components.

In recent years, considerable efforts have been devoted the study of
failure and cracks in solids. This is due to the application of the latter
generally in industry and particularly in the fabrication of electronic com-
ponents. Most of the studies of dynamical crack problem are done using the
equations of coupled or even uncoupled theories of thermoelasticity [23–31].
This is suitable for most situations where long time effects are sought. How-
ever, when short time are important, as in many practical situations, the
full system of generalized thermoelastic equations must be used [16].

The purpose of the present paper is to obtain the normal displacement,
temperature, normal force stress, and tangential couple stress in a mi-
crostretch elastic solid. The normal mode analysis used for the problem
of generalized thermo-microstretch for an infinite space weakened by a fi-
nite linear opening mode-I crack is solving for the considered variables.
The distributions of the considered variables are represented graphically.
A comparison is carried out among the temperature, stresses and displace-
ments as calculated from the generalized thermoelasticity (Lord-Şhulman,
L-S), (Green-Lindsay, G-L) and (classical dynamical coupled theory, CD)
theories for the propagation of waves in semi-infinite microstretch elastic
solids.

2 Formulation of the problem

Following Eringen [3], Green and Lindsay [15] and Lord and Şhulman [16],
the constitutive equations and field equations for a linear isotropic gener-
alized thermo-microstretch elastic solid in the absence of body forces are
obtained. We consider Cartesian coordinate system (x, y, z) having origin
on the surface y = 0 and z-axis pointing vertically into the medium, the
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region G given by G = {(x, y, z)| − ∞ < x < ∞, −∞ < z < ∞ }, with a
crack on the x-axis, |x| ≤ a, is considered. The crack surface is subjected
to a known temperature and normal stresses distributions. There are many
types of crack and this study will be devoted to mode-I shown in Fig. 1.

Figure 1: Displacement of an external mode-I crack.

The fundamental system of field equations consists of the equations of mo-
tion for a linear, isotropic generalized thermo-microstretch elastic soiled
medium are given by:

(λ+ µ)∇(∇.~u) + (µ + k)∇2~u

+k(∇~ϕ) + λ0∇ϕ∗ − γ̂

(

1 + −ν0
∂

∂t

)

∇T = ρ
∂2~u

∂t2
, (1)

(α+ β + γ ) ∇(∇.~ϕ) − γ∇ × (∇ × ~ϕ) + k (∇ × ~u ) − 2 k ~ϕ = j ρ
∂2~ϕ

∂ t2
, (2)

α0∇2ϕ∗ − 1

3
λ1ϕ

∗ − 1

3
λ0( ∇· ~u ) +

1

3
γ̂1

(

1 + ν0
∂

∂t

)

T =
3

2
ρ j
∂2ϕ∗

∂ t2
. (3)

The equation of heat conduction

K∇2T = ρCE

(

n1 + τ0
∂

∂t

)

.
T +γ̂T0

(

n1 + n0τ0
∂

∂t

)

.
e+γ̂1T0

∂ϕ∗

∂t
. (4)
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The constitutive law for the theory of generalized thermoelasticity with two
relaxation times

σil = (λ0ϕ
∗ +λur,r)δil +(µ+k )ul,i +µui,l −k εilrϕr − γ̂

(

1 + ν0
∂

∂ t

)

T δil .

(5)
The field equations and constitutive relations for thermo-microstretch gen-
eralized thermoelastic medium read

mil = αϕr,rδil + βϕi,l + γϕl,i , (6)

λi = α0 ϕ
∗

i . (7)

The relation between strain-displacement

e =
∂ u

∂ x
+
∂ v

∂ y
+
∂ w

∂ z
. (8)

The state of plane strain parallel to the xz-plane is defined by

u1=u(x, z, t) , u2 = 0 , u3 = w(x, z, t) , ϕ1 = ϕ3 = 0 ,

ϕ2 = ϕ2(x, z, t) , ϕ∗ = ϕ∗(x, z, t) . (9)

The field Eqs. (1)–(4) reduce to

(λ+ µ)

(

∂2u

∂x2
+

∂2w

∂x∂z

)

+ (µ+ k)

(

∂2u

∂x2
+
∂2u

∂z2

)

−k∂ϕ2

∂z
+ λ0

∂ϕ∗

∂x
− γ̂

(

1 + ν0
∂

∂t

)

∂T

∂x
= ρ

∂2u

∂t2
, (10)

(λ+ µ)

(

∂2u

∂x∂z
+
∂2w

∂z2

)

+ (µ+ k)

(

∂2w

∂x2
+
∂2w

∂z2

)

+k
∂ϕ2

∂x
+ λ0

∂ϕ∗

∂z
− γ̂

(

1 + ν0
∂

∂t

)

∂T

∂z
= ρ

∂2w

∂t2
, (11)

γ

(

∂2ϕ2

∂x2
+
∂2ϕ2

∂z2

)

− 2kϕ2 + k

(

∂u

∂z
− ∂w

∂x

)

= j ρ
∂2ϕ2

∂ t2
, (12)

α0

(

∂2ϕ∗

∂x2
+
∂2ϕ∗

∂z2

)

− 1

3
λ1ϕ

∗

−1

3
λ0(

∂u

∂x
+
∂w

∂z
) +

1

3
γ̂1 (1 + ν0

∂

∂t
)T =

3

2
ρ j
∂2ϕ∗

∂ t2
, (13)
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K

(

∂2T

∂x2
+
∂2T

∂z2

)

= ρCE

(

n1 + τ0
∂

∂ t

)

∂T

∂ t

+ γ̂ T0

(

n1 + n0τ0
∂

∂ t

)

∂e

∂ t
+ γ̂1T0

∂ϕ∗

∂ t
, (14)

where

γ̂= (3λ+ 2µ+ k)αt1 , γ̂1= (3λ+ 2µ+ k)αt2
, and ∇2 =

∂2

∂x2
+

∂2

∂y2
.

(15)
The constants γ̂ and γ̂1 depend on mechanical as well as thermal properties
of the body and the dot denotes the partial derivative with respect to time.

Equations (10)–(14) are the field equations of the generalized thermo-
microstretch elastic solid, applicable to the (L-S) theory, the (G-L) theory,
as well as the classical coupled theory (CD), as follows:

1. The equations of the coupled thermo-microstretch (CD) theory, when

n0 = 0, n1 = 1, τ0 = ν0 = 0 (16)

Equations (10), (11), (13), and (14) have the form:

ρ ü = (λ+ µ)

(

∂2u

∂x2
+

∂2w

∂x∂z

)

+ (µ+ k)

(

∂2u

∂x2
+
∂2u

∂z2

)

− k
∂ϕ2

∂z
+ λ0

∂ϕ∗

∂x
− γ̂

∂T

∂x
, (17)

ρ ẅ = (λ+ µ)

(

∂2u

∂x∂z
+
∂2w

∂z2

)

+ (µ+ k)

(

∂2w

∂x2
+
∂2w

∂z2

)

+ k
∂ϕ2

∂x
+ λ0

∂ϕ∗

∂z
− γ̂

∂T

∂z
, (18)

c2
3

(

∂2ϕ∗

∂x2
+
∂2ϕ∗

∂z2

)

− c2
4ϕ

∗ − c2
5

(

∂u

∂x
+
∂w

∂z

)

+ c2
6T =

∂2ϕ∗

∂ t2
, (19)

K

(

∂2T

∂x2
+
∂2T

∂z2

)

= ρCE
∂T

∂ t
+ γ̂ T0

∂e

∂ t
+ γ̂1T0

∂ϕ∗

∂ t
. (20)
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The constitutive relation can be written as:

σxx = λ0ϕ
∗ + (λ+ 2µ + k)

∂u

∂x
+ λ

∂w

∂z
− γ̂ T , (21)

σzz = λ0ϕ
∗ + (λ+ 2µ+ k)

∂w

∂ z
+ λ

∂u

∂x
− γ̂ T , (22)

σxz = µ
∂u

∂z
+ (µ + k)

∂w

∂x
+ kϕ2 , (23)

σzx = µ
∂w

∂ x
+ (µ+ k)

∂u

∂z
+ kϕ2 , (24)

mxy = γ
∂ϕ2

∂x
, (25)

mzy = γ
∂ϕ2

∂z
, (26)

where

c2
3 =

2α0

3ρ j
, c2

4 =
2λ1

9ρ j
, c2

5 =
2λ0

9ρ j
, c2

6 =
2γ̂1

9ρ j
. (27)

2. Lord-Şhulman (L-S) theory, when

n1 = n0 = 1, ν0 = 0, τ0 > 0 . (28)

Equations (10), (11), and (13) are the same as Eqs (17), (18), and (19) and
Eq. (14) has the form

K

(

∂2T

∂x2
+
∂2T

∂z2

)

=

(

∂

∂t
+ τ0

∂2

∂ t2

)

(ρCET + γ̂ T0 e) + γ̂1T0
∂ϕ∗

∂ t
. (29)

3. Green-Lindsay (G-L) theory, when

n1 = 1, n0 = 0, ν0 ≥ τ0 > 0 (30)

Equations (10), (11), and (13) remain unchanged and Eq. (14) has the
form

K

(

∂2T

∂x2
+
∂2T

∂z2

)

= ρCE

(

1 + τ0
∂

∂ t

)

∂T

∂ t
+ γ̂ T0

∂e

∂ t
+ γ̂1T0

∂ϕ∗

∂ t
. (31)

4. The corresponding equations for the generalized micropolar thermo-
elasticity without stretch can be obtained from the above mentioned cases
by taking:

α0 = λ0 = λ1 = ϕ∗ = 0 .



Generalized thermal microstretch elastic solid. . . 155

For convenience, the following non-dimensional variables are used:

x̄i = ω∗

Co xi , ūi = ρC2 ω∗

γ̂T o ui , t̄ = ω∗ t , (τ̄0 ν̄0 = ω∗ (τ0 , ν0),

T̄ = T
T o , σ̄ij =

σij

γ̂T o , (m̄ij , λ̄3) = ω∗

C2γ̂T0
(mij, λ3) ,

(ϕ̄2 , ϕ̄) =
ρC2

2
γ̂T o , (ϕ2 , ϕ), ω∗ =

ρCE C2
2

K , C2
2 = µ

ρ .

(32)

Using Eqs. (32), Eqs. (10)–(14) become (dropping the dashes for conve-
nience)

∂2u

∂t2
=

(µ+ k)

ρC2
2

∇2u+
(µ+ λ)

ρC2
2

∂e

∂x

− k

ρC2
2

∂ϕ2

∂z
+

λ0

ρC2
2

∂ϕ∗

∂x
−
(

1 + ν0
∂

∂t

)

∂T

∂x
, (33)

∂2w

∂t2
=

(µ+ k)

ρC2
2

∇2w +
(µ+ λ)

ρC2
2

∂e

∂z

+
k

ρC2
2

∂ϕ2

∂x
+

λ0

ρC2
2

∂ϕ∗

∂z
−
(

1 + ν0
∂

∂t

)

∂T

∂z
, (34)

j ρC2
2

γ

∂2ϕ2

∂ t2
= ∇2ϕ2 − 2kC2

2

γ w∗
ϕ2 +

kC2
2

γ w∗2

(

∂u

∂z
− ∂w

∂x

)

, (35)

(

c2
3

C2
2

∇2 − c2
4

w∗2
− ∂2

∂t2

)

ϕ∗ − c2
5

w∗2
e+ a9

(

1 + ν0
∂

∂t

)

T = 0 (36)

∇2T −
(

n1 + τ0
∂

∂ t

)

∂T

∂ t
− γ̂2 T0

ρKw∗

(

n1 + n0τ0
∂

∂ t

)

∂e

∂ t
=
γ̂ γ̂1T0

ρKw∗

∂ϕ∗

∂ t
. (37)

Assuming the scalar potential functions ϕ(x, z, t) and ψ(x, z, t) defined by
the relations in the non-dimensional form:

u =
∂ϕ

∂x
+ ∂ψ∂z , w =

∂ϕ

∂z
− ∂ψ∂x . (38)

Using (38) in Eqs. (33)–(37), we obtain:
[

∇2 − a0
∂2

∂t2

]

ϕ − a0 (1 + ν0
∂

∂t
)T + a1ϕ

∗ = 0, (39)

[

∇2 − a2
∂2

∂t2

]

ψ − a3ϕ2 = 0, (40)
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[

∇2 − 2 a4 − a5
∂2

∂t2

]

ϕ2 − a4 ∇2ψ = 0, (41)

[

a6∇2 − a7 − ∂2

∂ t2

]

ϕ∗ − a8∇2ϕ+ a9(1 + ν0
∂

∂ t
)T = 0, (42)

[

∇2 −
(

n1
∂

∂t
+ τ0

∂2

∂t2

)]

T − ε (n1
∂

∂t
+ n0τ0

∂2

∂t2
) ∇2ϕ− ε1

∂ϕ∗

∂t
= 0,

(43)
where

c2
1 =

λ+ 2µ + k

ρ
, a0 =

C2
2

C2
1

, a1 =
λ0

λ+ 2µ + k
, a2 =

ρC2
2

µ+ k
,

a3 =
k

µ+ k
, a4 =

k C2
2

γw∗2
, a5 =

ρjC2
2

γ
, a6 =

C2
3

C2
2

, a7 =
C2

4

w∗2
,

a8 =
C2

5

w∗2
, a9 =

2γ̂1C
2
2

9γ̂jw∗2
, ε =

γ̂2 T0

ρω∗K
, ε1 =

γ̂ γ̂1T0

ρω∗K
. (44)

3 Harmonic wave method

The solution of the considered physical variables can be decomposed in
terms of normal mode as the following form:

[ϕ ,ψ , ϕ∗ , ϕ2 , σil ,mil , T ](x , z , t)

= [ ϕ̄, ψ̄, ϕ̄∗, ϕ̄2 ,σ̄il,m̄il,T̄ ] (x)e(ω t+i az) , (45)

where [ ϕ̄, ψ̄, ϕ̄∗, ϕ̄2 , σ̄il,m̄il,T̄ ](x) are the amplitude of the functions ω is
a complex and a is the wave number in the z-direction.
Using Eq. (45), then Eqs. (39)–(43) become respectively

(D2 −A1)ϕ̄−A2 T̄ + a1 ϕ̄
∗ = 0 , (46)

(D2 −A3)ψ̄ − a3 ϕ̄2 = 0 , (47)

(D2 −A4) ϕ̄2 − a4(D2 − a2)ψ̄ = 0 , (48)

( a6D
2 −A5)ϕ̄∗ − a8(D2 − a2)ϕ̄+A8T̄ = 0 , (49)

[

(D2 − a2) −A6

]

T̄ −A7(D2 − a2)ϕ̄− ε1ωϕ̄
∗ = 0 , (50)

where D = d
dx ,

A1 = a2 + a0ω
2 , (51)
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A2 = a0 (1 + ν0ω) , (52)

A3 = a2 + a2ω
2 , (53)

A4 = a2 + 2a4 + a5ω
2 , (54)

A5 = a2a6 + a7 + ω2 , (55)

A6 = ω (n1 + τ0ω) , (56)

A7 = εω (n1 + n0τ0ω) , (57)

A8 = a9 (1 + ν0ω) . (58)

Eliminating ϕ̄2, ψ̄ between Eqs. (47) and (48), we get the following fourth
order ordinary differential equation satisfied by ϕ̄2 and ψ̄

[

D4 −AD2 +B
] {

ϕ̄2(x), ψ̄(x)
}

= 0 . (59)

Eliminating ϕ̄, T̄ , and ϕ̄∗ between Eqs. (46), (49), and (50) we obtain the
following sixth order ordinary differential equation satisfied by ϕ̄∗(x), ϕ̄(x)
and T̄ (x)

[

D6 − C D4 + ED2 −H
] {

ϕ̄∗(x), ϕ̄(x), T̄ (x)
}

= 0 , (60)

where

A = A3 +A4 + a3a4 , (61)

B = A3A4 + a2a3a4 , (62)

C =
g3(g7 + g8) − g5

g3
, (63)

E =
a2g3g8 + ε1ωg1A2 − g6 − g5g7 − g4g8

g3
, (64)

H =
a2g4g8 + g6g7 − ε1ωg2A2

g3
, (65)

g1 = A8 − a8A2 , g2 = a2a8A2 −A1A8 , g3 = a6 A2 ,

g4 = a1 A8 +A5A2 , g5 = g4 −A1 g3 − a1g1 ,

g6 = A1 g4 + a1g2 , g7 = a2A6 +A7 , g8 = A2A8 . (66)
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The solution of Eqs. (59) and (60), has the form:

ψ̄(x) =
2
∑

j=1

Mj(a, ω) e− kj x, (67)

ϕ̄2(x) =
2
∑

j=1

M ′

j(a, ω) e− kj x, (68)

ϕ̄(x) =
5
∑

n=3

Mn(a, ω) e− knx, (69)

ϕ̄∗(x) =
5
∑

n=3

M ′

n(a, ω) e− knx, (70)

T̄ (x) =
5
∑

n=3

M ′′

n(a, ω) e− knx, (71)

where Mj(a, ω), M ′
j(a, ω), Mn(a, ω), M ′

n(a, ω) and M ′′
n(a, ω) are some pa-

rameters depending on a and ω. Subsequently k2
j , ( j = 1, 2 ) are the roots

of the characteristic equation of Eq. (59) and k2
n, (n = 3, 4, 5 ) are the roots

of the characteristic equation of Eq. (60). Using Eqs. (67)- (71) into Eqs.
(46) and (50) we get the following relations

ϕ̄2(x) =
2
∑

j=1

a∗

jMj(a, ω) e− kj x, (72)

ϕ̄∗(x) =
5
∑

n=3

b∗

nMn(a, ω) e− kn x, (73)

T̄ (x) =
5
∑

n=3

c∗

nMn(a, ω) e− kn x. (74)

where,

a∗

j =
k2

j −A3

a3
, j = 1, 2 , (75)

b∗

n =
g1k

2
n + g2

g3k2
n + g4

, n = 3, 4, 5 , (76)

c∗

n =
g3k

4
n + g5k

2
n − g6

A2 (g3k2
n + g4)

, n = 3, 4, 5 . (77)
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4 Application

The plane boundary subjects to an instantaneous normal point force and
the boundary surface is isothermal, the boundary conditions at the vertical
plan y = 0 and in the beginning of the crack at x = 0 are

σzz = −p(x) , |x| < a ,

T = f(x) , |x| < a and
∂T

∂z
= 0 , |x| > a ,

σxz = 0 , −∞ < x < ∞ , (78)

mxy = 0 , −∞ < x < ∞ ,

λz = 0 , −∞ < x < ∞ .

Using (32), (38), (39)–(43) with the non-dimensional boundary conditions
and using (67), (69), (72)–(74), we obtain the expressions of displacement
components, force stress, coupled stress and temperature distribution for
microstretch generalized thermoelastic medium as follows:

ū(x) = ia(M1e
−k1x +M2e

−k2x)

−k3 M3e
− k3x − k4M4e

− k4 x − k5M5e
− k5 x , (79)

w̄(x) = k1 M1e
− k1 x + k2M2e

− k2x

+ i a(M3e
− k3 x + k4M4e

− k4 x + k5M5e
− k5 x) , (80)

σ̄zz(x) = s1M1e
− k1 x + s2M2e

− k2x

+ s3M3e
− k3 x + s4M4e

− k4 x + s5M5e
− k5 x , (81)

σ̄xz(x) = r1M1e
− k1 x + r2M2e

− k2 x

+ r3M3e
− k3 x + r4M4e

− k4x + r5M5e
− k5x , (82)

m̄xy(x) = q1M1e
− k1x + q2M2e

− k2x , (83)

T̄ (x) = c∗

3M3e
− k3x + c∗

4M4e
− k4x + c∗

5M5e
− k5x , (84)

λz = f8(b∗

3M3e
− k3x + b∗

4M4e
− k4x + b∗

5M5e
− k5x) , (85)

where
s1 = iak1(f2 − f3), s2 = iak2(f2 − f3),
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s3 = f1b
∗
3 − a2f2 + f3k

2
3 − c∗

3(1 + ν0ω),
s4 = f1b

∗
4 − a2f2 + f3k

2
4 − c∗

4(1 + ν0ω),
s5 = f1b

∗
5 − a2f2 + f3k

2
5 − c∗

5(1 + ν0ω),
r1 = a∗

1f6 − a2f4 − f5k
2
1 , r2 = a∗

2f6 − a2f4 − f5k
2
2 ,

r3 = − iak3(f4 + f5), r4 = − iak4(f4 + f5), r5 = iak5(f4 + f5),
q1 = −f7a

∗
1k1, q2 = −f7a

∗
2k2, f1 = λ0

ρc2
2
, f2 = λ+2µ+k

ρ c2
2

, f3 = λ
ρ c2

2
,

f4 = µ
ρ c2

2
, f5 = µ+k

ρ c2
2

, f6 = k
ρ c2

2
, f7 = γω∗

2

ρ c4
2

, and f8 = α0ω∗
2

ρ c4
2
. (86)

Applying the boundary conditions (78) at the surface x = 0 of the plate,
we obtain a system of five equations. After applying the inverse of ma-
trix method, we obtain the values of the five constants Mj, j = 1, 2, and
Mn, n = 3, 4, 5. Hence, we obtain the expressions for displacements, force
stress, couple stress and temperature distribution for microstretch general-
ized thermoelastic medium.

5 Numerical results and discussions

In order to illustrate our theoretical results obtained in preceding section
and to compare these in the context of various theories of thermoelasticity,
we now present some numerical results. In the calculation process, we
take the case of copper crystal as the material subjected to mechanical and
thermal disturbances for numerical calculations. Since, ω is the complex
constant then we taken ω = ω0 + i ζ. The other constants of the problem
are taken asω0 = −2; ζ = 0.01 and a = 1.

The results are shown in Figs. 2–15. The graph shows the three curves
predicted by different theories of thermoelasticity. In these figures, the solid
lines represent the solution in the coupled theory, the dotted lines represent
the solution in the generalized Lord and Şhulman theory and dashed lines
represent the solution derived using the Green and Lindsay theory. We
notice that the results for the temperature, the displacement and stresses
distribution when the relaxation time is including in the heat equation are
distinctly different from those when the relaxation time is not mentioned in
the heat equation, because the thermal waves in the Fourier’s theory of heat
equation travel with an infinite speed of propagation as opposed to finite
speed in the non-Fourier case. This demonstrates clearly the difference
between the coupled and the generalized theories of thermoelasticity.

For the value of z, namely z = 0.1, were substituted in performing the
computation. It should be noted (Fig.2) that in this problem, the crack’s
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size, x is taken to be the length in this problem so that 0 ≤ x ≤ 3, z = 0
represents the plane of the crack that is symmetric with respect to the
z-plane. It is clear from the graph that T has a maximum value at the
beginning of the crack (x = 0), it begins to fall just near the crack edge
(x = 3), where it experiences sharp decreases (with maximum negative
gradient at the crack’s end). The value of temperature quantity converges
to zero with increasing distance x.

Figure 2: Variation of temperature distri-
bution T with different theories.

Figure 3: Variation of displacement distri-
bution u with different theories.

Figure 4: Variation of displacement distri-
bution w with different theories.

Figure 5: Variation of stress distribution
σxz with different theories

In Fig. 3, the horizontal displacement,u, begins with the descent followed
by the smooth increase to reach its maximum just at the crack end. Be-
yond it u falls again to try to retain zero at infinity. Figure 4 presents
the vertical displacement w. We see that the displacement component w
always starts from the zero value and terminates at the zero value. Also, at
the crack end to reach minimum value, beyond reaching zero at the double
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Figure 6: Variation of stress distribution
σxz with different theories.

Figure 7: Variation of tangential couple
stress mxy with different theo-
ries.

Figure 8: Variation of microstress λz with
different theories.

Figure 9: Variation of temperature distri-
bution T for different vertical
distances, under GL theory.

of the crack size (state of particles equilibrium).
The displacements u and w show different behaviours, because of the

elasticity of the solid tends to resist vertical displacements in the problem
under investigation. Both of the components show different behaviours,
the former tends to increase to maximum just before the end of the crack.
Then it falls to a minimum with a highly negative gradient. Afterwards it
rises again to a maximum beyond about the crack end. The stress compo-
nent, σzz reaches coincidence with negative value (Fig. 5) and satisfies the
boundary condition at x = 0. Then it reaches the maximum value near
the end of crack (x ≈ 3) and converges to zero with the increasing distance
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x. Figure 6, shows that the stress component σxz satisfies the boundary
condition at x = 0 and exhibits a different behaviour. It initially decreases
followed by increasing to reach the maximum in the context of the three
theories until reaching the crack end. These trends obey elastic and ther-
moelastic properties of the solid under investigation.

Figure 7 shows the tangential coupled stress mxy which satisfies the
boundary condition at x = 0. It decreases in the start and start increasing
to reach the maximum in the context of the three theories until reaching
the crack end. The values of microstress for λz satisfy the boundary con-
dition at x = 0. The distribution begins with increase followed by decrease
to reach its minimum magnitude just near the crack end, beyond reaching
zero at the double of the crack size (state of particles equilibrium), as de-
picted in Fig. 8.

Figures 9–15 show the comparison between the temperature T , dis-
placement components u,w, force stresses components σzz, σxz, tangential
coupled stress mxy and the microstress λz, for the case of three different
values of z, (namely z = 0.1, z = 0.2 and z = 0.3) under GL theory. It
should be noted (Fig. 9) that in this problem it is clear from the graph that
T reaches the maximum value at the beginning of the crack (x = 0), it
begins to fall just near the crack edge (x = 3), where it experiences sharp
decreases (with maximum negative gradient at the crack’s end). Graph
lines for both values of y show different slopes at crack ends according to
y-values. In other words, the temperature line for z = 0.1 has the highest
gradient when compared with that of z = 0.2 and z = 0.3 at the first of the
range. In addition, all lines begin to coincide when the horizontal distance
x is beyond the double of the crack size to reach the reference temperature
of the solid. These results obey physical reality for the behaviour of copper
as a polycrystalline solid.

Figure 10 presents the horizontal displacement u, despite the peaks (for
different vertical distances z = 0.1, z = 0.2, and z = 0.3) which occur
at equal value of x. The magnitude of the maximum displacement peak
strongly depends on the vertical distance y. It is also clear that the rate
of change of u increases with increasing y as we go farther apart from the
crack. On the other hand, Fig. 11 shows atonable increase of the vertical
displacement, w, near the crack end to reach minimum value beyond x = 3
reaching zero at the double of the crack size(state of particles equilibrium).

Figure 12 shows the vertical stresses σzz. Graph lines for both values of
z show different slopes at crack ends according to z-values. In other words,
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the σzz component line for z = 0.1 has the highest gradient when compared
with that of z = 0.2 and z = 0.3 at the edge of the crack. In addition, all
lines begin to coincide when the horizontal distance x is beyond the double
of the crack size to reach zero after their relaxations at infinity. Varia-
tion of y has a serious effect on both magnitudes of mechanical stresses.
These trends obey elastic and thermoelastic properties of the solid under
investigation. Figure 13, shows that the stress component σxz satisfies the
boundary condition, the line for z = 0.3 has the highest gradient when
compared with that of z = 0.2 and z = 0.1 in the range 0 ≤ x ≤ 2.5,
the line for z = 0.1 has the highest gradient when compared with that of
z = 0.2 and z = 0.3 in the range 2.5 ≤ x ≤ 5 and converge to zero when
x > 5. These trends obey elastic and thermoelastic properties of the solid.

Figure 10: Variation of displacement dis-
tribution u for different vertical
distances, under GL theory.

Figure 11: Variation of displacement dis-
tribution w for different vertical
distances, under GL theory.

Figure 14 presents the tangential coupled stress mxy which decreases at
the start followed by increasing to attain maximum in the context of the
three values of z until reaching the crack end. For z = 0.3 it has the highest
gradient when compared with that of z = 0.2 and z = 0.1 at the edge of the
crack. All lines begin to coincide when the horizontal distance x is beyond
the edge of the crack. In Fig. 15 shown are the values of microstress for
λz which increases at the beginning followed by the decrease to reach the
minimum in the context of the three values of z until reaching nearly the
crack end. For z = 0.3 it has the highest gradient when compared with
that of z = 0.2 and z = 0.1 at the edge of the crack. All lines begin to
coincide when the horizontal distance x is beyond the double of the crack
size to reach zero after their relaxations at infinity.
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Figure 12: Variation of stress distribution
σzz for different vertical dis-
tances, under GL theory.

Figure 13: Variation of stress distribution
σxz for different vertical dis-
tances, under GL theory.

Figure 14: Variation of tangential couple
stress mxy for different vertical
distances, under GL theory.

Figure 15: Variation of microstress λz for
different vertical distances, un-
der GL theory.

6 Conclusions

The models of generalized thermo-microstretch for an infinite space weak-
ened by a finite linear opening mode-I crack is solved. The physical quan-
tities are given analytically and illustrated graphically by the normal mode
method. The effects of the thermal relaxation time (three theories), the
case of different three values of the depth are discussed. The following
conclusions can be drawn:

1. The curves in the context of (CD), (L-S) and (G-L) theories decrease
exponentially with increasing x, this indicate that the thermoelastic



166 K. Lotfy et al.

waves are unattenuated and nondispersive, where purely thermoelas-
tic waves undergo both attenuation and dispersion.

2. The presence of microstretch plays a significant role in all the physical
quantities.

3. The curves of the physical quantities with (L-S) theory in most of
figures are lower in comparison with those under (G-L) theory, due
to the relaxation times.

4. Analytical solutions based upon normal mode analysis for themoelas-
tic problem in solids have been developed and utilized.

5. A linear opening mode-I crack has been investigated and studied for
copper solid

6. Temperature, radial and axial distributions were estimated at differ-
ent distances from the crack edge.

7. The stresses distributions, the tangential coupled stress and the values
of microstress were evaluated as functions of the distance from the
crack edge.

8. Crack dimensions are significant to elucidate the mechanical structure
of the solid.

9. Cracks are stationary and external stress is demanded to propagate
such cracks.

10. It can be concluded that a change of volume is attended by a change
of the temperature while the effect of the deformation upon the tem-
perature distribution is the subject of the theory of thermoelasticity.

11. The value of all the physical quantities converges to zero with an
increase in distance y and all functions are continuous.

Received 1 March 2018
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