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1. Introduction

A multi-terminal matching circuit that connects power sources
to a load, in contrast to a simple two-terminal compensator [1–
4], ensures high independence between input (source) voltages
and currents and the output (load) voltages and currents. In the
case when power source has an internal impedance, a com-
monly used reactive current compensation with one capacitor or
a shunt RLC filters, does not minimize transmission losses and
the RMS value of the source currents. If the known parameters
of an equivalent power source circuit are taken into account,
then the minimization of the source current and transmission
losses cannot be accomplished by the means of a two-terminal
passive compensator. This paper presents a four-terminal circuit
synthesis for source-current compensation that ensures optimal
operating conditions for the source, nominal operating condi-
tions for the load and is implemented only by means of passive
LC branches.

2. Reactive four-terminal compensators

The source optimal operation condition is usually assumed
to be a source’s current minimum RMS value (transmission
losses) transmitting given active power to the load. It can be
formulated in Hilbert space as [5–8]:

(
ie, ie

)
→ min,

(
e, ie

)
−
(
R ie, ie

)
= P,

(1)
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where:
ie, e – source current and EMF that can be expressed e.g. as

complex numbers or as vectors of samples or as any represen-
tation in terms of an orthogonal base;

R ie is in general a convolution of ie with source’s inner-loss
operator R;
(., .) – scalar product in Hilbert space.
To provide optimal (minimal) source current at unchanged

load voltage and current, one needs to build a matching circuit
(a four-terminal network) that will ensure these voltages and
currents at its ends. Because finding parameters of such a four-
terminal network, based only on its I/O signals is not unique, an
additional optimization criterion should be formulated as fol-
lows

g

∑
k=1

(ik, ik)→ min,

g

∑
k=1

(uk, ik) = 0,

(2)

where:
g – number of inner branches of a four-terminal network,
ik, uk – current and voltage of a k-th inner branch.

2.1. Four-terminal matching network. In the case of a four-
terminal network, we have one input and one output port. The
condition for a lossless four-terminal network is that the sum of
the active power of ports is zero i.e. Pe +Po = 0 (Fig. 1). The
internal topology of a four-terminal network was assumed to be
a ladder structure. An example of such a structure, with nine
internal branches, is shown in Fig. 2.

If all branch currents and voltages are determined by a set of
N orthogonal components, usually harmonics or samples, then
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Fig. 1. Four-terminal network connecting power source with a load

Fig. 2. An example of a directed graph of a four-terminal network and
its cut-sets

for all internal voltages U and currents I (Fig. 2) it holds that:

U = P

[
v
u

]
, I = C

[
j

i

]
, (3)

where
P, C – cut-set and loop matrices,
v, j – vectors of known or desired voltages and currents of

I/O branches,
u, i – voltages of independent inner tree branches and cur-

rents of independent links,

x =




x1
...

xN


 – branch signal (current or voltage),

N – number of orthogonal component of each branch signal
(e.g. samples).

The sum of squared RMS values of inner-branch currents is
given by the formula

N

∑
n=1

g

∑
k=1

i2k,n =
g

∑
k=1

[
IT I

]
k
, (4)

where for each k-th branch:

IT I =
[

jT iT
]
CT C

[
j
i

]
=
[

jT iT
]
A

[
j
i

]
=

=
[

jT iT
][ A11 A12

A21 A22

][
j
i

]
. (5)

The vector of active power of all inner branches is given by
the formula:

Pa =




uT
1 i1
...

uT
g ig


 (6)

where



uT
1 i1
...

uT
g ig


=

[ ]
[ I ] =

[ ]
C

[
j
i

]
= B

[
j
i

]

=
[

B1 B2

][ j
i

]
(7)

and

[ ]
=




uT
1

. . .

uT
g


= diag

(
P

[
v
u

])
,

g – number of inner branches.
Optimization task that yields inner-current values takes the

form:
g

∑
k=1

[
IT I

]
k
→ min, (8)




uT
1 i1
...

uT
g ig


= 0. (9)

The functional for the above optimization task takes the
form:

F =
1
2

g

∑
k=1

[
IT I

]
k +PT

a ΛΛΛ =
[

jT iT
]




1
2

[
A11 A12

A21 A22

][
j
i

]
+

[
BT

1

BT
2

]
λ1
...

λg





→ min, (10)

where

ΛΛΛ =




λ1
...

λg


 – vector of Lagrange coefficients.

This leads to the equations for minimum solution with re-
spect to i:

dF
di

=
[

0 diT
][ A11 A12

A21 A22

][
j
i

]
+
[

0 diT
][ BT

1

BT
2

]
ΛΛΛ =

=
[

A21 A22

][ j
i

]
+BT

2 ΛΛΛ = 0 (11)
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or otherwise:

[
A22 BT

2

][ i
ΛΛΛ

]
=−A21 j

subject to zero active power of each internal branch:

dF
dΛΛΛ

=
[

B1 B2

][ j
i

]
= 0 (12)

or B2 i =−B1 j.
A general system of equations for independent currents and

ΛΛΛ takes the form

[
A22 BT

2

B2 0

][
i
ΛΛΛ

]
=−

[
A21

B1

]
j. (13)

3. Four-terminal Π network for monoharmonic
signals

Let us assume a four-terminal Π matching circuit depicted in
Fig. 3.

Fig. 3. Diagram and directed graph of the four-terminal Π network

For this structure we define:

j =

[
ie
io

]
– currents of I/O branches;

i = ix – independent current of the internal link;

v =

[
ue

uo

]
– I/O branch voltages;

u = [ ] – no internal tree branches.

The full incidence matrix (cut-set matrix) of the graph is:

e o 1 2 3[[
1 0
0 1

][
−1 1 0
1 0 1

]]
=
[

PT
1 PT

] (14)

thus

P =




−1 1
1 0
0 1


 and

U =




u1

u2

u3


= P v =




−1 1
1 0
0 1



[

ve

vo

]
,

where:
e, o – source and load branches,
1 2 3 – inner branch index,
1 – unity matrix, 0 – zero matrix.
The full loop matrix is:

e o 1 2 3





1 0
0 1
0 0







0 −1 0
0 0 −1
1 1 −1





=

[
CT

1 CT
] (15)

thus

C =




0 0 1
−1 0 1
0 −1 −1


 and

I =




ix
i2
i3


= C




ie
io
ix


= C

[
j
i

]
.

Matrices A and B take the values:

A = CT C =




1 0 −1
0 1 1
−1 1 3


=

[
A11 A12

A21 A22

]
, (16)

B = diag
(
P vT )C =




0 0 −uT
e +uT

o

−uT
e 0 uT

e

0 −uT
o −uT

o


=

=
[

B1 B2

]
. (17)

Because the Π-compensator is entirely passive, one of its in-
ner branches (e.g. 1) should not be considered in power balance.
We can achieve this using a permutation matrix Pm:

Pm

[
B1 B2

]
=

[
−uT

e 0 uT
e

0 −uT
o −uT

o

]
, (18)
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where

Pm =

[
0 1 0
0 0 1

]
.

Equation (10) takes now the form:




3 ·1 ue −uo

uT
e 0 0

−uT
o 0 0







ix
λ1

λ2


=−




−1 1
−uT

e 0
0 −uT

o



[

ie
io

]
. (19)

Now we can apply Gaussian elimination once e.g. by left

multiplying equation by matrix




3 ·1 0 0
uT

e −3 0

−uT
o 0 −3


 to get




9 ·1 3ue −3uo

0 uT
e ue −uT

e uo

0 −uT
e uo uT

o uo







ix
λ1

λ2


=−




−3ie +3io
2uT

e ie +uT
e io

2uT
o io +uT

o ie


 (20)

where:
1 – unity matrix, 0 – zero matrix,
uT

e ue = |ue|2, uT
o uo = |uo|2,

uT
e ie = −uT

o io = pe – active power given by the source
branch.

The solution for the independent current ix can be obtained
from the above matrix equation.
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losses, we could modify the equation (20) adding these losses
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where: p2, p3 – active powers of brunch 2 and 3.

4. Numerical example

Let us consider the optimization of the source current for the
source-load circuit depicted in Fig. 4 [7, 9] We only take fun-
damental harmonic into consideration (this approach is even ef-
fective for nonlinear load) thus before optimization:

io =−E/(ZE +Zo) =−0.1+0.1 j → io =
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−0.1
0.1

]
,

|io|= 0.141,

uo = io Zo = 0.8 → uo =
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.

Fig. 4. Power source and load circuit before optimization

Let us decide that the optimal operation condition for the
source meets the (1) and (2) condition [1, 4–6].

Fig. 5. Power source and its optimal load
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Thus the EMF optimal conductance is
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which yields [
ix1

ix2

]
=

[
0.100

0.128

]
.

In this case all the impedances of inner branches are sup-
posed to be reactances and can be calculated by determining
the reactive power from a formula which imitates a complex
values formula (active sign convention) as follows:

Q =−
[

u1 u2

][ 0 −1

1 0

][
i1
i2

]
. (24)

Thus, using the above formula we get

bk =
Qk

|uk|2
(25)

for any k-th internal branch, the resulting susceptances of Π
compensator are




b1

b2

b3


=




1.140

−0.140

0.285


 .

The circuit diagram for this solution is depicted in Fig. 6.

Fig. 6. Solution 1

Because we can independently shift output signals by any
time interval the other values of the four-terminal-network sus-
ceptances can be calculated by changing output current and
voltage phases by a given angle ϕ , i.e. by multiplying the four-
terminal-network chain matrix by e− jϕ :

[
uopt

iopt

]
=




b1 +b3

b1
− j

b1

j (b1b2 +b1b3 +b2b3)

b1

b2 +b1

b1




e− jϕ

[
1 0

1/Zo 1

]
e jϕ

[
uo

−io

]
.

The new four-terminal-network chain matrix is:



b′1 +b′3
b′1

− j
b′1

j (b′1b′2 +b′1b′3 +b′2b′3)
b′1

b′1 +b′2
b′1


=

=




b1 +b3

b1
− j

b1

j (b1b2 +b1b3 +b2b3)

b1

b2 +b1

b1


(cos(ϕ)− j · sin(ϕ)) .

Hence solving the above equations we get the new suscep-
tances’ values:

b′1 = b1 (cos(ϕ)+ j sin(ϕ)) ,

b′2 = b2 +b1 (1− cos(ϕ)− j sin(ϕ)) ,

b′3 = b3 +b1 (1− cos(ϕ)− j sin(ϕ)) .

From the above formula it results that only for ϕ = 0 or π it
is possible for the susceptances b to have real values, thus the
second solution is:




b′1
b′2
b′3


=




−1.140

2.140

2.566




and the corresponding circuit diagram is depicted in Fig. 7.

Fig. 7. Solution: 2

Thus, the four-terminal lossless networks that completely
compensate the reactive current of the source are feasible and
their structures are shown in Figs. 6 and 7.

4.2. Π-compensator for nonlinear load. This very procedure
for determining the internal voltages and currents of a four-
terminal compensator can also be applied to a non-linear load,
because the essence of the approach lies in determining only
the required voltages and currents at the inputs and outputs of
the four-terminal compensator, which is feasible for any even
nonlinear load.

Taking into account circuit with rectifier (Fig. 8) with param-
eters in Table 1, and assuming 20 samples by period we get the
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Fig. 8. Π-losless compensator with nonlinear load

Table 1
Circuit parameters

Source

eRMS = 100 V
ω = 314.16

Re = 1 Ω
Le = 0.0063662 H

Load
Ro = 20 Ω
Lo = 1e-4 H
Co = 1e-3 F

following I/O signals Fig. 9 with optimal source current as fol-
lows

ie =Gee(t) → ie = 0.058
[
e1 · · · e20

]T
=
[
ie,1 · · · ie,20

]T
.

Fig. 9. Input ue, ie and output uo, io signals of the compensator (Sim-
ilink simulation)

Subsequently we use (21), with p2 = p3 = 0 condition, to
get three inner-branch signals (Fig. 10) of minimal RMS val-
ues and zero active branch-power, which can be easily accom-
plished using voltage source inverters.

It is worth noting that signals of branches 1 and 2 resemble,
to some extent, sinusoids.

Fig. 10. Inner signals of the compensator

Because of the generality of this procedure the method can
also be applied to multiphase systems and simplicity is its asset.

5. Conclusion

The lossless four-terminal compensator, much more than a two-
terminal one, makes the source (input) circuit independent of
the load (output) circuit, which results in ensuring optimal op-
erating conditions for source without the need to change the
receiver’s operating conditions (voltage, current) which is un-
avoidable when parallel or serial compensation is applied. In
addition, due to the fact that all branches of the four-terminal
matching system are electrically passive, they can be imple-
mented with the help of so-called active filters. I am not aware
of any study similar to this work that has been carried out by
other teams.
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