Early Pliocene calcareous and siliceous microfossils of the Sawai Bay Formation, Car Nicobar Island, northern Indian Ocean

ARINDAM CHAKRABORTY1, AMIT K. GHOSH1*, KEVIN MCCARTNEY2, STUTI SAXENA1, RIKEE DEY1 and LOPAMUDRA ROY1

1 Birbal Sahni Institute of Paleosciences, 53 University Road, Lucknow 226 007, India.
2 Department of Environmental Science and Sustainability, University of Maine at Presque Isle, Presque Isle, 04769 ME, USA.
* Corresponding author: akghosh_in@yahoo.com; amitbsip@gmail.com

ABSTRACT:

The present contribution provides a study of calcareous nannofossils and siliceous microfossils from the Sawai Bay Formation on Car Nicobar Island, northern Indian Ocean. Two stratigraphically short sediment intervals near Sawai Bay have been examined. Qualitative and quantitative microfossil analyses show the Sawai Bay ‘A’ Section to be devoid of siliceous microfossils, while 24 well-preserved calcareous nannofossil taxa are identified. The Sawai Bay ‘B’ Section yields 18 calcareous nannofossil, 33 radiolarian and 25 diatom taxa. The calcareous nannofossil index taxa (Ceratolithus armatus Müller, 1974a and C. cristatus Kamptner, 1950) indicate both sections to be from zones NN12 (CN10b) and NN13 (CN10c) of early Pliocene (Zanclean) age. The radiolarian taxa, i.e., Didymocyrtis avita Riedel, 1953, Euchitonia spp., Siphocampe lineata (Ehrenberg) Nigrini, 1977, Stichocorys peregrina Riedel, 1953, Semantis spp. and Stylochlamydiu sp. are common in the Sawai Bay ‘B’ Section, which is assigned to Zone RN9. Most of the diatom taxa are represented by representatives of the genera Actinocyclus Ehrenberg, 1837, Azpeitia Peragallo in Tèmpere and Peragallo, 1912, Coscinodiscus Ehrenberg, 1839a, Grammatophora Ehrenberg, 1841 and Triceratium Ehrenberg, 1839b, with the benthic diatom species Triceratium favus Ehrenberg, 1839b being predominant (~35% of the total diatom count). Siliceous microfossils are also represented by silicoflagellates dominated by Dictyocha spp. and sponge spicules dominated by astrophorids.

Key words: Zanclean; Calcareous nannofossils; Radiolarians; Diatoms; Silicoflagellates; Sponge spicules; Andaman and Nicobar Islands; India.

INTRODUCTION

The early Pliocene (5.3–3.6 Million years ago; Ma) was a time of relatively warmer climate in comparison to the present (Brierley et al. 2009) that cooled during the mid-Pliocene (~3.5 Ma; Mattheissen et al. 2009). The warm early Pliocene conditions may serve as an analogue for present and near-future climate change (Fedorov et al. 2013; Haywood et al. 2016). The sea surface temperature of all three tropical oceans during this period was stable, with long-term average temperature at ~29°C, more or less similar to present values (Fedorov et al. 2013).

The absolute atmospheric CO₂ concentration
during the warmest Pliocene (~5–3 Ma) was about 400 ppmv (Tierney et al. 2019; Cui et al. 2020), also similar to the present (412 ppmv; Cui et al. 2020). Both the Pliocene and present atmospheric CO₂ concentrations are higher than the pre-industrial Holocene levels (Filippelli and Flores 2009; Tierney et al. 2019). Thus, studies of Pliocene climate may enrich the understanding of near-future changes caused by modern anthropological activities. For climate models, ocean temperature and primary productivity measurements are crucial in the understanding of any relationship (Versteegh et al. 1996).

Calcareous and siliceous microfossils play a pivotal role for correlating the sedimentary rocks and further understanding of the past environment. Most previous Indian Ocean biostratigraphy is based on international ocean drilling samples that are comparatively less detailed than for other geographic regions. The calcareous and siliceous microfossil record from the Indian Ocean marine sediments is sparse. Worth particular mention studies on Neogene calcareous nannofossils are those by Backman and Shackleton (1983), Young (1990), Raffi et al. (1995), Dickens and Owen (1999) and Flores et al. (2014). Schrader (1974) proposed 21 diatom zones for ~10 to 0.3 Ma from the Deep Sea Drilling Project (DSDP) Site 238, tropical Indian Ocean. Fourtanian (1991) recovered diatom assemblages from the Ocean Drilling Program (ODP) Site 758, equatorial Indian Ocean, to identify major diatom zones from the Upper Campanian (no defined zones), upper Oligocene to lower Miocene (4 zones), and upper Pliocene to Quaternary (3 zones), with some of these assemblages being consistent with those of the equatorial Pacific Ocean (Barron 1985).

This paper covers the biostratigraphy established by calcareous nannofossils and the analysis of siliceous microfossil groups that include diatoms, radiolarians, silicoflagellates and sponge spicules from the Sawai Bay Formation on Car Nicobar Island, northern Indian Ocean.

PHYSIOGRAPHIC AND OCEANOGRAPHIC OVERVIEW

The Andaman and Nicobar Islands comprise three distinct groups: Andaman, Nicobar and Ritchie’s Archipelago. The Andaman group of islands are separated from the Nicobar group by the Ten Degree Channel and form an islandic arc that borders the Bay of Bengal to the west and Andaman Sea to the east. Car Nicobar Island is the northernmost island of the Nicobar group, situated at 09°07’–09°13’ N; 92°43’–92°50’ E (Text-fig. 1A) and topographically of low relief (Ghosh and Sarkar 2013). The island’s central part is of comparatively higher elevation (~175 m). Field observations show predominant mudstones and limestones. The outcrops lie on Mus Jetty, on the western shore adjacent to Keating Point (Text-fig. 1B).

Furthermore, Pacific Ocean studies suggest that the Andaman Sea productivity was controlled by the Indonesian Throughflow (ITF) (Keller 1985; Kennett et al. 1985; Romine and Lombari 1985). Opening and closing of oceanic gateways also influenced faunal migratory pathways (Srinivasan and Sinha 1998), such as the Indonesian Gateway between the Indian and Pacific regions, although the extent of this closure is debated (Edwards 1975; Berggren 1984; Keller 1985; Romine and Lombari 1985; Srinivasan and Singh 1991; Ali et al. 1994). At about 25 Ma, the ITF developed through major tectonic activities that include the Pliocene formation of islands and mountains (Hill and Hall 2003; Kuhnt et al. 2004). Several studies on the plate tectonics in this region (e.g., Raju et al. 2004; Cochran 2010) suggest a significant re-organization of the islands at ~4–3 Ma.

GEOLOGICAL SETTING

The Andaman-Nicobar Basin is a result of a complex tectonic history linked to the Indo–Burmesse Plate convergence. This basin originated with the Indian Plate movement towards the north (Curry 2005). The ‘soft’ (initial) collision of the Indian and Burmesse plates took place at ~59 Ma (Kloutwijk et al. 1992). A 20° anticlockwise rotation of the Indian Plate before 55 Ma closed the suture zone (Basu et al. 2012) and slowed seafloor spreading and sub-
duction velocity along the Sunda Arc system to reduce seafloor gradient near the volcanic arc. At the terminal Eocene to early Oligocene, the main ridge emerged and initiated major uplift of the Andaman and Nicobar group of islands (Curray et al. 1979). However, according to Rodolfo (1969), this basin originated in the late Miocene and was followed by another late Pliocene diastrophism.

Among the different Neogene sequences of India, deep water exposures and shallow marine sediments are well exposed in the Andaman–Nicobar Basin, which has attracted stratigraphers and palaeontologists since the early 20th century. Neogene deposits are exposed on Ritchie’s Archipelago, Little Andaman and some Nicobar group islands. Three major lithostratigraphic units were distinguished on Car Nicobar Island: the Sawai Bay, Guitar and Neill West Coast Formations (Sharma and Bajpai 2011). The lithostratigraphic type section of the Sawai Bay Formation (Srinivasan and Sharma 1973) and the Sawai Limestone Member (Srinivasan and Sharma 1973) and the Kakana Formation (Chandra and Saxena 1998).

For a summary of previous contributions on aspects of Car Nicobar Island lithostratigraphy and biostratigraphy see Sharma and Srinivasan (2007) and Chakraborty and Ghosh (2017).

Text-fig. 1. Location of the study area. A – Geological map of Car Nicobar Island, and Andaman and Nicobar Islands, India (modified after Sharma and Singh 1993). B – Location of the studied sections near Mus Jetty, Car Nicobar Island.

The Mus Jetty outcrop belongs lithostratigraphically to the Sawai Bay Formation and chronosтратigraphically to the uppermost Miocene to lower Pliocene Sawain Regional Stage (Text-fig. 2A, B). In this backdrop, the biostratigraphy in the present study is based on calcareous nannofossils and significant siliceous microfossils.
MATERIAL AND METHODS

Samples were collected from the following outcrops of the Mus Jetty locality in Car Nicobar Island:

Sawai Bay ‘A’ Section (09º14’24.4”N, 92º46’40.6”E, Text-fig. 1B) lithologically characterized by more or less homogenous yellowish/grey calcareous mudstone (Text-fig. 2A). The outcrop is located at Sawai Bay, Car Nicobar Island (Text-fig. 1B), regarded as the Sawai Bay Formation type section (Sharma and Srinivasan 2007). The outcrop top is covered by modern coral rags and vegetation. The total outcrop thickness is ~7.5 m. Thirteen samples were collected at a regular interval of 55 cm (Text-fig. 2A).

Sawai Bay ‘B’ Section, located southwest of the ‘A’ Section (09º14’4” N, 92º46’34.1" E; Text-fig. 1B). The section has a thickness of ~8.5 m with the lower part composed of grey calcareous mudstone and the upper part composed of hard coralline algal–foraminiferal limestone. Four samples were collected at 30 cm intervals from the outcrop base. A ~25 cm thick reddish calcareous clay layer occurs about 80 cm above the outcrop base. Thirteen samples were collected at 40 cm intervals from ~1 m above the outcrop base. Two samples were collected from the upper part at 100 cm intervals (Text-fig. 2B).

For the study of calcareous nannofossils, the Bown and Young (1998) smear-slide method was adopted. Norland-61 optical adhesive was used as a mounting medium for the permanent slide preparation with 50×23 mm coverslips and examined under a light microscope (Olympus BX 53 microscope) in cross-polarised (XPL) and phase-contrast (PC) modes. Photographs were taken from the same microscope attached to a digital camera and taxonomically identified according to Young et al. (2017). In the present study we have adopted the species names Ceratolithus armatus Müller, 1974a and Ceratolithus cristatus Kamptner, 1950. Ceratolithus armatus is interpreted here to include C. acutus Gartner and Bukry, 1974, both described from the early Pliocene of the Indian Ocean (Gartner and Bukry 1974; Müller 1974a). Holotypes and paratypes of the two taxa are quite similar and not easily distinguishable (Young et al. 2017). The relative abundance of each taxon and overall nannofossil representation were recorded as: abundant (A) = >10 specimens/field of view (FOV); common (C) = >1−10 specimens/FOV; few (F) = 1 specimen/1−10 FOV; and rare (R) = <1 specimens/10 FOV. The nannofossil biozones of Martini (1971), Okada and Bukry (1980), Young (1998) and Backman et al. (2012) were adopted to identify the relative geo-
logical ages based on the first and last occurrences (FO and LO), respectively.

Samples were chemically processed for siliceous microfossils with the methodology of Abrantes et al. (2005) used for diatoms, silicoflagellates and sponge spicules, and that of Green (2001) for radiolarians. Microscope slides with 40×20 mm coverslips were prepared for qualitative and quantitative analyses carried out by a light microscope (LM, Olympus BX 50). Since the frequencies of diatoms and other siliceous microfossils are rare, absolute counts are recorded from 20 slides per sample, which often still failed to achieve 300 total counts as per convention. Microphotographs were taken with the DP 26 Olympus Digital Camera (Cell Sens Standard). Ratios of planktic/benthic diatom (Chakraborty and Ghosh 2016; Chakraborty et al. 2019) and nassellarian/spumellarian radiolarian taxa (O’Dogherty and Guex 2002) were analysed in all samples for the estimation of sea-level fluctuations (Chakraborty and Ghosh 2016; Chakraborty et al. 2019). All figured slides are housed in the Museum of the Birbal Sahni Institute of Palaeosciences (BSIP), Lucknow, India.

Planktic and benthic foraminiferal tests were also observed in the calcareous nannofossil slides but not formally counted in this study. The foraminifera show greater abundance in the Sawai Bay ‘B’ Section.

RESULTS

Sawai Bay ‘A’ Section

Samples from the Sawai Bay ‘A’ Section (BSIP 7874/01–7874/12, Text-fig. 2A) yielded few siliceous microfossils represented by a few sponge spicule and radiolarian fragments. 24 well preserved calcareous nannofossil taxa belonging to 14 genera (Table 1) were identified in 12 samples (BSIP 7874/01–7874/12). Sample BSIP 7874/13 was observed to be devoid of both calcareous and siliceous microfossils. Based on the presence of *C. armatus* and the absence of *C. cristas*, the section is assignable to the upper portion of the *Ceratolithus tricorniculatus* Interval Zone (Zone NN12; Martini 1971), equivalent to the *Ceratolithus acutus* Range Subzone (Zone CN10b; Okada and Bukry 1980) and the *Ceratolithus acutus* Range Zone (Zone CNPL1; Backman et al. 2012) (Text-figs 3 and 4). Thus, the presence of *C. acutus* in all samples clearly indicates a Zanclean age (lower Pliocene). This is further supported by the absence of *Discoaster quinqueramus* Gartner, 1969 at the NN11/NN12 boundary (Young 1998).
Table 1. Representation of calcareous nannofossils in Sawai Bay 'A' Section, Car Nicobar Island (+ = few, ++ = common, +++ = abundant, – = absent).

<table>
<thead>
<tr>
<th>Calcareous nannofossils</th>
<th>Samples (7874/1)</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abundance</td>
<td>++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++</td>
<td></td>
</tr>
</tbody>
</table>

Calcidiscus leptoporus (Murray and Blackman) Loeblich and Tappan, 1978 C F F F F F C C F F F C

Ceratolithus armatus Müller, 1974a R R R R R R R R R R R R R

Coccolithus pelagicus (Wallich) Schiller, 1930 F – – R – – R – – R – –

Cryptococcolithus mediaperforatus (Varol) de Kaenel and Villa, 1996 – – – – – – R – – – –

Cyclicargolithus floridanus (Roth and Hay) Bukry, 1971 – – – R – – – R – – –

Discoaster brouweri Tan Sin Hok emend. Bramlette and Riedel, 1954 F F F F F F F F F F C F

Discoaster pentaradiatus Tan Sin Hok, 1927 A C C C C F C F C F C F

Discoaster surculus Martini and Bramlette, 1963 F F F F F F R F F F – –

Helicosphaera carteri (Wallich) Kamptnr, 1944 and Helicosphaera wallichii (Lohmann) Okada and McIntyre, 1977 C C C C C C C F C C C C

Helicosphaera sellii (Bukry and Bramlette) Jafar and Martini, 1975 C R R R F F F F R C F

Pontosphaera multipartora (Kamptnr ex. Deflandre) Roth, 1970 F F F F F F – R F F F F

Reticulofenestra pseudoumbilicus medium (Gartner) Gartner, 1969 C C F F F C C C C C C

Reticulofenestra haqui Backman, 1978 – C A A A C C C C C C F

Reticulofenestra minusa Roth, 1970 A C A A A A A A A A A A A A

Rhabdosphaera clavigera Murray and Blackman, 1898 – R – R – – – – – R – –

Scyphosphaera globulata Bukry and Percival, 1971 – – – R R R R R R R R R

Scyphosphaera pulcherrima Deflandre, 1942 – R – – – – – – – – R – –

Sphenolithus abies Deflandre in Deflandre and Fert, 1954 A A A A A A C A A C C

Sphenolithus heteromorphus Deflandre, 1953 – – – – – – – – – – – – R

Thoracosphaera heimi (Lohmann) Kamptnr, 1944 – – – R – – – – – – – –

Thoracosphaera albatrosiana Kamptnr, 1963 – R – – – – – – – – – –

Thoracosphaera tuberosa Kamptnr, 1963 – – – – – – – – – – – – – R

Umbilicosphaera jafari Müller, 1974b R – – – – – – – – – – – –

Umbilicosphaera rotula (Kamptnr) Varol, 1982 and Umbilicosphaera foliosa (Kamptnr) Geisen in Sáez et al., 2003 – – F F F – R – R R F F

Sawai Bay ‘B’ Section

The calcareous nannofossil assemblage of Sawai Bay ‘B’ Section comprises 18 taxa belonging to 11 genera (Table 2). The lower part of the section can be assigned to Zone NN12 of Martini (1971) (~5.33 Ma – equivalent of Zone C1N1b based on the presence of C. armatus and the absence of C. cristatus). The FO of C. cristatus in sample BSIP 7874/15 indicates that the upper part of the section belongs to the Ceratolithus rugosus Interval Zone (Zone NN13; Martini 1971), i.e., ~5.08 Ma – equivalent to the Ceratolithus rugosus Range Subzone (Zone CN1N10c; Okada and Bukry 1980) and the Sphenolithus neobies Partial Range Zone (Zone CNPL2; Backman et al. 2012) (Text-fig. 3). The presence of Sphenolithus abies Deflandre in Deflandre and Fert, 1954 and the medium and large sized Reticulofenestra pseudoumbilicus (Gartner) Gartner, 1969 also supports assignment to Zone NN13 (Text-fig. 4).
Twenty-five diatom taxa belonging to 16 genera were identified in 16 productive samples (BSIP 7876/01–7876/16; Text-fig. 2B; Table 3). The highest three samples (BSIP 7876/17–7876/19) of this section were barren. The productive samples also yielded silicoflagellates and sponge spicules. Amongst the diatom taxa, Coscinodiscus Ehrenberg, 1849 (BSIP 7876/03), Helicosphaera carteri Helicosphaera sellii Pontosphaera multipora (Kamptner ex. Deflandre) Roth, 1970 – – – R – – – – – R R R R R, and Rettenmeyera superbus (Ehrenberg) Ehrenberg, 1841 (BSIP 7876/03) are the predominant taxa, contributing to ~35% of the total diatom count. In comparison to the upper Miocene at Cave Point Section, the representation of diatoms is scanty and sporadic, and thus difficult to correlate with standard diatom assemblage zones (Thalassiosira convexa and Nitzschia miocenica Partial Range Zones; Burckle 1972).

Amongst siliceous microfossils, radiolarians are dominant and comparatively well-preserved in the Sawai Bay ‘B’ Section. 33 radiolarian taxa belonging to 24 genera were recognised. Common radiolarian taxa include Didymocystis avita Riedel, 1953, Euchitonia spp., Siphocampe lineata (Ehrenberg) Nigrini, 1977, Stichocorys peregrina Riedel, 1953, Semantis spp. and Stylochlamydium sp. (Text-fig. 6A–V). The section can be assigned to the Stichocorys peregrina Interval Zone (Zone RN9; Sanfilippo and Nigrini 1998) based on the presence of S. peregrina throughout the section. Moreover, the presence of Didymocystis avita in most of the samples from the section base to the top also confirms the assignment of diatoms is scanty and sporadic, and thus difficult to correlate with standard diatom assemblage zones (Thalassiosira convexa and Nitzschia miocenica Partial Range Zones; Burckle 1972).

Table 2. Representation of calcareous nannofossils in Sawai Bay ‘B’ Section, Car Nicobar Island (+ = few, ++ = common, +++ = abundant, – = absent).

<table>
<thead>
<tr>
<th>Calcareous nannofossils</th>
<th>Samples (7876/)</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abundance</td>
<td></td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Calcidiscus leptoporus</td>
<td>(Murray and Blackman) Loeblich and Tappan, 1978</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>R</td>
<td>F</td>
<td>C</td>
<td>C</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Ceratolithus arbusculus</td>
<td>Müller, 1974</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>–</td>
<td>–</td>
<td>R</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ceratolithus crassatus</td>
<td>Kampfner, 1950</td>
<td>–</td>
</tr>
<tr>
<td>Coccolithus pelagicus</td>
<td>(Wallich) Schiller, 1930</td>
<td>–</td>
<td>F</td>
<td>–</td>
<td>R</td>
<td>R</td>
<td>–</td>
</tr>
<tr>
<td>Discocystis browieri</td>
<td>Tan Sin Hok emend. Bramlette and Riedel, 1954</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>C</td>
<td>F</td>
<td>C</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>C</td>
<td>F</td>
<td>C</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Discocystis pentaradiatus</td>
<td>Tan Sin Hok, 1927</td>
<td>F</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>F</td>
<td>C</td>
<td>F</td>
<td>C</td>
<td>C</td>
<td>F</td>
<td>C</td>
<td>F</td>
<td>C</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>Discocystis variabilis</td>
<td>Martini and Bramlette, 1963</td>
<td>F</td>
<td>R</td>
<td>F</td>
<td>F</td>
<td>C</td>
<td>F</td>
<td>C</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>C</td>
<td>F</td>
<td>C</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>Helicosphaera carteri</td>
<td>(Wallich) Kampfner, 1954 and</td>
<td>C</td>
</tr>
<tr>
<td>Helicosphaera sellii</td>
<td>(Bukry and Bramlette) Jafar and Martini, 1975</td>
<td>–</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>Pontosphaera multipora</td>
<td>(Kamptner ex. Deflandre) Roth, 1970</td>
<td>–</td>
<td>–</td>
<td>R</td>
<td>–</td>
</tr>
<tr>
<td>Rettenmeyera superbus</td>
<td>large (Gartner) Gartner, 1969</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>–</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>C</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>Rettenmeyera pseudoumbilicus</td>
<td>medium (Gartner) Gartner, 1969</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>–</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>C</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>Rettenmeyera haqui</td>
<td>Backman, 1978</td>
<td>–</td>
<td>–</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>Rettenmeyera minuta</td>
<td>Roth, 1970</td>
<td>–</td>
</tr>
<tr>
<td>Rhabdosphaera clavigera</td>
<td>Murray and Blackman, 1898</td>
<td>–</td>
</tr>
<tr>
<td>Scyphosphaera globulata</td>
<td>Bukry and Percival, 1971</td>
<td>–</td>
</tr>
<tr>
<td>Sphenolithus abies</td>
<td>Deflandre in Deflandre and Fert, 1954</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>F</td>
<td>F</td>
<td>R</td>
<td>F</td>
<td>C</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Umbilicosphaera rotula</td>
<td>(Kamptner) Varol, 1982 and</td>
<td>R</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>R</td>
<td>R</td>
<td>–</td>
<td>–</td>
<td>R</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Umbilicosphaera foliosa</td>
<td>(Kamptner) Geisen in Saez et al., 2003</td>
<td>R</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>R</td>
<td>R</td>
<td>–</td>
<td>–</td>
<td>R</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Siliceous microfossils</th>
<th>Samples (7876)</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diatoms</td>
<td></td>
</tr>
<tr>
<td>Actinocyclus ellipticus Grunow in Van Heurck, 1883</td>
<td></td>
<td>–</td>
<td>–</td>
<td>18</td>
<td>17</td>
<td>–</td>
<td>12</td>
<td>–</td>
</tr>
<tr>
<td>Actinocyclus ellipticus var. javanica Reinhold, 1937</td>
<td></td>
<td>–</td>
<td>6</td>
<td>23</td>
<td>–</td>
</tr>
<tr>
<td>Actinocyclus ellipticus forma lanceolata Kolbe, 1954</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Arachnoidiscus ornatus (Ehrenberg) Ehrenberg, 1849</td>
<td></td>
<td>–</td>
<td>–</td>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td>Aspeitia nodulifera (Schmidt) Fryxell and Sims in Fryxell, 1986</td>
<td></td>
<td>–</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>–</td>
</tr>
<tr>
<td>Aspeitia tabularis (Grunow) Fryxell and Sims in Fryxell, 1986</td>
<td></td>
<td>6</td>
<td>31</td>
<td>–</td>
</tr>
<tr>
<td>Aspeitia vetustissima (Pantocsek) Sims in Fryxell et al., 1986</td>
<td></td>
<td>3</td>
<td>9</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>4</td>
<td>–</td>
</tr>
<tr>
<td>Arachnoidiscus ornatus Grunow in Van Heurck, 1883</td>
<td></td>
<td>–</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Arachnoidiscus oculus–iridis (Ehrenberg) Ehrenberg, 1841</td>
<td></td>
<td>–</td>
<td>7</td>
<td>–</td>
</tr>
<tr>
<td>Arachnoidiscus radiatus Ehrenberg, 1841</td>
<td></td>
<td>–</td>
<td>26</td>
<td>–</td>
<td>13</td>
<td>–</td>
<td>17</td>
<td>–</td>
</tr>
<tr>
<td>Arachnoidiscus oculus–iridis (Ehrenberg) Ehrenberg, 1841</td>
<td></td>
<td>–</td>
<td>26</td>
<td>–</td>
<td>13</td>
<td>–</td>
<td>17</td>
<td>–</td>
</tr>
<tr>
<td>Arachnoidiscus sp.</td>
<td></td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>–</td>
</tr>
<tr>
<td>Radiolarians</td>
<td></td>
</tr>
<tr>
<td>Acrobotrys disolenia Haeckel, 1887</td>
<td></td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>Acrosphaera murrayana Haeckel, 1887</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Acrosphaera sp.</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Axoprunum monostylum Caulet, 1986</td>
<td></td>
<td>31</td>
<td>35</td>
<td>–</td>
<td>–</td>
<td>19</td>
<td>21</td>
<td>–</td>
</tr>
<tr>
<td>Clathrocanium coarctatum Ehrenberg, 1860b</td>
<td></td>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td>Collosphaera sp.</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Cornutella profunda Ehrenberg, 1856</td>
<td></td>
<td>–</td>
<td>6</td>
<td>–</td>
<td>12</td>
<td>–</td>
<td>6</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Dictyocoryne profunda Ehrenberg, 1856</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>13</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Didymocystis avita Riedel, 1953</td>
<td></td>
<td>36</td>
<td>43</td>
<td>19</td>
<td>27</td>
<td>36</td>
<td>53</td>
<td>31</td>
<td>13</td>
<td>18</td>
<td>16</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Didymocystis spp.</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>–</td>
<td>7</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Dixolenia zanguebarica (Ehrenberg) Nigrini, 1967</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Euchitonia spp.</td>
<td></td>
<td>61</td>
<td>24</td>
<td>–</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>0</td>
<td>70</td>
<td>23</td>
<td>18</td>
<td>17</td>
<td>11</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Flustrella sp. A</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>4</td>
<td>–</td>
</tr>
<tr>
<td>Flustrella sp. B</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>Flustrella sp. C</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Larcospira quadrangula Haeckel, 1887</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>13</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Lithomelissa sp.</td>
<td></td>
<td>13</td>
<td>10</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>–</td>
<td>23</td>
<td>–</td>
<td>34</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Phormostichoartus doliolum (Riedel and Sanfilippo) Nigrini, 1977</td>
<td></td>
<td>6</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Phormostichoartus fistula Nigrini, 1977</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Phormostichoartus sp.</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Phorticium pylonium Haeckel, 1887</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>54</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Rhopalastrom sp.</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>25</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Semantis spp.</td>
<td></td>
<td>29</td>
<td>54</td>
<td>18</td>
<td>16</td>
<td>29</td>
<td>17</td>
<td>17</td>
<td>–</td>
<td>41</td>
<td>62</td>
<td>53</td>
<td>52</td>
<td>12</td>
<td>13</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
The prevalence of warm water planktic diatoms and radiolarians is characteristic of the overall assemblage (Table 4). Samples from the Sawai Bay ‘B’ Section also yield moderately preserved silicoflagellates and sponge spicules. Recovered sponge spicules were abundant and assignable to eleven groups (Text-fig. 7A−O) with the maximum diversity observed in samples BSIP 7876/02 and 7876/12. Astrophorida, oxyasters, proanatriaena, pinulus, sigma and triaxonal sponge spicule groups (e.g., Ivanik 1983; McCartney 1987) were relatively common in most samples, whereas other groups had sporadic occurrences. Absolute sponge spicule counts are shown in Table 3.

Silicoflagellates were represented by 5 taxa belonging to 2 genera (Text-fig. 7P−T), but observed only in samples BSIP 7876/01−7876/07 (Text-fig. 2B). Dictyocha varia Locker, 1975 (up to 30 specimens) was the most commonly observed silicoflagellate species in the assemblage (Table 3) with other taxa being rare. Apical bridge morphology changes of Dictyocha varia to Dictyocha extensa (Locke) McCartney et al., 1995 (see McCartney et al. 1995) observed in sample BSIP 7876/07, and the occurrence of Bachmannocena elliptica (Ehrenberg) Bukry, 1987 in sample BSIP 7876/06 contributes to interpret the palaeoenvironmental changes detected by the aforementioned siliceous microfossils (Table 3). In samples BSIP 7876/02 and 7876/07, Dictyocha fibula subsp. mutabilis (Deflandre) McCartney et al., 1995 and D. extensa are especially abundant. Dictyocha cf. fibula subsp. fibula Ehrenberg, 1838 (see Locker 1974; McCartney et al. 1995) and Bachmannocena elliptica are present in samples BSIP 7876/04 and 7876/06, respectively, whereas not recognised in the other samples (Table 3).

Quantitative analysis of radiarian, diatom, silicoflagellate and sponge spicule microfossils were carried out to Zone RN9 (Kamikuri et al. 2009). The prevalence of warm water planktic diatoms and radiolarians is characteristic of the overall assemblage (Table 4).

Samples from the Sawai Bay ‘B’ Section also yield moderately preserved silicoflagellates and sponge spicules. Recovered sponge spicules were abundant and assignable to eleven groups (Text-fig. 7A−O) with the maximum diversity observed in samples BSIP 7876/02 and 7876/12. Astrophorida, oxyasters, proanatriaena, pinulus, sigma and triaxonal sponge spicule groups (e.g., Ivanik 1983; McCartney 1987) were relatively common in most samples, whereas other groups had sporadic occurrences. Absolute sponge spicule counts are shown in Table 3.

Silicoflagellates were represented by 5 taxa belonging to 2 genera (Text-fig. 7P−T), but observed only in samples BSIP 7876/01−7876/07 (Text-fig. 2B). Dictyocha varia Locker, 1975 (up to 30 specimens) was the most commonly observed silicoflagellate species in the assemblage (Table 3) with other taxa being rare. Apical bridge morphology changes of Dictyocha varia to Dictyocha extensa (Locke) McCartney et al., 1995 (see McCartney et al. 1995) observed in sample BSIP 7876/07, and the occurrence of Bachmannocena elliptica (Ehrenberg) Bukry, 1987 in sample BSIP 7876/06 contributes to interpret the palaeoenvironmental changes detected by the aforementioned siliceous microfossils (Table 3). In samples BSIP 7876/02 and 7876/07, Dictyocha fibula subsp. mutabilis (Deflandre) McCartney et al., 1995 and D. extensa are especially abundant. Dictyocha cf. fibula subsp. fibula Ehrenberg, 1838 (see Locker 1974; McCartney et al. 1995) and Bachmannocena elliptica are present in samples BSIP 7876/04 and 7876/06, respectively, whereas not recognised in the other samples (Table 3).

Quantitative analysis of radiolarian, diatom, silicoflagellate and sponge spicule microfossils were carried out to Zone RN9 (Kamikuri et al. 2009). The prevalence of warm water planktic diatoms and radiolarians is characteristic of the overall assemblage (Table 4). Samples from the Sawai Bay ‘B’ Section also yield moderately preserved silicoflagellates and sponge spicules. Recovered sponge spicules were abundant and assignable to eleven groups (Text-fig. 7A−O) with the maximum diversity observed in samples BSIP 7876/02 and 7876/12. Astrophorida, oxyasters, proanatriaena, pinulus, sigma and triaxonal sponge spicule groups (e.g., Ivanik 1983; McCartney 1987) were relatively common in most samples, whereas other groups had sporadic occurrences. Absolute sponge spicule counts are shown in Table 3.

Silicoflagellates were represented by 5 taxa belonging to 2 genera (Text-fig. 7P−T), but observed only in samples BSIP 7876/01−7876/07 (Text-fig. 2B). Dictyocha varia Locker, 1975 (up to 30 specimens) was the most commonly observed silicoflagellate species in the assemblage (Table 3) with other taxa being rare. Apical bridge morphology changes of Dictyocha varia to Dictyocha extensa (Locke) McCartney et al., 1995 (see McCartney et al. 1995) observed in sample BSIP 7876/07, and the occurrence of Bachmannocena elliptica (Ehrenberg) Bukry, 1987 in sample BSIP 7876/06 contributes to interpret the palaeoenvironmental changes detected by the aforementioned siliceous microfossils (Table 3). In samples BSIP 7876/02 and 7876/07, Dictyocha fibula subsp. mutabilis (Deflandre) McCartney et al., 1995 and D. extensa are especially abundant. Dictyocha cf. fibula subsp. fibula Ehrenberg, 1838 (see Locker 1974; McCartney et al. 1995) and Bachmannocena elliptica are present in samples BSIP 7876/04 and 7876/06, respectively, whereas not recognised in the other samples (Table 3).

<table>
<thead>
<tr>
<th>Diatom taxa</th>
<th>Habitat</th>
<th>Ecological preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinocyclus ellipticus Grunow in Van Heurck, 1883</td>
<td>planktic</td>
<td>Warm water (Koizumi et al. 2004; Barron 1985)</td>
</tr>
<tr>
<td>Actinocyclus ellipticus var. javanica Reinhold, 1937</td>
<td>planktic</td>
<td>Warm water (Baldauf 2013)</td>
</tr>
<tr>
<td>Actinocyclus ellipticus forma lanceolata Kolbe, 1954</td>
<td>planktic</td>
<td></td>
</tr>
<tr>
<td>Aspeitia nodulifera (Schmidt) Fryxell and Sims in Fryxell et al., 1986</td>
<td>planktic</td>
<td>Warm water (Koizumi et al. 2004)</td>
</tr>
<tr>
<td>Aspeitia tabularis (Grunow) Fryxell and Sims in Fryxell et al., 1986</td>
<td>planktic</td>
<td>Warm water (Koizumi and Yamamoto 2016)</td>
</tr>
<tr>
<td>Azpeitia venustissima (Pantocsek) Sims in Fryxell et al., 1986</td>
<td>planktic</td>
<td>Warm water (Frydas and Stefanopoulos 2009)</td>
</tr>
<tr>
<td>Coscinodiscus oculus–iridis (Ehrenberg) Ehrenberg, 1841</td>
<td>planktic</td>
<td>Cold water (Koizumi and Yamamoto 2016)</td>
</tr>
<tr>
<td>Coscinodiscus radiatus Ehrenberg, 1841</td>
<td>planktic</td>
<td>Warm water (Pushkar et al. 1999)</td>
</tr>
<tr>
<td>Hemidiscus cuneiformis Wallich, 1860</td>
<td>planktic</td>
<td>Warm water (Koizumi 1981)</td>
</tr>
<tr>
<td>Thalassiosira leptopus (Grunow) Hasle and Fryxell, 1977</td>
<td>planktic</td>
<td>Warm water (Koizumi 1981)</td>
</tr>
<tr>
<td>Arachnoidiscus ornatus (Ehrenberg) Ehrenberg, 1849</td>
<td>planktic</td>
<td></td>
</tr>
<tr>
<td>Diploneis crobro (Ehrenberg) Ehrenberg, 1854</td>
<td>benthic</td>
<td>Temperate water (De Wolf 1982)</td>
</tr>
<tr>
<td>Grammatophora stricta Ehrenberg, 1841</td>
<td>benthic</td>
<td></td>
</tr>
<tr>
<td>Lyreella investigata (Heiden) Mann in Round et al., 1990</td>
<td>benthic</td>
<td>Warm water (López Fuerte et al. 2010)</td>
</tr>
<tr>
<td>Paredia sulcata (Ehrenberg) Cleve, 1873</td>
<td>benthic</td>
<td>Warm to cold water (Chakraborty et al. 2019)</td>
</tr>
<tr>
<td>Stictodiscus nankoorensis (Grunow) Pantocsek, 1889</td>
<td>benthic</td>
<td></td>
</tr>
<tr>
<td>Triceratium favus Ehrenberg, 1839b</td>
<td>benthic</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radiolarian taxa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrosphaera murrayana Haeckel, 1887</td>
</tr>
<tr>
<td>Acrosphaera sp.</td>
</tr>
<tr>
<td>Axoprunum monostylum Caulet, 1986</td>
</tr>
<tr>
<td>Dickovycyme profunda Ehrenberg, 1856</td>
</tr>
<tr>
<td>Didymocyrtis avita Riedel, 1953</td>
</tr>
<tr>
<td>Didymocyrtis sp.</td>
</tr>
<tr>
<td>Euchitonia spp.</td>
</tr>
<tr>
<td>Flustrella spp.</td>
</tr>
<tr>
<td>Larcospira quadrandula Haeckel, 1887</td>
</tr>
<tr>
<td>Phorticium pylonium Haeckel, 1887</td>
</tr>
<tr>
<td>Rhopalastrium sp.</td>
</tr>
<tr>
<td>Sphaeropyle cf. langii Dreyer, 1889</td>
</tr>
<tr>
<td>Styloclamydium aristescus Haeckel, 1887</td>
</tr>
<tr>
<td>Styloclamydium spp.</td>
</tr>
<tr>
<td>Tetravyte circularis Haeckel in Zhang and Suzuki, 2017</td>
</tr>
<tr>
<td>Tetravyte octacantha Müller, 1858</td>
</tr>
<tr>
<td>Acrobyotys disolinya Haeckel, 1887</td>
</tr>
<tr>
<td>Clathrocystium coarctatum Ehrenberg, 1860b</td>
</tr>
<tr>
<td>Cornuellea profunda Ehrenberg, 1856</td>
</tr>
<tr>
<td>Disoelenia zanguebarica (Ehrenberg) Nigrini, 1967</td>
</tr>
<tr>
<td>Lithomelissa sp.</td>
</tr>
<tr>
<td>Phormostichoartus doliolum (Riedel and Sanfilippo) Nigrini, 1977</td>
</tr>
<tr>
<td>Phormostichoartus fistula Nigrini, 1977</td>
</tr>
<tr>
<td>Phormostichoartus sp.</td>
</tr>
<tr>
<td>Semantis spp.</td>
</tr>
<tr>
<td>Siphocampe lineata (Ehrenberg) Nigrini, 1977</td>
</tr>
<tr>
<td>Solenosphaera sp.</td>
</tr>
<tr>
<td>Stichocorys peregrina Riedel, 1953</td>
</tr>
</tbody>
</table>

Table 4. Habitat and ecological preference of the recovered species of diatoms (taken into account up to species level) and radiolarian taxa from the early Pliocene of Car Nicobar Island.
out on productive samples (BSIP 7876/01–7876/16, Table 3) exclusive of samples BSIP 7876/09 and 7876/10, in which calcareous nanofossils and diatoms were not observed. Radiolarians dominate the biosiliceous composition with up to 95% in sample BSIP 7876/11 (Text-fig. 8A). The maximum diatom contribution (up to 65%) was observed in sample BSIP 7876/05 (Text-fig. 8A). Siliceous sponges were most abundant (up to 49%) in sample BSIP 7876/10 (Text-fig. 8A). A much lower silicoflagellate percentage (up to 15%) was observed in sample BSIP 7876/01 (Text-fig. 8A).

The planktic/benthic diatom ratio is conventionally used to interpret sea-level fluctuations (Chakraborty and Ghosh 2016) and was analysed here in all samples from the Sawai Bay ‘B’ Section (Text-fig. 8B). From this analysis, planktic diatoms prevail in samples BSIP 7876/03, 7876/06, 7876/07, 7876/11 and 7876/16 with relative counts that progressively increase from 62%, 65%, 80% to 100%, respectively. Benthic diatoms are more abundant compared to planktic in samples BSIP 7876/02, 7876/04, 7876/11, 7876/12 and 7876/13 (Text-fig. 8B). The radiolarian nassellarian–spumellarian ratio is also used to interpret sea-level fluctuations (O’Dogherty and Güex 2002; Lukeneder and Smrečková 2006). In the Sawai Bay ‘B’ Section, spumellarians were consistently dominant among radiolarians (Text-fig. 8C).

DISCUSSION

Biostratigraphy

The presence of Ceratolithus armatus in all samples from the base of the Sawai Bay ‘A’ Section confirms a Zanclean age, as the FO of C. armatus lies at the CN10a/CN10b (Okada and Bukry 1980) and the CNM20/CNPL1 (Backman et al. 2012; Raffi et al. 2016) boundaries. Since there are no other index forms available in the section top, a maximum upper age limit of ~5.08 Ma (Young 1998) is suggested. The presence of Ceratolithus cristatus in sample BSIP 7876/15 of the Sawai Bay ‘B’ Section indicates that the uppermost samples are of a younger age, i.e., above ~5.08 Ma. The FO of C. cristatus lies at the CN10b/CN10c (Okada and Bukry 1980), CNPL1/CNPL2 (Backman et al. 2012; Raffi et al. 2016) and NN12/NN13 (Martini 1971) boundaries.

The radiolarian assemblage is represented by the biostratigraphically significant taxa Stichocorys peregrina and Didymocyrtis avita (Text-fig. 3) that indicate Zone RN9 (Sanfilippo and Nigrini 1998; Kamikuri et al. 2009). In the eastern equatorial Pacific Ocean, the evolutionary transition (ET) from Stichocorys delmontensis Campbell and Clark, 1944 to S. peregrina took place at 6.89/6.81 Ma (Lazarus et al. 1995; Sanfilippo and Nigrini 1998). However, according to Kamikuri et al. (2009), the ET took place at ~6.88/7.17 Ma. Zone RN9 includes the ET from Didymocyrtis penultima Riedel, 1957 to D. avita (Sanfilippo and Nigrini 1998). However, Kamikuri et al. (2009) did not recognise this event in ODP Sites 845 and 1241. According to Kamikuri et al. (2009), the FO of D. avita in the eastern equatorial Pacific Ocean was at ~6.84/6.91 Ma, its LO was at ~0.81/0.88 Ma, and the ET from D. avita to D. tetrathalamus Haeckel, 1887 was at ~4.23/4.27 Ma. It should be mentioned here that D. tetrathalamus is absent in the studied radiolarian assemblage, indicating an age prior to ~4.23/4.27 Ma for the studied sequence (Sawai Bay ‘B’ Section).

Based on the above mentioned calcareous nanofossil (both Sawai Bay ‘A’ and ‘B’ sections) and radiolarian index taxa (Sawai Bay ‘B’ Section), the age can be defined as Zanclean. However, the absolute age difference between the outcrop bases is indiscernible.

Diatoms recorded from the Zanclean sediments of Car Nicobar Island are more or less similar to the low latitude equatorial assemblage reported from the International Ocean Discovery Program (IODP) Expedition 320/321, Site U1337 (Pälike et al. 2010). The assemblage includes Actinocyclus ellipticus Grunow in Van Heurck, 1883, Azpeitia spp., Coscinodiscus spp., Hemidiscus cuneiformis Wallich, 1860 and Thalassiosira lepiopus (Grunow) Hasle and Fryxell, 1977. The present assemblage is devoid of diatoms representing Thalassionema Grunow ex. Merechkowski, 1902, which is typical for the upper Miocene, but absent in the Zanclean (Mikkelsen 1990). Based on the study of DSDP Leg 69, eastern equatorial Pacific, Sancetta (1983) suggested that the sharp decrease of the Thalassionema group after the Miocene–Pliocene boundary coinciding with an overall diatom abundance decrease, is indicative of a major shift in productivity patterns and upwelling.

The dissolution of diatom valves in the outcrops studied can be explained by the absence of smaller taxa belonging to the genera Thalassiostra and Fragilaripopsis Hustedt, 1913 documented from the lower Pliocene of the tropical Indian Ocean and the lower Pliocene diatomaceous deposits of California (Barron and Baldauf 1986). The presence of Actinocyclus ellipticus forma lanceolata Kolbe, 1954 in the studied diatom assemblage from Sawai Bay ‘B’ Section is biostratigraphically significant,
Text-fig. 8 – Microfossil content in the Sawai Bay ‘B’ Section. A – graphic representation of relative frequency of siliceous microfossils; B – diatom planktic/benthic ratio; C – radiolarian nassellarian/spumellarian ratio.
as its LO is at ~3.4 Ma (Lazarus et al. 2014). On the other hand, the occurrence of Actinocyclus ellipticus var. javanica Reinhold, 1937 in the same assemblage may be regarded as unusual, as its LO is at ~7.9 Ma (late Miocene; Barron 1985). Either this taxon regionally continued into the Zanclean or may be reworked, as suggested by the presence of the reworked middle Miocene species Sphenolithus heteromorphus Deflandre, 1953 in the calcareous nannofossil assemblage.

Palaeoenvironment

As revealed from the present study, radiolarians are the main contributors to the biogenic opal fraction, followed by diatoms, sponge spicules and silicoflagellates (Text-fig. 8A). This radiolarian dominance may be due to the selective dissolution of particular siliceous microfossil groups. Fluctuation of radiolarian and diatom relative counts is the highest in the middle of the Sawai Bay ‘B’ Section, which represents shallower and warmer temperate waters (Text-fig. 8B, C; Tables 3 and 4). Radiolarian abundance is inversely proportional to diatom abundance (Text-fig. 8A), perhaps due to the dissolution of more fragile diatom skeletons or radiolarian predation on diatoms (Swanberg and Anderson 1985).

Warm water radiolarian species are common; however, cold water forms (e.g., Semantis spp., Siphocampe lineata) dominate in both lower and upper parts of the Sawai Bay ‘B’ Section (Text-fig. 2B; Tables 3 and 4). Amongst the cold water taxa, Semantis spp. is the most dominant taxon recorded from the eastern equatorial Pacific Ocean (Bolovskoy and Jankilevich 1985). Diatom occurrences are rare in the studied section from which no concrete palaeoenvironmental inferences may be made, but the overall radiolarian and diatom representations together synergistically imply water temperature changes induced by monsoons that could have developed periodical gyres and/or local upwelling in the northern Indian Ocean during the early Pliocene.
The diatom abundance is controlled by preservation potential, dependent on a combination of factors that include dissolution and overall low productivity in oligotrophic conditions (Exon and Kennett 2001). There are no readily observed lithological variations in the Sawai Bay ‘B’ Section; however, the ratios of planktic/benthic diatoms (Text-fig. 8B) and nassellarian/spumellarian radiolarians (Text-fig. 8C) vary. The most likely reason for this variation may be due to severe selective dissolution of siliceous microfossils during the early Zanclean.

Siliceous microfossil abundance and diversity significantly decreased in the Zanclean of the Indian Ocean in comparison to the late Miocene, when a biogenic bloom well developed in the Andaman and Nicobar Basin (Chakraborty and Ghosh 2016, 2017). This corroborates with the studies of Lyle and Baldauf (2015) from the equatorial Pacific.

Based on studies of Miocene and Pliocene sediments from the northern Indian Ocean, from the DSDP, ODP, IODP and National Gas Hydrate Program (NGHP), as well as the Andaman and Nicobar Island outcrops, diatom occurrence varies from abundant to rare, and in some instances may be completely absent (Text-fig. 9). According to most previous studies, diatoms became abundant in the Tortonian; however, diatoms are mostly rare to absent in the Zanclean (Text-fig. 9). Mikkelsen (1990) studied the western equatorial Pacific Ocean (ODP Sites 705−716) to propose a diatom biostratigraphy and commented that decline of diatom abundance was caused by an early Pliocene shift of opal accumulation from the equatorial region to the Antarctic Convergence. In a study of global ocean sediments, Cortese et al. (2004) argued that since the Langhian, the main opal sink moved from the North Atlantic to the Pacific (eastern equatorial Pacific, North Pacific and Peru) and finally to the Southern Ocean. This may be a potential reason for the rare occurrence of siliceous microfossils in Zanclean sediments of the Indian Ocean.

CONCLUSIONS

The age of the Sawai Bay Formation exposed on Car Nicobar Island has been precisely dated as Zanclean based on the index calcareous nannofossils of zones NN12 (CN10b) and NN13 (CN10c). The radiolarian assemblage also denotes the same age according to the presence of characteristic index species of Zone RN9. The overall diversity and abundance of siliceous microfossils viz., radiolarians, diatoms, silicoflagellates and sponge spicules were low. The diatom abundance gradually became low towards the upper part of the studied sections that yielded other siliceous microfossils. This phenomenon may be correlated with the dissolution of diatom valves. Critical evaluation of siliceous microfossils indicates that Zanclean flora and fauna were dominated by warm shallow water taxa of diatoms and radiolarians. As revealed by the present study, warm water conditions prevailed during the Zanclean.

Acknowledgements

The authors are thankful to Dr. Vandana Prasad, Director of the Birbal Sahni Institute of Palaeosciences, Lucknow for her kind permission (BSIP/RDCC/Publication no. 67/2018-19) to carry out this work and provide necessary laboratory facilities. We are grateful to Anna Żylińska, AGP Editor, and two reviewers (Jakub Witowski and Andrey Gladenkov) for their critical observations and valuable advice that significantly improved the manuscript. John Barron, USGS, made valuable comments and constructive suggestions that improved a previous version of the manuscript. David Lazarus, Berlin, confirmed the identification of radiolarian taxa. AC is thankful to Paul Bown and Jeremy Young, University College London (UCL), for facilitating the nanofossil study during the ‘Newton-Bhabha’ Ph.D. Placement Programme in UCL (2015−16) funded by the British Council (UK) and the Department of Science and Technology (India). AC is indebted to BSIP for the award of the Birbal Sahni Research Associateship (BSRA). SS, RD and LR are thankful to the Department of Science and Technology for the award of the DST-INSPIRE Fellowship.

REFERENCES

204.

Cleve, P.T. 1873. Examination of diatoms found on the sur-
face of the Sea of Java. Bihang till Kongliga Svenska

Cochran, J.R. 2010. Morphology and tectonics of the Andaman
Forearch, northeastern Indian Ocean. Geophysical Journal

Cortese, G., Björklund, K.R. and Dolven, J.K. 2003. Poly-
cystine radiolarians in the Greenland-Iceland-Norwegian
Seas: species and assemblage distribution. Sarsia: North

Opal sedimentation shifts in the World Ocean over the last

Cui, Y., Schubert, B.A. and Jahren, A.H. 2020. A 23 m.y. record
of low atmospheric CO₂. Geology, 48, 888–892.

Curray, J.R. 2005. Tectonics and history of the Andaman Sea

Curray, J.R., Moore, D.G., Lawver, L.A., Emmel, F.J., Raait,
daman Sea and Burma: convergent margins. In: Watkins,
J.S., Montadert, L. and Dickerson, P.W. (Eds), Geological
and Geophysical Investigations of Continental Margin.
Memoirs of the American Association of Petroleum Geolo-
gists, 29, 189–198.

Genres Scyphosphaera Lohmann et Thorsphaera Osten-
feld. Bulletin de la Société d’Histoire Naturelle de Tou-
louse, 77, 125–137.

Deflandre, G. 1953. Hétérogénéité intrinsèque et pluralité des
elements dans les coccolithes actuels et fossiles. Compt-

Deflandre, G. and Fert, C. 1954. Observations sur les cocom-
olithophoridés actuels et fossiles en microscopie ordinaire
et électronique. Annales de Paléontologie, 40, 115–76.

de Kaenel, E. and Villa, G. 1996. Oligocene–Miocene calcare-
cous nannofossil biostratigraphy and paleoecology from the
Iberian Abyssal Plain. In: Whittmarsh, R.B., Sawyer,
D.S., Klaus, A. and Masson, D.G. (Eds.), Proceedings of the
Ocean Drilling Project, 149, 79–145.

De Wolf, H. 1982. Method of coding of ecological data from
diatoms for computer utilization. Mededelingen Rijks Geo-
lógische Dienst, 36, 95–98.

Pliocene biogenic bloom: a revised Indian Ocean perspec-

Dreyer, F. 1889. Die Pyombildungen in vergleichend-anatomo-
scher und entwicklugs-geschichtlicher Beziehung bei
Radiolarien und bei Protisten überhaupt, nebst System und
Beschreibung neuer und der bis jetzt bekannten pyloma-
tischen Spumellarien. Jenaische Zeitschrift für Naturwis-
schaft herausgegeben von der medizinisch-naturwissen-
schaftlichen Gesellschaft zu Jena, Funfzehnter Band, Neue
Folge, 23, 77–214.

Edwards, A.R. 1975. Southwest Pacific Cenozoic paleogeog-
raphy and integrated Neogene paleocirculation model. In:
Andrews, J.E. and Packham, G. (Eds), Initial Reports of the

Ehrenberg, C.G. 1837. Nachricht des Hrn Agassiz in Neuchatel
über den ebenfalls aus mikroskopischen Kiesel-Organismen
gebildeten Polirschiefer von Oran in Afrika vor. Bericht
über die zur Bekanntmachung geeigneten Verhandlungen
der Königlich-Preussischen Akademie der Wissenschaften
zur Berlin, 1837, 59–61.

Ehrenberg, C.G. 1838. Über das Massenverhältniss der jetzt leb-
enden Kiesel-Infusorien und über ein neues Infusorien-Con-
glomerat als Polirschiefer von Jastraba in Ungarn. Abhand-
lungen der Königlichen Akademie der Wissenschaften zu
Berlin, 1836, 109–135.

Ehrenberg, C.G. 1839a. Über die Bildung der Kreidefelsen und
des Kreidemergels durch unsichtbare Organismen. Abhand-
lungen der Königlichen Akademie der Wissenschaften zu
Berlin, 1838, 59–147.

Ehrenberg, C.G. 1839b. Über jetzt wirklich noch zahlreich leb-
ende Thier-Arten der Kreideformation der Erde. Bericht
über die zur Bekanntmachung geeigneten Verhandlungen
der Königlich-Preussischen Akademie der Wissenschaften
zur Berlin, 1839, 152–159.

Ehrenberg, C.G. 1841. Über noch jetzt zahlreich lebende Thi-
erarten der Kreidebildung und den Organismus der Poly-
thalamien. Abhandlungen der Königlichen Akademie der

Ehrenberg, C.G. 1849. Weitere Mittheilung über Resultate
bei Anwendung des chromatisch-polarisirten Lichtes für
mikroskopische Verhältnisse. Bericht über die zur Bekan-
tmachung geeigneten Verhandlungen der Königlich-Preu-
ssischen Akademie der Wissenschaften zu Berlin, 1849,
55–76.

Ehrenberg, C.G. 1854. Mikrogeologie. Das Erden und Felsen
sschaffende Wirken des unsichtbar kleinen selbstständigen
Lebens auf der Erde, 374 pp. Leopold Voss; Leipzig.

Ehrenberg, C.G. 1856. Über 2 neue südamerikanische Gebirgs-
massen aus mikroskopischen Organismen, eine aus Meeres-
organismen in Chile und eine als mit gefritteten Süß-
wasserorganismen gemischten vulkanischen elbaren Tuff
au Hunhors in Centro-Amerika. Bericht über die zur Bekan-
tmachung geeigneten Verhandlungen der Königlich-Preu-
ssischen Akademie der Wissenschaften zu Berlin, 1856,
425–431.

Ehrenberg, C.G. 1860a. Über die organischen und unorgan-
ischen Mischungsverhaltnisse des Meeresgrundes in 19,800
Fuss Tiefe nach Lieut. Brookes Messung. Monatsbericht der
Königlichen-Preussischen Akademie der Wissenschaften
zur Berlin, 1860, 765–774.

Ehrenberg, C.G. 1860b. Über den Tiefgrund des stillen Ozeans
zwischen Californien und des Sandwich-Inseln aus 15600’
Gupta, S.M. 2020. Modern radiolarians recovered from the mud-

Green, O.R. 2001. Extraction Techniques for Acid Insoluble

Ghosh, A.K. and Sarkar, S. 2013. Facies analysis and paleoen-

Fourtanier, E. 1991. Diatom biostratigraphy of equatorial Indi-

Frydas, D. and Stefanopoulou, P. 2009. A new occurrence of si-

Gartner, S. 1969. Correlation of Neogene planktonic foraminifera

some species with a linear areola array. In: Simonsen, R. (Ed.),

Ivanik, M.M. 1983. Paleogene and Neogene sponge spicules

Jacob, K. and Sastri, V.V. 1951. Tertiary Foraminifera from

M. and Nair, N. (Eds), Dynamics of the Earth System: Evo-

Ibrahim, Z.Z. and Yanagi, T. 2006. The influence of the Anda-

Jafar, S.A. and Martini, E. 1975. On the validity of the calcare-

Jafar, S.A. and Martini, E. 1975. On the validity of the calcare-

Jørgensen, E. 1905. The Protist plankton and the diatoms in

Kamikuri, S., Motoyama, I., Nishi, H. and Iwai, M. 2009. Neo-

gene radiolarian biostratigraphy and faunal evolution of ODP Sites 845 and 1241, eastern equatorial Pacific. Acta

Manuscript submitted: 22nd June 2020
Revised version accepted: 5th October 2020