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Abstract The advent of language implementation tools such as PyPy and Truffle/Graal
have reinvigorated and broadened interest in topics related to automatic compiler generation
and optimization. Given this broader interest, we revisit the Futamura Projections using a
novel diagram scheme. Through these diagrams we emphasize the recurring patterns in the
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analysis of those new tools through the lens of partial evaluation.
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1 Introduction

The Futamura Projections are a series of program signatures reported by [1] (a reprinting of [2])
designed to create a program that generates compilers. This is accomplished by repeated ap-
plications of a partial evaluator that iteratively abstract away aspects of the program execution
process. A partial evaluator transforms a program given any subset of its input to produce a
version of the program that has been specialized to that input. The partial evaluation operation
is referred to as mixed computation because partial evaluation involves a mixture of interpre-
tation and code generation [3]. In this paper, we will provide an overview of typical program
processing and discuss the Futamura Projections. We apply to the Projections a novel diagram
scheme which emphasizes the relationships between programs involved in the projections. We
also discuss related topics in the context of the Futamura Projections through application of the
same diagram scheme.
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Figure 1 The classical T and I diagrams, referring to the shapes of the diagrams [4].

Table 1 Legend of symbols and terms used in § 2 and § 3.

Symbol Example Description
program pow A miscellaneous program.
pn b A parameter.
an 3 An argument.
compilerS→TT compilerC→x86

x86 A compiler from language S to language T , implemented in T .
programL pow.c A miscellaneous program implemented in language L.
interpreterST interpreterCx86 An interpreter for language S implemented in language T .
partial inputstatic partial inputstatic A subset of input for a program being specialized by mix.
program′T squarex86 A specialized program implemented in language T .
mixT mixx86 A partial evaluator implemented in language T .

compiler compiler
A compiler generator implemented in language T .

generatorT generatorx86

A common syntax for the graphical presentation of program interpretation and transforma-
tion involves the classical I (for interpreter) and T (for translator, meaning compiler) diagrams,
referring to the shapes of the diagrams, respectively [4]. Fig. 1 illustrates the syntax of each
diagram. An I diagram specifies the interpreted language spatially above the implementation
language. A T diagram represents a compiler with an arrow from its source to target languages
spatially above its implementation language. These diagrams are simple to draw and recognize,
and excel at showing how multiple languages relate during compilation and interpretation. How-
ever, although the diagrams can be extended to express a partial evaluator (as described in [5]),
they are not especially suited to representing the partial evaluation process due to the secondary
input given to the partial evaluator. Additionally, the many languages and programs involved
in the Futamura Projections add complexity that is not addressed by this style of diagram. In
contrast, we believe our diagrams make clear the relationships between the various languages and
programs involved in the Futamura Projections and hope that they will improve the accessibility
of the Projections.

2 Programs Processing Other Programs

We use notation in this paper for partial evaluation and associated programming language con-
cepts from [4, 6]. That notation is commonly used in papers on partial evaluation [5, 7]. In
particular, we use [[−]] to denote a semantics function which represents the evaluation of a pro-
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(a) Program execution depicted as a machine.

(b) Program execution instance.

Figure 2 Program execution.

gram by mapping that program’s input to its output. For instance, [[p]][s, d] represents the program
p applied to the inputs s and d. We use the symbol mix to denote the partial evaluation oper-
ation [4, 6], which involves a mixture of interpretation and code generation. Table 1 is a legend
mapping additional terms and symbols used in this article to their description.

Program execution can be represented equationally as [[program]][a1, a2, ..., an] = [output] [4].
Alternatively, the diagram in Fig. 2a depicts a program as a machine that takes a collection of
input boxes, marked by divided slots of the input bar, and produces an output box. We use this
diagram syntax to aid in the presentation of complex relationships between programs, inputs, and
programs treated as inputs (i.e., data). Each input area corresponds to part of a C-function-style
signature that names and positions the inputs. The input is presented in gray to distinguish it
from the program and its input bar. Fig. 2b shows this pattern applied to a program that takes a
base b and an exponent e and raises the base to the power of the exponent. In this case, 3 raised
to the power of 2 produces 9, or [[pow]][3, 2] = [9].

2.1 Compilation

Programs written in higher-level programming languages such as C must be either compiled to
a natively runnable language (e.g., the x86 machine language) or evaluated by an interpreter.
A compiler is simply a program that translates a program from its source language to a target
language. This process is described equationally as [[compilerS→T

T ]][programS ] = [programT ], or
diagrammatically in Fig. 3a. For clarity, the implementation language appears as a subscript of
any program name. Compilers will also have a superscript with an arrow from the source (input)
language to the target (output) language. If language T is natively executable, both the depicted
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(a) The compilation process.

(b) Compilation example.

(c) Comparison of compiler input and output.

(d) Comparison of compiler example input and output.

Figure 3 Execution through compilation.

18



Revisiting the Futamura Projections (5 of 18)

(a) The interpretation process.

(b) Instance of program interpretation.

Figure 4 Execution by interpretation.

compiler and its output program are natively executable. If pow from Fig. 2b is written in C, it
can be compiled to the x86 machine language with a compiler as depicted in Fig. 3b or expressed
equationally as [[compilerC→x86

x86 ]][pow.c] = [powx86]. Figs. 3c and 3d illustrate that the source and
the target programs are semantically equivalent.

2.2 Interpretation

The gap between a high-level source language and a natively executable target language can
also be bridged with the use of an interpreter. “The interpreter for a computer language is just
another program” implemented in the target language that evaluates the program given the pro-
gram’s input and producing its output [8]. The interpretation pattern, described equationally
as [[interpreterST ]][programS , input] = [output], is depicted in Fig. 4a. The interpreter has the
previously established implementation language subscript, with a superscript indicating the in-
terpreted language. The input program’s input bar extends into the interpreter’s next input slot,
which serves to indicate which individual input is associated with each of the program’s own input
slots. However, as the inputs are actually being provided directly to the interpreter, an outline is
drawn around each input to the program being executed. By convention, the background shad-
ing is alternated to differentiate inputs, while the borders of inputs remain gray. This pattern
is applied to the pow.c program in Fig. 4b; the C program is being executed by an interpreter
implemented in x86 to produce the output from pow.c given its input. This interpretation is
represented equationally as [[interpreterCx86]][pow.c, 3, 2] = [9].
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(a) The partial evaluation process.

(b) Partial evaluation output.

(c) Instance of partial evaluation.

(d) Output of partial evaluation instance.

Figure 5 Partial evaluation.
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2.3 Partial Evaluation

With typical program evaluation, complete input is provided during program execution. With
partial evaluation, on the other hand, partial input—referred to as static input—is given in
advance of program execution. This partial input is given to mix with the program to be evaluated
and specializes the program to the input. The specialized program then accepts only the remaining
input—referred to as the dynamic input—and produces the same output as would have been
produced by evaluating the original program with complete input. For reasons explained below,
the Futamura Projections require that mix be implemented in the same language as the program
it takes as input; diagrams including mix provide a subscript that represents the implementation
language of mix as well as the that of the input and output programs.

Partial evaluation is described equationally as [[mixT ]][programT , partial inputstatic] =
[program′

T ] and depicted in Fig. 5a. Here, a program is being passed to mix with partial input—
specifically, only its second argument. The result is a transformed version of the program spe-
cialized to the input; the input has been propagated into the original program to produce a new
program. This specialized transformation of the input program is called a residual program [3].
Notice how the shape of the residual program matches the shape of the input program combined
with the static input. Notice also in Fig. 5b that the shape of the program combined with the
remainder of its input matches the shape of the typical program execution shown in Fig. 2a.
However, the input has been visually fused to the program, represented by the dotted line. In
addition, the labels for the original program, the second input slot, and the static input have been
shaded gray; while the residual program is entirely comprised of these two components, its input
interface has been modified to exclude them. In other words, while the semantics of the compo-
nents are still present, they are no longer separate entities. The equational representation of this
residual program shows the simplicity of its behavior: [[program′

T ]][a1, a3, ..., an] = [output].
The partial evaluation pattern is applied to the powx86 program in Fig. 5c. If powx86 is partially

evaluated with static input e=2, the result is a power program that can only raise a base to the
power 2. This example is represented equationally as [[mixx86]][powx86, e=2] = [squarex86]. The
specialization produces a program that takes a single input (as in Fig. 5d and [[squarex86]][3] = [9])
and squares it. It behaves as a squaring program despite being comprised of a power program
and an input; mix has propagated the input into the original program to produce a specialized
residual program.

3 The Futamura Projections

3.1 First Futamura Projection: Compilation

Partial evaluation is beneficial given a program that will be executed repeatedly with some of
its input constant, sometimes resulting in a significant speedup. For example, if squaring many
values, a specialized squaring program generated from a power program prevents the need for
repeated exponent e = 2 arguments. Program interpretation is another case that benefits from
partial evaluation; after all, the interpreter is a program and the source program is a subset of
its input. Fig. 6a illustrates that when given programS and an interpreter for S implemented
in language T , we can partially evaluate the interpreter with the source program as static input
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(a) The First Futamura Projection.

(b) An instance of the First Futamura Projection.

(c) The output of the First Futamura Projection.

(d) The output of the First Futamura Projection instance.

Figure 6 The First Futamura Projection and example instance.
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(i.e., [[mixT ]][interpreterST , programS ] = [programT ]). This is the First Futamura Projection.
As with the previous pattern, the partially evaluated program (i.e., the interpreter) has been
specialized to the partial input (i.e., the source program), which is indicated visually by the
fusion of the source program to the interpreter. Notice that programS is vertically aligned with
the static input slot of the partial evaluator as well as the program input slot of the interpreter.
This is because programS serves both roles. In this case, the dynamic input of the interpreter is
the entirety of the input for programS . When that input is provided in Fig. 6c, the specialized
program completes the interpretation of programS , producing the output for programS . In other
words, the specialized program behaves exactly the same as programS , but is implemented in T
rather than S. The partial evaluator has effectively compiled the program from S to T . Thus, the
equational form is identical to that of a compiled program: [[programT ]][a1, a2, ..., an] = [output].
Fig. 6b and equation [[mixx86]][interpreter

C
x86, pow.c] = [powx86] express the partial evaluation

of a C interpreter when given pow as partial input. The residual program, detailed in Fig. 6d,
behaves the same as pow.c, but is implemented in x86. The equational expression for the target
program is also identical to the compiled program: [[powx86]][3, 2] = [9].

First Futamura Projection: A partial evaluator, by specializing an interpreter to a
program, can compile from the interpreted language to the implementation language
of mix.

3.2 Second Futamura Projection: Compiler Generation

The First Futamura Projection relies on the nature of interpretation requiring two types of in-
put: a program that may be executed multiple times, and input for that program that may vary
between executions. As it turns out, the use of mix as a compiler exhibits a similar signature:
the interpreter is specialized multiple times with different source programs. This allows us to
partially evaluate the process of compiling with a partial evaluator. This is the Second Futa-
mura Projection, represented equationally as [[mixT ]][mixT , interpreter

S
T ] = [compilerS→T

T ] and
depicted in Fig. 7a. In this partial-partial evaluation pattern, an instance of mix is being provided
as the program input to another instance of mix, to which an interpreter is provided as static
input. Just as in earlier partial evaluation patterns, the program input has been specialized to
the given static input; in this case, an instance of mix is being specialized to the interpreter. The
vertical alignment of programs helps clarify the roles of each program present: the interpreter
is the partial input given to the executing instance of mix as well as the program input given
to the specialized instance of mix. Additionally, this specialized residual program as executed in
Fig. 7b matches the shape and behavior of the First Futamura Projection shown in Fig. 6a. This
is because the same program is being executed with the same input; the only difference is that the
output of the second projection is a single program that has been specialized to the interpreter
rather than a separate mix instance that requires the interpreter to be provided as input. In the
Second Futamura Projection, mix has generated the mix-based compiler from the first projec-
tion. Because the residual program is a compiler, its equational expression is that of a compiler:
[[compilerS→T

T ]][programS ] = [programT ].
Revisiting the pow.c program in Figs. 7c and 7d, mix is specialized to a C interpreter to

produce a C compiler (i.e., [[mixx86]][mixx86, interpreter
C
x86] = [compilerC→x86

x86 ]). When given
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(a) The Second Futamura Projection.

(b) The output of the Second Futamura Projection.

(c) An instance of the Second Futamura Projection.

(d) The output of the Second Futamura Projection instance.

Figure 7 The Second Futamura Projection and example instance.
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(a) The Third Futamura Projection.

(b) The output of the Third Futamura Projection.

Figure 8 The Third Futamura Projection and output.

pow in C, this specialized mix program then specializes the interpreter to pow, producing an
equivalent power program in x86 ([[compilerC→x86

x86 ]][pow.c] = [powx86]).

Second Futamura Projection: A partial evaluator, by specializing another instance
of itself to an interpreter, can generate a compiler from the interpreted language to
the implementation language of mix.

3.3 Third Futamura Projection: Generation of Compiler Generators

Because mix can accept itself as input, we can use one instance of mix to partially evaluate
a second instance of mix, passing a third instance of mix as the static input. This is the
Third Futamura Projection, shown in Fig. 8a and written equationally as [[mixT ]][mixT ,mixT ] =
[compiler generatorT ]. The transformation itself is straightforward: partially evaluating a pro-
gram with some input. The output is still the program in the first input slot specialized to
the data in the second input slot; however, this time both the program and the data are in-
stances of mix. Again, the positioning of the various instances of mix within the diagram serves
to clarify how the instances interact. The outermost instance executes with the other two in-
stances as input. The middle instance is the “program” input of the outer instance and is
specialized to the inner instance. Finally, the inner instance is being integrated into the mid-
dle instance by the outer instance. Notice that Fig. 8b shows that the execution of the residual
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(a) An instance of the Third Futamura Projection.

(b) The output of the Third Futamura Projection instance.

(c) The compiler generator generating a Perl compiler.

Figure 9 Instance of the Third Futamura Projection and output demonstration.
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program matches the shape and behavior of the Second Futamura Projection shown in Fig. 7a
when provided with an interpreter as input. The partial evaluator has generated the mix-based
compiler generator from the second projection. This process is represented equationally as
[[compiler generatorT ]][interpreterST ] = [compilerS→T

T ].
Interestingly, the only variable part of the Third Futamura Projection is the language asso-

ciated with mix. Previous instance diagrams were specific to the pow.c program; for instance,
Fig. 7c presents an interpreter for the implementation language of pow.c, namely C. However,
the diagram in Fig. 9a and the expression [[mixx86]][mixx86, mixx86] = [compiler generatorx86]
make no reference to pow.c or C. This is because the Third Futamura Projection has abstracted
the interpretation process to an extent that even the interpreter is considered dynamic input.
Fig. 9b shows the mix-generated compiler generator accepting a C interpreter and generating a
C to x86 compiler ([[compiler generatorx86]][interpreter

C
x86] = [compilerC→x86

x86 ]), but it will
accept any interpreter implemented in x86 regardless of the language interpreted. For example,
Fig. 9c shows a compiler for the language Perl being generated by the same compiler genera-
tor (i.e., [[compiler generatorx86]][interpreter

Perl
x86 ] = [compilerPerl→x86

x86 ]). A residual compiler
generated through the result of the Third Futamura Projection is called a generating extension—
a term coined by Ershov [3]—of the input interpreter [7]. In general, the result of The Third
Projection creates a generating extension for any program provided to it.

Third Futamura Projection: A partial evaluator, by specializing an additional
instance of itself to a third instance, can generate a compiler generator that produces
compilers from any language to the implementation language of mix.

3.4 Summary: Futamura Projections

The Third Futamura Projection follows the pattern of the previous two projections: the use of mix
to partially evaluate a prior process (i.e., interpretation, compilation). The first projection com-
piles by partially evaluating the interpretation process without the input of the source program.
The Second Futamura Projection generates a compiler by partially evaluating the compilation
process of the first projection without any particular source program. The Third Futamura Pro-
jection generates a compiler generator by partially evaluating the compiler generation process of
the second projection without an interpreter. Each projection delays completion of the previous
process by abstracting away the more variable of two inputs. Just as the first projection interprets
a program with various, dynamic inputs and the second projection compiles various programs,
the third projection generates compilers for various languages/interpreters. Table 2 juxtaposes
the related equations and diagrams from both § 2 and § 3 in each row to make their relationships
more explicit. Each row of Table 3 succinctly summarizes each projection by associating each
side of its equational representation with the corresponding diagram from § 3.
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4 Discussion

4.1 Examples of Partial Evaluators

Partial evaluators have been developed for several practical programming languages including
C [9], Scheme [10], and Prolog [11]. These partial evaluators are self-applicable and, thus, can
perform all three Futamura Projections [5]. However concerns such as performance make the
projections impractical with these programs.

4.2 Beyond the Third Projection

Researchers have studied what lies beyond the third projection and what significance the presence
of a fourth projection might have [5]. Two important conclusions have been made in this regard:

• Any self-generating compiler generator, i.e., a compiler generator such that,

[[compiler generator]][mix] = compiler generator,

can be obtained by repeated self-application of a partial evaluator as in the Third Futamura
Projection, and vice versa.

• The compiler generator can be applied to another partial evaluator with different properties
to produce a new compiler generator with related properties. For example, applying a
compiler generator that accepts C programs to a partial evaluator accepting Python (but
written in C) will produce a compiler generator that accepts Python programs.

These two observations are not orthogonal, but rather two sides of the same coin because they
both depend on the application of a compiler generator to a partial evaluator. We refer the reader
interested in further, formal exploration of these ideas and insights to [5].

4.3 Applications

4.3.1 Truffle and Graal

The Truffle project, developed by Oracle Labs, seeks to facilitate the implementation of fast,
dynamic languages. It provides a framework of Java classes and annotations that allows lan-
guage developers to build abstract syntax tree interpreters and indicate ways in which program
behavior may be optimized [12]. When such an interpreter is applied to a program through the
Graal compilation infrastructure, the Graal just-in-time compiler (JIT) compiles program code
to a custom intermediate representation by applying a partial evaluator at run-time [13]. We
illustrate this JIT compilation using our diagram notation in Fig. 10. This is a special form of
the First Futamura Projection where only certain fragments of the source program are compiled
based on suggestions communicated through the Truffle Domain Specific Language. Through par-
tial evaluation, Truffle and Graal provide a language implementation option that leverages the
established benefits of the host virtual machine such as tool support, language interoperability,
and memory management.
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Figure 10 The First Futamura Projection inside the Graal JIT.

(a) The RPython transformation of an interpreter. (b) The PyPy self-interpreter, compiled to C.

Figure 11 The PyPy project, represented in our diagram notation.

Because the Graal partial evaluator both specializes and is written in Java, it could in theory be
used to reach the second and third projections. However, it was designed specifically to specialize
interpreters written with Truffle and makes optimization assumptions about the execution of the
program. As a result, the partial evaluator is not practically self-applicable and cannot efficiently
be used for the second projection.

4.3.2 PyPy

We would be remiss not to mention the PyPy project (https://pypy.org/), which approaches
the problem of optimizing interpreted programs from a different perspective. While named for
its Python self-interpreter, the pertinent part of the project is its RPython translation toolchain.
RPython is a framework designed for compiling high-level, dynamic language interpreters from
a subset of Python to a selection of low-level languages such as C or bytecode in a way that
adds features common to virtual machines such as memory management and JIT compilation.
To demonstrate this, the PyPy self-interpreter, once compiled to C, outperforms the CPython
interpreter in many performance tests [14]. The translation process is depicted using our diagram
scheme in Fig. 11a, with the application to the PyPy interpreter in Fig. 11b.

Although both the Truffle/Graal and PyPy projects make use of JIT compilation for opti-
mization purposes, PyPy’s JIT is different from that used by Graal. While both compile the
source program indirectly through the interpreter, only Graal performs the First Futamura Pro-
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jection by compiling through partial evaluation. PyPy, on the other hand, uses a Tracing JIT
compiler that traces frequently executed code and caches the compiled version to bypass inter-
pretation [15]. For a more in-depth comparison of the methods used by Truffle/Graal and PyPy,
including performance measurements, we refer the reader to [16].

4.4 Conclusion

The Futamura Projections can be used to compile, generate compilers, and generate compiler
generators. We are optimistic that this article has demystified their esoteric nature. Increased
attention for and broader awareness of this topic may lead to varied perspectives on language
implementation and optimization tools like Truffle/Graal and PyPy. Additionally, further analysis
may lead to new strides into the development of a practical partial evaluator that can effectively
produce the Futamura Projections.

References

[1] Y. Futamura. Partial evaluation of computation process: An approach to a compiler-
compiler. Higher-Order and Symbolic Computation, 12(4):381–391, 1999.

[2] Y. Futamura. Partial evaluation of computation process: An approach to a compiler-
compiler. Systems Computers Controls, 2(5):54–50, 1971.

[3] A.P. Ershov. On the partial computation principle. Information Processing Letters, 6(2):38–
41, 1977. DOI: 10.1016/0020-0190(77)90078-3.

[4] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Gen-
eration. Prentice-Hall, 1993.

[5] R. Glück. Is there a fourth Futamura projection? In Proceedings of the ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation (PEPM), pages 51–60, New
York, NY, USA, 2009. ACM Press. DOI: 10.1145/1480945.1480954.

[6] N.D. Jones. An introduction to partial evaluation. ACM Computing Surveys, 28(3):480–503,
1996. DOI: 10.1145/243439.243447.

[7] P.J. Thiemann. Cogen in six lines. In Proceedings of the First ACM SIGPLAN International
Conference on Functional Programming (ICFP), pages 180–189, New York, NY, 1996. ACM
Press. DOI: 10.1145/232627.232647.

[8] D.P. Friedman and M. Wand. Essentials of Programming Languages. MIT Press, Cambridge,
MA, third edition, 2008.

[9] L.O. Andersen. Partial evaluation of C and automatic compiler generation. In Proceedings
of the Fourth International Conference on Compiler Construction, pages 251–257, London,
UK, 1992. Springer-Verlag.

31

http://dx.doi.org/10.1016/0020-0190(77)90078-3
http://dx.doi.org/10.1145/1480945.1480954
http://dx.doi.org/10.1145/243439.243447
http://dx.doi.org/10.1145/232627.232647


Revisiting the Futamura Projections (18 of 18)

[10] A. Bondorf and O. Danvy. Automatic autoprojection of recursive equations with global
variable and abstract data types. Science of Computer Programming, 16(2):151–195, 1991.
DOI: 10.1016/0167-6423(91)90002-F.

[11] T.Æ. Mogensen and A. Bondorf. Logimix: A self-applicable partial evaluator for Prolog.
In K.-K. Lau and T.P. Clement, editors, Proceedings of 1992 International Workshop on
Logic Program Synthesis and Transformation (LOPSTR), pages 214–227. Springer London,
London, UK, 1993. DOI: 10.1007/978-1-4471-3560-9 15.
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