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Abstract. This paper discusses the configuration of a space-effective rack cell for storing a given set of heterogeneous items. Rack cells are 
the primary components of rack storage areas. A rack cell configuration problem (RCCP) for heterogeneous storage is formulated as a com-
binatorial mathematical model. An effective heuristic for solving the RCCP in practical cases is presented. The proposed heuristic consists of 
multistage brute force searching of defined sets of feasible solutions and solving linear integer assignment problems by the branch-and-bound 
method. The developed algorithm was implemented and tested, and the rack cell obtained meets the modularity requirements in the design and 
operation of heterogeneous storage areas.
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assumptions of the storage or picking area design. Storage space 
is shaped by means of the racking construction, area dimen-
sions, and pillar grid. Racking construction defines the work 
aisles for material handling (see [1]) and rack cells for storage. 
Rack cells are uniform cuboids limited by rack construction 
elements (Fig. 1).

Cells must be set to carry all unit types in a system, while 
maintaining the necessary technological safety gaps. For safety 
reasons, it is also important to keep the verticality of pillars and 
the levelness of shelves [5]. Grounds arising from the lattice 
structure of racking systems can use cells of the same length and 
depth, but with possible height variations. The level of a pair of 
rack beams can be adjusted up or down to fit the cell to the unit 
height but changing the pillar arrangements (rack bays) is diffi-
cult and requires alteration of the construction elements. Owing 
to the statics of the rack structure, all rack bays should have the 
same dimensions and, in particular, the same depth (Fig. 1).

The RCCP encompasses two issues. The first is slotting 
materials into the fixed shelving or racking system. This can be 
effectively solved using well-known methods concerning the 
bin-packing problem. However, this restricts potential applica-
tions to cases with determined rack cell dimensions. The second 
issue is determining which rack cell dimensions are optimal for 
a given set of items.

2.	 Background and discussion

Formally, several publications have discussed the problem of 
rack cell dimensions, but in most cases, these have been taken 
as constant and known values. The dimensions of rack cells of 
different types and for various purposes have been assumed as 
f ixed and have not been discussed in a wide range of design 
problems. However, these dimensions are very often param-
eters of optimisation models, inf luencing the f inal research 
results [6‒8].

1.	 Introduction

This work focuses on the optimization of space utilization in 
storage areas. In the case of uniform items stored in identical 
pallet racks, the storage area is an easy-to-design modular sys-
tem. However, in the case of non-uniform items (heterogeneous 
storage) two antagonistic design approaches may be employed:
1.	All items are stored in identical rack cells, resulting in mod-

ularity and flexibility, as well as possible significant space 
wastage, owing to the mismatch between the dimensions of 
the rack cells and stored items.

2.	Each item type is stored in a dedicated rack cell, which en-
sures improved space utilisation, but also results in a lack 
of modularity, difficult design, and inflexibility.
Both options exhibit the disadvantages of high investment 

expenditures and/or poor space utilization. Therefore, wider 
research within the rack cell configuration problem (RCCP) 
is necessary to provide a method that serves as a compromise 
between the two antagonistic options.

The RCCP can be described as follows: the dimensions and 
weights of all items (palletized units, boxes) to be stored are 
known, as well as the limits of the dimensions of the rack cells 
(bins) in which to place items. Then, the number of bins, dimen-
sions of the particular bins, and item arrangements in each bin 
must be determined. The problem includes the possible rotation 
of items (space is configured in three dimensions x, y and z, 
vertical axis rotation in 90 degree increments only; see Fig. 1).

The problem occurs in large distribution and reserve ware-
houses [1, 2], but also in smaller storage areas, such as retail 
outlets, job-shops on production lines, and service depots [3]. 
In general, rack cell dimensions may differ, and depend on the 
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Fig. 2. General systematics of RCCP

Reference [9] described the AS/RS model with a rack of 
modular cells, according to the criteria of wasted space and 
exploitation costs. They provided an exact mathematical 
model as well as a heuristic method for the problem solution 
and defined the method of setting the rack cell dimensions 
for non-uniform material units. The study addressed the same 
problem but provided less significant results than the solution 
presented in this paper. The most important differences are that 
the model formulated below minimises space wastage, not only 
according to the rack cell and unit heights, but also considering 
all other dimensions, weights, and possible unit rotations.

Reference [10] presented the problem of storage rack 
arrangement for non-uniform load units in a storage area, under 
constraints imposed by carrying pillars of building construction. 

An exact model for the warehouse building cost minimisation 
and space consumption minimisation was defined. A bi-level 
approach containing both a mathematical model and coordinat-
ing procedure for the problem solution was presented.

The extended literature review justifies the statement that 
list of methods for arranging storage areas with concurrent opti-
misation of the rack cells doesn’t exist.

Proper recognition of the RCCP research area is funda-
mental to the course of studies (Fig. 2). Intuitively, RCCP 
can be bracketed together with cutting and packing problems 
(CPPs). Older scientif ic studies systematising the CPP (as 
in [11]) did not allow for classif ication of the RCCP. The 
closest to the RCCP specif icity is the taxonomy presented 
by Wäscher in [12] and Silva in [13]. Wäscher classif ied the 

Fig. 1. Racking system scheme for heterogeneous storage
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Fig. 4. Interpretation of  α p
i, n variable

3.	 Heuristic based solution method

3.1. Problem description. The paper presents the “static” situ-
ation of the rack arrangement. The solution to the dynamic ver-
sion of the problem could be a cyclical application of discussed 
method to the storage system. However, the limitation of the 
cyclic use of the proposed approach is the high cost of rearrang-
ing the rack area. The problem involves determining the optimal 
dimensions of a rack cell to maximise storage space usage for 
a set of non-uniform items. Let items of different types exist, 
with known quantities (volumes) for each type. Different item 
types have varying dimensions and weights. Using only the stan-
dard components of racking systems, such as longitudinal beams 
and frames, one must set the dimensions of the universal rack 
cell (URC – indicated in 3.3, Fig. 2) to be used in the storage 
area. The URC must be able to hold all item types and provide 
direct access to each item (single-stage guillotine pattern). The 
storage area using these cells must be able to keep a specified 
number of items at a time. The criterion is the lowest cubic vol-
ume of the storage space as a sum of the cubes of the individual 
cells. The space for working aisles, which is relevant mostly in 
material handling technology, is not taken into account.

Let the following indexes be defined:
	 i	 –	 type of item, I = {1, 2, …, i, …, I};
	p	 –	� variant of item rotation, p 2 {0, 1}, where 1 means the item 

was rotated from its initial position by 90° (Fig. 1);
	s	 –	 type of rack beam, S = {1, 2, …, s, …, S};
	n	 –	� variant of the arrangement of items in a rack cell, N = 

{1, 2, …, n, …, N}; for each feasible configuration of the 
URC (according to the available beam types, item height, 
width, weight and rotation, and constraint for maximal cell 
depth), the possible combinations of item arrangements in 
that cell can be determined. The number N of arrangement 
combinations in all feasible rack cells can be estimated 
(Fig. 4).

Fig. 3. Examples of orthogonal patterns in CPPs. Based on [11]

three-stage  
guillotine patterns

nested patternssingle-stage  
guillotine patterns

arrangement of small items within one large object with 
variable dimension(s) as the open dimensional problem (see 
Fig. 11 in Wäscher’s publication). In the general form of the 
RCCP, dimensions of more than one bin must be determined, 
which is why it defies Wäscher’s classif ication. Silva intro-
duced the concept of the “open dimension problem with 
a weakly and a strongly heterogeneous assortment ... of the 
large objects”, but they permitted only one dimension to be 
changed in the large objects (p. 848). Therefore, the general 
form of the RCCP, in which all dimensions of a large object 
are set, also does not f it Silva's classif ication. It should be 
noted that also newer publications on CPP typology like 
[14, 15] did not mention RCCP in the context presented in 
this paper. The following discussion is focused on 4.3 (Fig. 2) 
of the general systematics of the RCCP.

In order to maintain the technological requirements, items 
must be arranged in a rack cell up to the single-stage guillotine 
pattern (Fig. 3), as discussed in [11].

The RCCP configuration method in the presented form is 
an effective rack design tool providing optimal results (with 
a globally optimal solution to the equations system using the 
branch-and-bound) in an acceptable time. Such methods are 
not present in the literature, except their particular elements 
– without a comprehensive approach. The problem noted below 
requires a dedicated heuristic solving algorithm combining ele-
ments from various research approaches into new form.
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The model parameters are as follows:
	 λ i	 –	 number of i-type items;
	wi, li, hi	 –	 initial width, length, and height of i-type item [mm];
	 xi, yi	 –	� absolute width and length of i-type item (when 

rotated or not) [mm];
	 ci	 –	 weight of i-type item [kg];
	 d, l, h	 –	 depth, length, and height of URC [mm];
	 d max	 –	 maximum depth of rack cell (assumed) [mm];
	 ls	 –	 length of s-type rack beam [mm];
	 gs	 –	 height (thickness) of s-type rack beam [mm];
	 cs	 –	 loading capacity of pair of s-type rack beams [mm];
	 b1	 –	 width (thickness) of rack pillar [mm];
	 b2	 –	� vertical safety gap between items or item and rack 

pillar [mm];
	 b3	 –	� horizontal safety gap (clearance area) between item 

and rack beam [mm].

The decision variables are:
	 κs	 –	� binary variable determined using s-type rack beam in 

URC, K = 
£
κs 2 {0, 1}; s 2 S

¤
;

	α p
i, n	 –	� integer variable for a number of i-type items of p-th 

rotation constituting n-th arrangement variant (Fig. 4), 
A = 

£
α p

i, n 2 C+ [ {0}; p 2 {1, 2}; i 2 I; n 2 N
¤
;

	βn(s)	 –	� number of rack cells using n(s)-th arrangement variant, 
B = 

£
βn(s) 2 C+ [ {0}; n 2 Ns

¤
.

When the i-type item is going to be stored rotated by 90° 
from the initial position, the length li and width wi of this 
item are replaced by Eq. (1) and Eq. (2). Then, the absolute 
width and length of the i-type item are marked as xi and yi, 
respectively. The height of the items cannot be changed by 
any rotation.

	 8i 2 I xi = pwi + (1 ¡ p)li ,� (1)

	 8i 2 I yi = pli + (1 ¡ p)wi .� (2)

There must exist a rack beam that is suitable for the length 
of each item in at least one rotation Eq. (3). If not, the problem 
does not have a feasible solution.

	 8i 2 I 9s 2 S xi + 2b2 ∙ ls � (3)

Only one type of beam is used in the URC Eq. (4). The cell 
length is limited by the given series of beam types and includes 
the rack pillar thickness Eq. (5). The sum of lengths of items 
assigned to the cell and safety gaps must not exceed the length 
of the used rack beam Eq. (6).

	
s 2 S
∑κs = 1,� (4)

	 l = 
s 2 S
∑κs ls + b1,� (5)

	 8n 2 N b2 + 
i 2 I
∑

p 2 {0, 1}
∑ α p

i, n(xi + b2) ∙ 
s 2 S
∑κs ls.� (6)

The URC height is fixed and results from the beam height, 
highest item, and horizontal safety gap Eq. (7).

	 h = max
i 2 I

{hi} + 
s 2 S
∑κs gs + b3� (7)

The URC depth is imposed by the dimensions and rota-
tion of the assigned items Eq. (8). All items in the cell must 
be rotated in a manner ensuring that the depth of a cell is not 
greater than the maximal value Eq. (9). The total weight of items 
cannot exceed the loading capacity of the rack beams Eq. (10).

	 d =  max
i 2 I, p 2 {0, 1}, n 2 N

{ yi ¢ sgn(α p
i, n)}� (8)

	 d ∙ d max� (9)

	 8n 2 N 
i 2 I
∑

p 2 {0, 1}
∑ α p

i, nci ∙ 
s 2 S
∑κscs � (10)

The storage area constructed for the URC must be able to 
store all items of each type Eq. (11).

	 8i 2 I 
p 2 {0, 1}
∑

n 2 N
∑  βnα

p
i, n   ̧λ i� (11)

The primary goal is to minimise the storage area cubic vol-
ume Eq. (12), which is the product of the number of URCs and 
their cubic volumes.

	 min
n 2 N
∑ βn ¢ lhd� (12)

The fully expanded criteria function provided by formula 
(12) takes the following form:

	

min
α p

i, n 2 A, βn 2 B, κs 2 K n 2 N
∑βn

s 2 S
∑κs ls + b1 max

i 2 I
{hi} +

+ 
s 2 S
∑κs gs + b3

³
max

i 2 I, p 2 {0, 1}, n 2 N
{ yi ¢ sgn(α p

i, n)}
´

.
� (13)

The proposed mathematical model is a nonlinear mixed-in-
teger programming problem. As mentioned previously, the 
RCCP can be associated with CPPs, which are stated as NP-hard 
problems. This means that no known algorithm exists for solv-
ing these problems, such that the computational effort at worst 
increases as a polynomial in the problem size. Therefore, it is 
expected that the RCCP will inherit the NP-hardness.

The main difficulty arises from the unknown number of 
possible variants of the item arrangements in the rack cell. Each 
feasible configuration of cell dimensions has different allowed 
combinations of item arrangements (Fig. 4). Determination of 
the sizes of matrices A and B requires this number, but it can be 
only obtained by brute force searching for given sets of items, 
rack beams, and constraints. This means that full formulation 
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of the proposed optimisation task requires significant initial 
efforts.

Trivial cases, for which the optimal solution can be deliv-
ered intuitively, were optimally solved in negligible time by the 
LINGO software in order to confirm the formal correctness of 
the presented model. For non-trivial cases, LINGO did not yield 
any results within an acceptable time, so an alternative method 
for solving the RCCP must be developed for practical use.

3.2. Two-stage combined heuristic. A simplified, time-effec-
tive, two-stage combined heuristic approach with high chances 
of optimality was then proposed. During the first stage, all 

feasible rack cells were identified and a complete review of 
the item arrangements in each feasible cell was conducted. In 
the second stage, a batch of simple linear integer assignment 
problems was tackled using the branch-and-bound method. An 
effective brute force review on the first stage was enabled by 
narrowing the space of feasible solutions by simplifying the 
assumptions based on the technological qualities of a RCCP. 
The method provides proper and applicable results for large-
scale examples within a reasonable time.

The heuristic solution algorithm is detailed in a framed 
pseudo-code section supported by a simple calculation exam-
ple, as illustrated in Figs. 5 to 9 (the symbols as in Section 3.1).

Fig. 5. Visualisation of steps 1 to 13 of solving algorithm

Fig. 6. Visualisation of steps 14 to 32 of solving algorithm
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Fig. 7. Exemplary calculations – steps 33 to 47 of solving algorithm

01:	 Set d max, b1, b2, b3
02:	 Set matrix S of rack beam types, s = 

£
ls, gs, cs

¤

03:	 Set matrix I of item types, i = 
£

wi, li, hi, ci, λi
¤

04:	� Create matrix F = NULL of feasible variants of item rotation, 
f  = 

£
if , pf , xf , yf , hf , cf

¤

Convert matrix I into matrix F of item rotation variants (Fig. 5):
05:	 For all i in I do
06:	� If li ∙ d max then //If item length is less than maximal rack 

cell depth…
07:	 create new f  //create new variant of item rotation.
08:	 attribute: if = i; pf = 0; xf = wi; yf = li; hf = hi; cf = ci;
09:	 include f  to F
10:	� If wi ∙ d max and wi  6= li then //If item width is less than 

maximal rack cell depth…
11:	 create new f  //create new variant of item rotation.
12:	 attribute: if = i; pf = 1; xf = li; yf = wi; hf = hi; cf = ci
13:	 include f  to F
Check all rack beams for potential usability (Fig. 6):
14:	 For all s in S do
15:	 For all i in I do
16:	� If not {£(wi ∙ ls + 2b2 and li ∙ d max) or (li ∙ ls + 2b2 and 

wi ∙ d max)
¤
 or (ci ¸ cs)}

17:	 remove s from S //beam cannot keep all item types
18:	 If S is NULL then go to STOP //no feasible solution.
Set minimal possible depth of universal rack cell d min (Fig. 6):
19:	 d min = 0 //set minimal depth of universal rack cell as 0
20:	 For all i in I do
21:	 d temp = 1 //set temporary maximal value
22:	 For all f  in F do
23:	 If if  = i then

Construct matrix M of potential rack cell footprints (Fig. 7):
33:	 Create matrix M = NULL of
rack cell footprints m = 

£
lm, dm, sm

¤

34:	� For all s in S do //The footprint is constructed on the base of 
beam length, and

35:	 For all ds in Ds do //…potential depths of rack cells.
36:	 create new m
36:	 attribute: lm = ls + b1; dm = ds; sm = s;
38:	 include m to M
Construct matrix Nm of feasible rack cells for potential rack cell 
footprints (Fig. 7):

24:	 d temp = min{d temp, yf}
25:	 d min = max{d min, d temp} //�find minimal depth of  

universal rack cell d min

For all beams in matrix S construct set of potential rack cell 
depths Ds (Fig. 6):
26:	 For all s in S do
27:	 create set Ds = NULL of ds
//…set of potential depths of URL based on s-th beam
28:	 For all f  in F do
29:	 If (xf  ∙ ls ¡ 2b2) and (yf  ∙ d min)
then //�If variant of item rotation fits length of beam and  

minimal depth of rack cell
30:	 attribute ds = yf  //�attribute depth of variant as potential 

depth of rack cell
31:	 If ds 2/ Ds then //�if this depth is still not present in the  

set of potential depths
32:	 include ds to Ds
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Comment 1:
●	 nm is complete if the item arrangement εn, m fully utilises 

the rack cell space, so no other item (rotated or not) can be 
placed in that rack cell,

●	 nm is homogenous when the item arrangement εn, m con-
tains only items of the same type, but these are oriented in 
space in the same manner. If the rack cell can accommo-
date normally oriented and rotated i-type items at the same 
time, it can also accommodate these items oriented in the 
same manner, so this variant is redundant for other existing 
variants (Fig. 8).

For each m in M, solve the system of integer linear inequalities 
(Fig. 9):
48:	 For all m in M do
49:	 compute integer linear inequalities to find
space consumption V(m) //see Comment 2
50:	 min V(m) → V* //select the optimal footprint of a rack cell
51:	 Extract solution parameters for V*

52:	 STOP

Comment 2: Solve the system of integer linear inequalities.
A.	 For each m-th footprint of the universal rack cell, solve the 

linear integer assignment problem:
1.	 the system is composed of I inequalities (one for each 

item – Fig. 9),
2.	 the left side of the inequality is a sum of Nm products. 

Each product is a product of the number of i-type items 
attributed to the nm-th item arrangement, and the number 
βnm of used arrangements of that type, where βnm is an 
integer decision variable,

3.	 the right side is a storage volume of i-type items λ i, and 
must be equal to or smaller than the left side,

4.	 the total cubic volume Vm of all selected nm-th arrange-
ments must be minimal.

B.	 Select the footprint that allows for storing all items in the 
minimal space, min Vm. Write all item arrangements with 
non-zero values βnm for that footprint as a solution to the 
problem.

C.	 The branch-and-bound method is easy applicable and often 
provides global optimality for real cases.

4.	 Numerical study

In this section, the effects of the proposed model are investi-
gated by means of a numerical example. For a given set of 30 
item types (Table 1), set of eight types of rack beams (Table 2), 
and specified technical parameters of the storage area (Table 3), 
the URC must be determined to keep all items in the smallest 

Fig. 9. Exemplary calculations – steps 48 to 51 of solving algorithm

39:	 For all m in M do
40:	� Create matrix Nm = NULL of vectors 

n(m) = 
£

ln(m), dn(m), hn(m), sn(m), εn(m)
¤
 //vector 

describing all possible item arrangements for m-footprint 
and height of rack cells resulting from these arrangements

where �εn(m) = 
£
αf : αf  2 C+ + {0}

¤
 //assign vector variants  

of item rotation to n-item arrangement on m-footprint.
41:	 While not all εn(m) checked do //Until all possible item 
arrangements on a footprint are checked (brute force search)
42:	 find next feasible εn(m)

43:	 create new nm
44:	� attribute dn(m) = dm; ln(m) = lm; sn(m) = sm; //attribute 

beam characteristics…
45:	� attribute hn(m) = max{hi} + gs + b3 //rack cell height is 

from highest item…
46:	 If (n(m) is complete) and (n(m) is homogenous)
then //see Comment 1
47:	 include n(m) to Nm

Fig. 8. Arranging items differently oriented in space
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cubature. Provided rack beams and technical parameters of the 
storage area are typical for most situations.

The algorithm proposed in Section 3.2 was implemented 
to perform calculations on real examples, check the feasibility 
conditions and visualise the results. A summary of the calcula-
tion results for the above data is presented in Table 4 and dis-
cussed in the following section – the optimal solution is bolded. 
Several feasible rack cells can host additional items beyond 
those required, as additional profit.

Beams s = 1, 2, 3 do not secure proper storage of all item 
types when the maximal cell depth is set to 1450 mm. The first 
type of beam to be used is s = 4. The results demonstrate that 

Table 1 
Set of items to be stored

Item Volume λi
Dimensions (mm) Weight ci 

(kg) Item Volume λi
Dimensions (mm) Weight

ci (kg)wi li hi wi li hi

i1 40 600 2600 1550 300 i16 260 950 1750 1500 700

i2 120 650 1750 1600 400 i17 50 1000 1550 1300 550

i3 400 700 1500 600 800 i18 220 1000 1700 1200 550

i4 295 700 1800 1100 750 i19 80 1000 2000 600 1100

i5 270 750 1850 1050 800 i20 230 1000 2600 1000 300

i6 70 600 900 1000 350 i21 60 1050 1500 2000 1100

i7 760 800 1200 1400 500 i22 40 1050 1650 950 1100

i8 300 800 1900 1500 750 i23 205 1100 1600 700 350

i9 270 800 2000 1500 550 i24 60 1150 1550 1200 800

i10 250 850 1850 1200 400 i25 60 1200 1500 950 750

i11 130 850 2000 950 1100 i26 70 1250 1450 1500 200

i12 210 900 900 1200 350 i27 160 1300 1200 1200 400

i13 210 900 1800 950 300 i28 170 1300 1350 950 300

i14 280 900 2000 900 550 i29 90 1400 1000 1500 700

i15 230 950 1200 1500 700 i30 235 1600 1000 950 800

Table 2 
Rack beam types

Type of rack beam s s1 s2 s3 s4 s5 s6 s7 s8

Length ls (mm) 1825 2225 2625 2700 2700 3300 3600 4200

Height – thickness gs (mm) 60 80 90 110 140 110 140 165

Loading capacity cs (per pair/kg) 1700 2000 2000 2000 3600 2000 2000 2900

Table 3 
Technical parameters of storage area

Maximum depth of rack cells d max 1450 mm

Width (thickness) of rack pillar b1 150 mm

Vertical safety gap between items or unit and rack pillar b2 50 mm

Horizontal safety gap between item and rack beam b3 100 mm

Table 4 
Brief results sheet

Ty
pe

 o
f 

be
am

 s

Rack cell 
dimensions Rack cell height, h = 2240 mm

l 
(mm)

d
(mm)

Number 
of cells 

to create 
storage 

area

Storage 
area 

cubic 
volume 

(m3)

Additional items that fit in 
storage area

1 – – No feasible solution

2 – – No feasible solution

3 – – No feasible solution
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Short beams also increase the number of rack cells, so addi-
tional space is wasted for rack construction elements (Fig. 10). 
A large number of short beam cells may be partially balanced 
by less space consumed per cell, but the final settlement is 
adverse for this option.

A diversified structure of items (as in the example) requires 
longer beams. Numerous variations of item arrangements pro-
vide a superior fit to the cell dimensions. The optimal result 
(30019.1 m3) is approximately 23.9 % better than the worst 
result (39480.3 m3) for a shorter beam. This is owing to the 
general rule that a greater difference between object sizes 
results in a smaller relative loss of space when filling a larger 
object with smaller objects.

A fixed cell height results in an inevitable waste of space 
above stored items. The highest item determines the cell height, 
so placing low items on a long beam is not optimal. This is 
presumably the reason why beam s = 7 (not the longest) is 
selected. The shallowest cell (1300 mm) is proven to be ratio-
nal. This can be explained analogously to the cell height. The 
deepest stored item influences the cell depth, but when it can 
be stored rotated, its effect is lowered (for example, i = 26 or 
i = 29). Of course, this does not apply to items that must be 
stored rotated, according to technical constraints (such as i = 1 
or i = 9).

Most types of universal rack cells allow for storing addi-
tional items. This is the result of a restriction stating that item 
arrangements that fail to fill the cell space fully are rejected. 
This is additional profit (for example, 1935 of items of 6-th 
type for beam of 4-th type), but it is difficult to estimate without 
detailed characteristics of the stored materials (Fig. 11).

The rational solution (bolded in Table 4) is detailed in Table 5. 
A total of 2749 cells with dimensions of 3750£1300£2240 mm 
and a cubic capacity of 10.92 m3, based on the 7-th type of rack 
beam, allow for storing 5825 different items, as described in 
Table 1, in the minimal possible space. The full solution for 

Fig. 10. Total space consumption and number of  rack cells for different feasible solutions

Ty
pe

 o
f 

be
am

 s

Rack cell 
dimensions Rack cell height, h = 2240 mm

l 
(mm)

d
(mm)

Number 
of cells 

to create 
storage 

area

Storage 
area 

cubic 
volume 

(m3)

Additional items that fit in 
storage area

4 2850

1300 4395 35986.5 1935 of i6

1350 4395 37370.6 1935 of i6

1400 4305 37961.1 1755 of i6

1450 4265 38951.5 1675 of i6

5 2850

1300 4395 36475.0 1935 of i6

1350 4395 37877.9 1935 of i6

1400 4305 38476.4 1755 of i6

1450 4265 39480.3 1675 of i6

6 3450

1300 3510 34790.6 1075 of i6

1350 3510 36128.7 1075 of i6

1400 3510 37466.8 1075 of i6

1450 3510 38804.9 1145 of i6

7 3750

1300 2749 30019.1 64 of i6; 2 of i12

1350 2749 31173.7 73 of i6; 1 of i15; 1 of i17

1400 2749 32328.2 74 of i6; 2 of i12

1450 2749 33482.8 73 of i6; 1 of i12; 1 of i18

8 4350

1300 2357 30189.8 1 of i6; 1 of i15; 1 of i21

1350 2357 31351.0 1 of i6; 1 of i15; 1 of i23

1400 2357 32512.1 1 of i12; 1 of i16

1450 2357 33673.3 1 of i7; 1 of i16

the given structure of items is not conducive to short beams 
(Fig. 10). In most cases, short beams result in space wastage 
because only one or two items can be placed in a single cell. 
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Fig. 11. Number of additional items fitting storage area in different feasible solutions

Total cubic 
volume of 

items in n-th 
variant of 

arrangement  
(m3)

Total 
weight 

of items 
in rack cell  

(kg)

Variants of item 
arrangements in rack cell  

(* = item is stored 
rotated)

Number of 
used rack cells 

storing n-th 
variant of item 
arrangements 

βn

3.76 0800 1 of i1*; 1 of i7 40

3.86 0950 1 of i2*; 1 of i18* 20

3.47 1500 1 of i2*; 1 of i22* 40

3.53 1150 1 of i2*; 1 of i25* 60

2.91 1550 1 of i3*; 1 of i8* 160

2.52 1200 1 of i3*; 1 of i10* 230

3.12 1500 1 of i3*; 1 of i16* 010

2.91 1550 1 of i4*; 1 of i30 235

2.69 1150 1 of i5*; 1 of i23* 201

3.94 0800 1 of i7; 1 of i20* 230

5.43 1850 1 of i8*; 1 of i21* 060

4.42 1550 1 of i8*; 1 of i24* 060

4.27 0950 1 of i9*; 1 of i27* 100

4.07 0850 1 of i9*; 1 of i28* 170

3.49 1500 1 of i11*; 1 of i27* 040

Total cubic 
volume of 

items in n-th 
variant of 

arrangement  
(m3)

Total 
weight 

of items 
in rack cell  

(kg)

Variants of item 
arrangements in rack cell  

(* = item is stored 
rotated)

Number of 
used rack cells 

storing n-th 
variant of item 
arrangements 

βn

3.72 1800 1 of i11*; 1 of i29 090

2.17 1450 1 of i12; 1 of i19* 080

3.33 1250 1 of i14*; 1 of i15* 210

4.34 0750 1 of i14*; 1 of i26* 070

4.51 1250 1 of i16*; 1 of i17* 050

4.53 1250 1 of i16*; 1 of i18* 200

2.90 1450 1 of i4*; 1 of i6; 1 of i12 025

4.07 1750 1 of i4*; 2 of i7 035

2.97 1500 1 of i5*; 1 of i6; 1 of i12 069

3.79 1450 1 of i6; 1 of i8*; 1 of i12 020

4.14 1450 1 of i6; 1 of i10*; 1 of i15 020

4.23 1300 2 of i7; 1 of i13* 210

3.18 1050 2 of i12; 1 of i23* 004

4.72 1150 1 of i12; 2 of i27* 010

Total: 2749 cells

Table 5 
List of admissible item arrangements in rack cell with dimensions 3750£1300£2240 mm (rational)

that cell consists of 552 βn values (only non-zero values are 
listed).

It should be noted that, in most cases in Europe, rack-
ing systems in wholesale are configured to handle ISO1 
1200£800£144 mm pallets. The usual rack cell for such a pal-
let uses a 2700 mm beam and is approximately 1300 mm deep. 
As can be observed in Table 4, the storage area constructed 
on this basis consumes 36475 m3, while the storage area con-

structed based on the rational solution consumes 30019.1 m3. 
The rational solution is therefore approximately 21% better than 
the common feasible solution applied in wholesale.

The proposed algorithm is time-effective and provides an 
optimal solution for large-scale cases. The first stage of the 
method is based on brute force search to identify all possible 
rack cells (bins). These results are used in the second stage to 
allocate items in the bins and determine the number of par-
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ticular bins. Optimality is achieved when system of integer 
linear inequalities in the second stage is solved optimally. The 
proposed branch-and-bound method provides global optimality 
in approximately 98% of trials. The remainder requires recon-
struction of the inequalities set to determine global optimality 
in the following attempts. This involves solving the task by 
the simplex method, and then generating Gomory's cuts [14] 
to provide global optimality in every attempt.

5.	 Conclusions

The most important result of this paper is new and effective 
method for determining rack cell dimensions for heterogeneous 
storage. The resulting rack cell is a base for the modular design 
and operation of a storage area, similar to homogenous storage. 
The proposed approach allows for the use of known methods 
and techniques to optimise the storage area for heterogeneous 
items, by means of minimising space, increasing flexibility, 
and reducing costs.

The optimal space utilisation level can be achieved when all 
stored items have storage space fitted exactly to the dimensions, 
but this requires uniform items and a non-changeable material 
flow volume. In general, the structure of material stock changes 
more quickly than storage areas can be reconfigured, so it is 
rational to build a storage area that is as universal and modular 
as possible.

The proposed model provides a practical tool that can be 
used during the stage of designing warehouses or retail sale 
points. It is a tool for gaining additional space profits that create 
new possibilities under conditions of increasing competition. 
Inevitable and on-going displacement of the assortment, and 
its dimensions and weights, can lead to a decrease in space 
utilisation in racking systems. Therefore, it becomes necessary 
to reconfigure the rack cells. The simplest means of fitting 
existing rack system to new requirements is height adjustment 
of particular rack cells, which should be a next step in further 
research.

The method can also be used in other areas where it is nec-
essary to arrange a set of items in a space, e.g., locating equip-
ment in a limited cargo space. It may be then an instance of 
a wide class of backpack problems with new type of constrain 
for bin size.
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