Design and Analysis of An Improved AODV Protocol Based on Clustering Approach for Internet of Vehicles (AODV-CD)

Sahar Ebadinezhad

Abstract—The Internet of Vehicles (IoVs) has become a vital research area in order to enhance passenger and road safety, increasing traffic efficiency and enhanced reliable connectivity. In this regard, for monitoring and controlling the communication between IoVs, routing protocols are deployed. Frequent changes that occur in the topology often leads to major challenges in IoVs, such as dynamic topology changes, shortest routing paths and also scalability. One of the best solutions for such challenges is “clustering”. This study focuses on IoVs’ stability and to create an efficient routing protocol in dynamic environment. In this context, we proposed a novel algorithm called Cluster-based enhanced AODV for IoVs (AODV-CD) to achieve stable and efficient clustering for simplifying routing and ensuring quality of service (QoS). Our proposed protocol enhances the overall network throughput and delivery ratio, with less routing load and less delay compared to AODV. Thus, extensive simulations are carried out in SUMO and NS2 for evaluating the efficiency of the AODV-CD that is superior to the classic AODV and other recent modified AODV algorithms.

Keywords—Ad hoc On-Demand Distance Vector Routing, Clustering, Internet of vehicles, Vehicular ad hoc networks, Quality of service, 5G wireless networks

I. INTRODUCTION

Predictions show that by 2020 about 1.25 billion “things” will all be linked up to the Internet and a major constituent of that number will be from vehicles. Existing areas such as smart transport, smart industry, smart health, smart home and smart energy are already experiencing the integration of smartness by Internet of Things (IoTs). One of IoT’s big revolutions is IoV which is an emerging Technologies for connecting all smart devices such as vehicles and Vehicles-to-Everything (V2X), intelligent traffic light systems, office-and-home smart appliances. Therefore, in order to fulfill IoVs’ requirements cloud computing is contemplated. Moreover, deploying resources at the edge of wireless network has been considered by the industry and academia in order to overcoming issues such as the restricted capabilities of storage, onboard computing, energy and communication. This deployment in cloud computing prevents unnecessary latency.

Currently with the traditional Vehicular ad hoc networks (VANET) changes are being made into the IoVs because of the increase in the quantity of vehicles that are connected to the IoT [1]. Figure 1 shows the impact of IoT. VANET makes all vehicles that are participating to become a wireless router or mobile node, which enables the vehicles to connect to each other and for them to establish a wide range network [2]. Furthermore, other vehicles are able to join in as other vehicles leave the signal range or leave the network which connects the network to one another to enable the creation of a mobile network. It was observed that just a small mobile network is covered by VANET which actually is being subjected to mobility constraints and also the number of vehicles connected.

![Fig. 1. Impact of IoT](image-url)

IoVs’ routing protocol is an important research area. There are various routing protocols which come from Mobile Adhoc Network (MANET) studies like Destination-Sequenced Distance-Vector (DSD-V) [3], Dynamic Source Routing (DSR) [4] and AODV [5]. Protocols such as Greedy Perimeter Coordinator Routing (GPCR) [6] and Greedy Perimeter Stateless Routing (GPSR) [7] are some of the geographic protocols proposed by researchers when taking vehicle properties into consideration. It is important to mention that the majority of routing algorithms are only appropriate for solo wireless access technology and limited scale.

Reduction of communication issues between vehicles is a major challenge for industries and automobile companies such
as Car TALK 2000, COMCAR projects, DRIVE, Car Net and Fleet Net [8-13]. Some important parameters that affect the performance reduction of routing protocols are network size and vehicles’ speed. The IoVs network is a dynamic network, being that there are nodes having inconsistent/random motion leading to nodes frequently experiencing structural deviations. Eventually, this leads to network expiration resulting from the network separation. In order to increase its lifetime, the mobility pattern or forecasting pattern can be forecasted, which will result in the extensive usage of application in multimedia, commercial, emergency, safety and managing of traffic applications. Moreover, for data to be transmitted efficiently, it is mandatory for efficient Quality of Service (QoS). Therefore, designing an appropriate routing protocol for vehicles in large-scale is a challenging issue.

Lack of network scalability is a problem that leads to a lot of damage in the network sustainability. Also, in cases of surveillance and safety applications, delay can be dangerous. In this regard, optimizing vehicular network for equal distribution of network load and scalability can be created by intelligent clustering algorithms that contribute to key aspects. The contribution of this study can be explicated as follows:

- Analyzing and measuring the performance of AODV-CD for Internet of Vehicles (IoVs).
- Proposing a realistic communication model by hybridization of DA-TRLD and AODV based-clustering that can be suitable for IoVs environment for supporting V2I and V2V communication.
- Avoiding network dissemination problems, by enhancing PDR and reducing link failure that is achieved by selecting reliable nodes as CH with low mobility.
- Minimizing the routing cost by adapting clustering approach leads to reduction of both bandwidth resource and computing resource consumption for routing data traffic.
- Increasing efficiency of AODV in terms of reliability and scalability by discovering the shortest route and selecting the appropriate node as CH.

In this paper cluster-based routing methodology for AODV protocol is proposed in the heterogeneous network. In the next section there will be a brief explanation of AODV algorithm structure, improvements that are applied on AODV and clustering techniques in IoVs. Section 3 depicts our proposed methodology step by step. In section 4 there will be an illustration of the simulation setup and outcomes. The final section includes the conclusion and suggestions for future work on this topic.

II. LITERATURE REVIEW

A. Related Work on AODV

AODV is a reactive routing protocol with the functionality of DSR and DSDV protocols. These functionalities are AODV’s routing table which works in the same manner of DSDV [14]; and AODV’s route discovery structure which is analogous to DSR. The application of the routing table in AODV is for retaining information of routes. For resolving the route between source and destination these saved information are a great aid. AODV consists of four control message types, such as Route Error (RERR), Route Reply (RREP), Route Request (RREQ), Route Reply Acknowledgment (RREP-ACK). The AODV using route detection algorithm for data communication among nodes. This reactive algorithm broadcasts a path failure message as RERR to each node in the entire network to obtain better Packet Delivery Ratio (PDR) in network. As the advantages of AODV we can name low network utilization and reliability in wireless mesh network. These basic operations of AODV is shown in detail in [15].

AODV_BD is proposed for packet delay reduction in VANETs [16]. This algorithm uses packet broadcasting with implementing the process of local route repair. Therefore, data packets and requested packets are transferred to the destination for decreasing delay of routing. For resolving the realistic model issues and increasing efficiency of AODV, other modification on AODV protocol is introduced [17]. If static node exists in the current path then this approach uses static node instead of source node for broadcasting RREQ message during link failure. In [18] author proposed a new improvement on AODV based-clustering that takes distance of nodes into consideration. However, this protocol was not suitable for VANET environment which has dynamic nature. Reliable AODV protocol which is the Link expiration time-based, is proposed, namely AODV-L [19]. This algorithm is combined with new designed MAC protocol for VANET that uses multiple channels which named AODV-AD. The outcome of these protocol illustrates better performance in terms of higher PDR, lower packet drops and better route stability. For reducing the negative impact of large vehicle on highways during broadcasting RREQ message, a new algorithm is proposed named AODV-LV [20]. This algorithm selects the large vehicles which have higher antenna position for broadcasting RREQ messages and that allows longer transmission distance. The SODV [21] protocol is introduced as a speed-based algorithm which calculates the average speed of nodes to destinations in order to choose better route with lesser delay. The AAODV algorithm [22] is introduced to decrease the routing time and memory overhead by increasing PDR. The basis of this improvement is using Adaptive Network-based Fuzzy Interference System (ANFIS). The mechanism of this algorithm is extracting the nodes’ value from RREQ packets and utilize them in the fuzzy system as input. Also, this protocol is designed for MANET.

Combination of trust mechanism and AODV is introduced by Mukherjee et al as stated in [23]. This mechanism uses the modification theory of Dempster-Shafer for building trust on multiple pieces of trust evidence. This approach consists of Trusted Route Selection and Route Discovery stages. By using these stages, only reliable nodes will be selected as a next hop in routing process. The mobility of these reliable nodes is low which leads to less packet drop. Enhanced route discovery algorithm is introduced by Venkatesh and Murali [24] to increase security and efficiency of data routing. This approach utilizes Multi-Swarm Optimization for defining the probability of link failure and optimizing the route discovery. The other new research is proposed by Li et al [25] based on combination of AODV and ACO algorithm in VANETs. This work was aimed to obtain better network stability and reducing the packet loss ratio. Kumar and Sinha [26] improved AODV and analyzed the AODV vulnerability and the performance of that by applying
black hole and flooding attack. The other variation of AODV is Blackhole Protected AODV (BP-AODV) which is proposed for the MANET environment. This protocol is implemented on the basis of Chaotic Map and concentrates on the vulnerability of blackhole which is related to AODV. The outcome of this experiment showed effectiveness of BP-AODV against attack of blackhole. The double-ended queue (dqAODV) in a request packet header is introduced to achieve a good outcome in terms of throughput [27]. The aim of introducing the multiple AODV (MAODV) algorithm is to obtain better performance than AODV for VANET scenarios on multi-cast transmission technology. This algorithm succeeds to outperform the AODV in terms of packet delivery [28]. Specifying silent or relaying node in a network for sending packet was the main concern of this study. In this regard, EMAODV algorithm is proposed for overhead reduction during route discovery [29]. Authors in [30] proposed a Dual-Phase AODV algorithm (MDRMA) on the basis of Adaptive Hello Messages that applied on Flying Ad hoc Network (FANET). This algorithm guarantees the solidification of routes establishment by utilizing wireless links for forwarding data rapidly.

More studies on the AODV extensions are analyzed in detail in reference to reliability, security, energy, routing strategies and quality by Saini and Sharma [15]. Moreover, several systematic studies have been conducted on the basis of AODV protocols and various existing mechanism of routing over a few decades [31-33]. These studies are assessed with various routing techniques in VANET and MANET. All these extensions on AODV algorithm are applied in order to enhance the QoS in MANET and VANET scenarios. The performance and improvement of these algorithms are analyzed and experimented by many literatures from many perspectives such as routing overhead, delay, throughput, signal strength, mobility, etc. As it is clear in Figure 2, route discovery of AODV is based on the highest QoS in terms of bandwidth that is shown.

AODV algorithm has attracted lots of interest from researches. In this context, enormous number of articles have been proposed the enhancement of this algorithm from different perspectives [27, 34-42]. Figure 3 illustrates these enhancements in different categories such as QoS, scalability, interface aware and optimization.

B. Clustering in IoVs

Designing a proper routing algorithm for IoVs environment which in this network nodes have inconsistent movement is a challenging task. Structural deviations happen as a result of these frequently moving which creates network of separation which leads to expiration of network. Therefore, the design protocol should fulfill most of the requirements of Intelligent Transportation System (ITS) applications in terms of Quality of Service (QoS) like delay which may become very critical in circumstances like surveillance and safety applications. Thus, in order to increase the network lifetime, prognostication of vehicular mobility pattern can be a great aid. The principal framework of ITS is IoVs. The ITS proposition is attempting to aid drivers for gathering essential information in order to enhance road safety and positive effectiveness of traffic management like flow of traffic, collision avoidance, etc. Thus, establishing sustainable and safe mobility requires several challenges to be determined, resolved (such as connectivity and security) and scrutinized for presenting an effective V2X mechanism to the market that incorporate technical challenges, deployment plans, standardizations, etc [43]. Scalability is a challenging task that has direct impact on the network sustainability. Therefore, load balance management should be considered for enhancing the network lifetime. In this context, designing intelligent clustering algorithms for network optimization are significantly necessary [44].

The word clustering means bringing nodes together or grouping nodes on the basis of their attributes in order to achieve a certain objective in the network. The similarity or dissimilarity can be taken into consideration by the diverse parameters which includes bandwidth availability, distance among nodes, etc. When various nodes are collected together a cluster is formed. After the cluster is formed, one of the nodes within this cluster is chosen as the Cluster Head (CH). The Figure 4 [45] shows interaction of Cluster Members (CMs) with a CH the on a highway. The cluster size is directly in proportion to the transmission coverage area (radio range). The transmission coverage determines the size of the cluster. Thus, wider coverage range leads to have a better cluster size, invariably meaning that there will be more cluster members in one large cluster. Considering that lesser amounts of clusters in the entire network is preferred for overcoming the mentioned problem which is network scalability. Intelligent grouping of vehicles in the IoVs leads to long lifetime of
cluster, forming optimal or a smaller number of cluster and CHs.

Adapting clustering technique for our proposed method restricts direct communication of nodes with their neighbors and Road side Unite (RSU) while using GW and CH for each cluster. Consequently, transmission energy and link failures will be minimized. Thus, the less communication distance in proposed AODV-CD protocol, automatically draws to less end-to-end delays.

![Fig. 4. Clustering in IoVs](image)

In IoV, mobile nodes move very quickly thereby leading to frequent topological changes. As this topological change occurs, instability is created which leads to issues with scalability. Clustering can be done so as to be able to overcome this problem. Large number of cluster-heads is generated using existing clustering approaches in VANETs which use the wireless resources that are scarce and results in degraded performance.

In a large-scale heterogeneous network, clustering is a strategy to routing. After the successful clustering of nodes and the election of CH, figuring out how to decide which vehicle plays a proxy role is an important task. Moreover, lack of designing a proper routing algorithm for IoVs environment with inconsistent node’s movement is a challenging gap in existing literature.

In this context, the contribution of our study is to emerging technologies in learning contexts is enhancing QoS for satisfying user’s requirement and enhancing the road safety. This objective is fulfilled by proposing a novel efficient routing protocol in IoVs due to lack of robust algorithm for overcoming the existing issues in VANET and IoV while, IoVs’ nature is dynamic and is multi-objective problems.

III. PROPOSED AODV-CD ARCHITECTURE

The AODV-CD algorithm is a novel clustering approach on the basis of AODV. Having dynamic transmission range instead of a static one is one solution in this type of challenge. In this regard, firstly Dynamic Aware Transmission Range (DARTLD) algorithm is applied based on our previous research [43] on the basis of local traffic density. Secondly, new modification for AODV is proposed (AODV-CD) which consists of three main stages such as Cluster Formation, Cluster Maintenance and Clustered Routing. The AODV-CD protocol starts with assigning transmission coverage dynamically to all existing nodes/vehicles in a network on the basis of their local traffic density. By applying clustering approach to AODV algorithm, RREQ message will be sent to CHs instead of be broadcasted among all vehicles. Therefore, routing information among CMs will be distributed by CH. In case of route availability, RREP packet will send to vehicles otherwise CHs receives RREQ message. In this regard, amount of control message (RREQ) to discover route will be decreased considerably which leads to reduction of congestion and network overhead in the entire network. In this context, the performance improvement of AODV can be achieved.

A. Solution Evaluation

Solution evaluation can be obtained by Eq. (1). According to IoV nature that is multi-objective, the following Equation is used to evaluate AODV-CD route by normalizing the objective function:

\[f_1 = W_1 + f_2 + W_2 + f_3, \]

where \(W_1 = W_2 = W_3 = 0.5 \) show the assigned weights to three objective functions such as \(f_1, f_2 \) and \(f_3 \), respectively. For AODV-CD, the first parameter is delta difference value of the clusters \(f_1 \) based on Eq. (2); and \(f_2 \) is obtained from summation distance of CMs from their CHs that applies for all clusters. The \(f_3 \) is the speed function that selects the nodes with lowest speed as a candidate for becoming CH or GW.

\[f_1(\text{A difference}) = \sum_{i=1}^{[t]} \text{ABS}(D - |CN_i|) \]

where \([t]\) is the entire number of clusters that was formed. The entire existing vehicles in the network that present in a cluster \(i \) is \(|CN_i|\), however this is excluding CH. The given value’s absolute value is returned by the ABS function. The clusters formation is represented by the lowest value of \(D \) which is almost equivalent to the ideal degree specified by the user. In regards to the user’s ideal degree requirements, the clustering is optimal if \(D \)'s value is zero. By the use of Eq. (3), the calculation of the distance can be done between the \(CN \) and \(CH \):

\[\text{dist}_{CH, i} = \sum_{j=1}^{[CN]} E(D(CH_i, CN_{j,i})) \]

The \(CH_i \) is the coordinate position of the \(i^{th} CH \). Accordingly, \(CN_{j,i} \) is the coordinate position of the \(j^{th} CN \) which actually is cluster \(i \) member. The Eq. (4) is similarly used to calculate the \(f_2 \) objective value:

\[f_2(\text{Dist-sum}) = \sum_{i=1}^{[t]} \text{dist}_{CH, i} \]

Just like \(f_1 \) lowest value of \(f_2 \) is desirable. Lesser energy is needed to shift the data when the distance between the \(CH \) and its cluster members are shorter. Normalized of comparative speed \((f_3)\) is obtained by using following equation which regulates the vehicles’ speed as it shown in Figure 5.

\[f_3 = \frac{S_j}{S_{\text{max}}} \]

In this calculation \(S_{\text{max}} \) is the predefined of maximum speed and \(S_j \) is the comparative speed between vehicle \(i \) and \(j \) with the specific angle \((\phi) \) from \(CH_i \)'s direction of travel and it’s adjacent vehicles \((CN_{j,i})\) that is computed by utilizing Eq. (6).
B. Cluster Formation

For minimizing the network overhead, cluster size in the AODV-CD is limited to dynamic radio range of CH. In our protocol, ID is assigned to each vehicle. Each vehicle keeps the routing table in their memory according to their status. If the status be CH then it has CMs_TABLE and if the vehicle status be CM then it keeps the CH_TABLE. Also, the cluster size is called Degree which determine by the Neighbours List (NL) field in the HELLO-packet. The process starts with exchanging HELLO-packet among all vehicles to announce their existence in the network. Then vehicles will be clustered based on Algorithm 1.

Algorithm 1. AODV-CD protocol
1. Forming vehicle traffic on highway with using of SUMO;
2. Forming mesh topology between vehicles/nodes by using DA-TRLD;
3. Analyzing objective function (Eq. (1)) for corresponding edges (by using the output of DA-TRLD);
4. IF Neighbour List (NL) = Empty THEN
5. Change the node’s status to CH (status = CH)
6. ELSE IF node’s status = CH THEN
7. Call CH-election algorithm (Algorithm 2)
8. ELSE IF Neighbour List (NL) has any CH THEN
9. Call GW-election algorithm (Algorithm 3)
10. ELSE
11. Compute objective function Eq. (1)
12. Call CH-election algorithm (Algorithm 2)
13. ENDIF
14. IF node elected as CH THEN
15. Change the node’s status to CH (status = CH)
16. Broadcast CH-packet to its NL
17. ELSE
18. Change the node’s status to CM (status = CM)
19. ENDIF
20. Update CH-packet
21. Update HELLO-packet

As it shown in Figure 6, the packet of HELLO message consists of five parameters such as status, ID, NL, delta-difference (f_i), dist-sum (f_j) and nodes’ speed (f_k) fields. In order to prevent control overhead and restrict number of CMs in a cluster, every CHs permits vehicles to join to the cluster based on the cluster degree (which determines by DA-TRLD algorithm).

\[
S_{ij} = \begin{cases}
S_i + S_j & \text{if } \varphi = 180^\circ; \\
S_i - S_j & \text{if } \varphi = 0^\circ; \\
\cos \varphi \ast ED(CH_i, CN_j) & \text{otherwise}
\end{cases}
\] (6)

CH-packet, consist of four different fields such as Source ID, CH-ID, destination ID and message ID, as it can be seen in Figure 7.

Fig. 6. Structure of HELLO packet.

Fig. 7. Structure of CH-packet.

The GateWay (GW)-packet in this study consists of four fields such as Source-ID, List of CH-ID (LCH-ID) in the radio range of GW node, destination-ID and message-ID, as it can be seen in Figure 8.

Fig. 8. Structure of GW-packet.

In our proposed algorithm, all nodes in the same direction on the highway send HELLO messages to their neighbors based on their transmission range which is dynamic (obtained from Algorithm 3). The status of any nodes that do not receive HELLO message will be CH. Otherwise, their status remains CM. This process will be continued for all incoming nodes to the network. Afterwards, the CH election progress will start by vehicles with having CM status. In case of existence of more than one CH in any vehicle’s routing table, GW status will be assigned to the vehicle. The GW node advertises its packet to the CHs which are in radio range of this node. This progress is done based on three important objective functions. First parameter is delta difference value of the clusters or Delta-difference (f_i) (see Eq. (2)). The second one is summation distance of CMs from their CHs or (f_j) (see Eq. (4)). The last one is f_k vehicle’s speed which is preferred to be low for increasing the lifetime of cluster (see Eq. (5)). This parameter is determined randomly in the initiation phase of simulation. The total value of these objective functions will be utilized in CH election process. When CH is elected, CH-packet will be sent to all Neighbour List of CH and they will be become as its CMs. Therefore, all CMs should update their routing table every time that receive a HELLO message. In this regard, each node belongs only to one cluster. At the end all CHs communicate with the 5G backbone which is gNodeB (5G network Node Base station). Moreover, the size of clusters varies based on their transmission range which are dynamic and are obtained from Algorithm 4. Note that all vehicles have different radio range in regards to their local traffic density. Algorithm 2 and Algorithm 3 show CH-election and GW-election process respectively.

Algorithm 2. Proposed CH-election Algorithm
1. IF Neighbour List (NL) doesn’t have any CH THEN
2. Start CH-election process based on objective function (Eq. (1))
3. IF node advertises itself as CH THEN
4. Change the node’s status to CH (status = CH)
5. Broadcast CH-packet to it’s NL
6. ELSE
7. Change the node’s status to CM (status = CM)
8. ENDIF
9. Update CH-packet
10. Update HELLO-packet
Algorithm 3. Proposed GW-election Algorithm
1. Check the vehicle’s Neighbour List (NL);
2. IF Vehicle has one CH in its NL THEN
3. Change the vehicle’s status to CM (status = CM)
4. ElseIF Vehicle has two CH in its NL THEN
5. Change the node’s status to GW (status = GW)
6. ENDIF
7. Broadcasting GW-packet to the vehicle’s NL

IV. PERFORMANCE EVALUATION OF THE AODV-CD ALGORITHM

A. Simulation Setup

This division of the experimental research reveals factors that are used for implementing this idea. The network topology is employed on two parallel highways with 4 lanes on each direction and gNodeB, which is positioned in the middle of the highway. The vehicles’ locality is specified by the location server and each vehicle is equipped with the DSRC. All vehicles in the same directions are contemplated as neighbor. Also, a V2R communication scenario is considered for simulating our idea. Cloud computing framework and Software Define Network (SDN) are utilized in 5G structure for preventing regular handovers among RSUs and vehicles [46]. The first phase of simulation belongs to scenario initialization and defining the environment details and mobility pattern of vehicles on the highway by SUMO [47]. In the second phase, the Network Simulator (NS-2) takes the input of the generated file of SUMO. The WAVE-IEE 802.11p which is a MAC layer protocol enables communication among vehicles and road-side infrastructure network to be utilized in our topology. In order to analyze and evaluate our proposed algorithm, conventional AODV is predefined and is supported in NS2 (existing NS2 libraries is used) and is chosen for comparison. Figure 9 illustrates the framework of simulation process that applied in this research.

Comparison of more recent algorithms with the proposed one is presented for this experiment. In this aim, the current research is divided the experimental work in 2 different phases in order to compare AODV-CD performance. In first phase, comparison results of the proposed algorithm (AODV-CD) and conventional AODV are presented by modifying and testing. Our scenario includes different number of nodes in range of 40 to 500. The scenario that is considered here involves evaluation of the performance metrics respect to vehicular density in the network (which leads to increasing number of vehicles per cluster and increasing overall number of clusters in network). Table I illustrates experimental parameters of simulation. The pure AODV algorithm has constant transmission range value at 300m, and AODV-CD has dynamic transmission range. The performance metrics used for the results evaluation were throughput, packet delivery, routing overhead and E2E delay versus the increasing number of vehicles in networks size of 4Km while the simulation times is 500 seconds. The simulation is performed 20 times and the average is used in the result. The node clustering and scenario that is applied for both AODV-CD and conventional AODV is demonstrated in Figure 10.

The second phase of this research, focuses on performance comparison between the proposed algorithm (AODV-CD) and other 4 recent algorithms such as AODV+ACO [25], AOMDV [48], Improved-AODV [49] and Pro-AODV [50]. The simulation parameters of each algorithm can be found in Table I. For this experiment AODV-CD compared separately with each algorithm due to different network parameters. Therefore, simulation parameters of AODV-CD are configured as same as the target algorithm for each experiment to obtain a fair outcome. Comparison of these methods are done on the light of throughput, delay, network overhead, packet delivery and drop ratio.

B. Analysis and Simulation Results

The performance of the AODV without the DA-TRLD mechanism is worst and the proposed mechanism (AODV-CD) outperforms the AODV for all cases. Applying dynamic transmission range for vehicles instead of constant value and using clustering technique for AODV algorithm are strong reasons for the huge difference between the obtained results from these two algorithms. The obtained results from the first stage is illustrated in Figures 11 to 14. Moreover, Figures 15 to 20 demonstrate the experimental outcome of the second stage.

- Result Analysis of stage 1

Throughput: Increasing vehicle density leads to more packet transmission in the network. Thus, this metric increases proportionally to the node density. Also, our protocol reduces the resource requirement in the vehicular network and less communication overhead between CHs and RSUs. In this experiment all vehicles are placed randomly in the highway so if geographical positioning of vehicles be close to each other, the number of successfully transmitted packet to the destination will increase and vice versa. Figure 11 shows that AODV uses
hop-by-hop routing mechanism while constantly updating the shortest possible source destination path. Also, the amount of information that may add up to network overhead is very less. Also, it illustrates that by increasing node density from 40 to 500, AODV-CD performs better than conventional AODV, due to quicker route discovery of our proposed protocol. This metric can be calculated by Eq. (7).

\[T = \frac{\text{Received data (bits)}}{\text{Data Transmission Period (second)}} \]

Routing Overhead: The ratio of control packets (routing packets) that required for network communication per number of received data packet defines the routing overhead. Figure 12 illustrates the average routing overhead versus node density and shows lower routing overhead belongs to our proposed protocol due to clustering and applying DA-TRLD algorithm. Generally, due to increasing the number of neighboring nodes which causes higher contention, routing overhead increases proportionally to the vehicle density. Moreover, in the dense traffic, increasing the broadcasted RREQ packet leads to higher nodes’ reachability. However, co-channel interference will increase due to increasing broadcasted RREQ packet and might be necessary for restarting the progress of route discovery and restricting the nodes’ reachability. This phenomenon explicitly describes the issue of higher overhead of conventional AODV algorithm.

Packet Delivery Ratio (PDR): Pure/ conventional AODV protocol uses limited time for Hello-message to the neighbors which has a low overhead to network. This message can expire if the next hop is far from the current node. Therefore, in case of having vehicles with close geographical position to each other, breakage of link to next hop reduces and causes increment in PDR. This is because the established route by this protocol stays alive a longer time. Therefore, ratio of packet drop is less. But after increasing the number of nodes, packet drop increases due to link failure which occurs based on mobility of nodes and instability of the wireless environment in an established route. We conclude that increasing vehicle density leads to more packet transmission in the network. Thus, this metric increases proportionally to the node density as it’s clear in Figure 13.

Average E2E Delay: E2E-delay directly be contingent on the PDR. Moreover, this metric is encompassed of other network delays, like, queuing, propagation, latency, buffering, packet sending and transfer time at the MAC layer.

Table I

SIMULATION PARAMETERS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna model</td>
<td>Omni-directional MIMO</td>
<td>-</td>
<td>Omni Antenna</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Beam-forming Technology</td>
<td>MinWave</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Grid size</td>
<td>4000 m x 450 m</td>
<td>1000 m x 1000 m</td>
<td>500 m x 500 m</td>
<td>1200 m x 1200 m</td>
<td>1000 m x 500 m</td>
</tr>
<tr>
<td>Lane width</td>
<td>50 m</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MAC layer</td>
<td>WAVE_IEEE 802.11p</td>
<td>IEEE 802.11p</td>
<td>IEEE 802.11</td>
<td>IEEE 802.11p</td>
<td>-</td>
</tr>
<tr>
<td>Mobility model</td>
<td>Freeway mobility</td>
<td>Urban</td>
<td>Urban</td>
<td>Urban</td>
<td>Random waypoint</td>
</tr>
<tr>
<td>Node movement</td>
<td>Bidirectional</td>
<td>IDM-IM</td>
<td>IDM-LC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Number of lane</td>
<td>8</td>
<td>2, 3, 4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Number of network nodes</td>
<td>40, 100, 200, 300, 400, 500</td>
<td>10 – 500</td>
<td>20, 25, 30, 40, 50, 60, 80</td>
<td>15-50</td>
<td>25, 50, 75, 100, 125, 150</td>
</tr>
<tr>
<td>Number of RSUs</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Packet Size</td>
<td>512 bytes</td>
<td>512 bytes</td>
<td>512 bytes</td>
<td>512 bytes</td>
<td>512 bytes</td>
</tr>
<tr>
<td>Queue type</td>
<td>Drop-tail (50 packets)</td>
<td>-</td>
<td>Drop-tail</td>
<td>-</td>
<td>Drop-tail (40 packets)</td>
</tr>
<tr>
<td>Radio propagation model</td>
<td>TwoRay ground</td>
<td>TwoRay Ground</td>
<td>TwoRay ground</td>
<td>TwoRay ground</td>
<td>TwoRay ground</td>
</tr>
<tr>
<td>RSU transmission</td>
<td>1000 m</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simulation run</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simulation time</td>
<td>500 s</td>
<td>900 s</td>
<td>100 s</td>
<td>200 s</td>
<td>-</td>
</tr>
<tr>
<td>Simulations tool</td>
<td>NS2, SUMO</td>
<td>NS2, VanetMobiSim</td>
<td>NS2</td>
<td>SUMO, NS2</td>
<td>NS2</td>
</tr>
<tr>
<td>Transmission Range</td>
<td>Dynamic</td>
<td>250 m</td>
<td>100 m</td>
<td>250 m</td>
<td>250 m</td>
</tr>
<tr>
<td>Transport layer protocols</td>
<td>UDP/CBR</td>
<td>FTP/TCP</td>
<td>CBR</td>
<td>UDP/CBR</td>
<td>CBR</td>
</tr>
<tr>
<td>Velocity</td>
<td>22-30 m/s uniform</td>
<td>[40, 120] km/h</td>
<td>[10-90] m/s</td>
<td>0.30 m/s</td>
<td>40 m/s</td>
</tr>
</tbody>
</table>

Figure 11. Throughput of AODV and AODV-CD respect to vehicular density.

Figure 12. Average Routing overhead of AODV and AODV-CD respect to vehicular density.
The AODV-CD algorithm illustrates considerable performance enhancement against other algorithms in terms of $E2E$-delay. It is clear that by expanding the vehicle number in the interval of 40 to 500 in the network, this metric grows for both algorithms as shown in Figure 14. The high $E2E$-delay of pure AODV occurs due to higher route discovery time. With this way of cluster architecture and limited forwarding domain that is applied in AODV-CD, number of the nodes associated with discovery and maintenance of route are reduced dramatically, which results in less $E2E$-delay and routing overhead. Theoretically, the analysis and simulation outcomes show that the proposed clustering algorithm is highly efficient, scalable, and suited for heterogenous networks. The average $E2E$-delay results depends on many factors such as cluster density, vehicular position in the network, nodes’ speed, etc.

AODV-CD protocol shows insignificant delay growth when scaling up the number of vehicles. The reason behind this is AODV-CD creates stable clusters which can assure reliable linking and sufficient connectivity. Consequently, we can claim that the proposed system has a significant impact on minimizing the $E2E$ delay which leads to satisfaction of real-time applications requirements.

Equation (8) illustrates the calculation formula of this metric. In this regard, packet index is shown by i, the exact time that the packet is sent from source and received by destination are shown by ts_i and tr_i respectively. Also, n represents the received total of data packets.

$$E2E_{delay} = \frac{1}{n} \sum_{i=1}^{n} (tr_i - ts_i) \quad (8)$$

- **Result Analysis of stage 2**

The avg. Throughput of AODV-CD is higher than other recent algorithms which shown in Figures 15 to 17 under various vehicle densities. Enhancement of the network connectivity in the proposed algorithm (AODV-CD) cause the increase in throughput. Moreover, this algorithm has better throughput among others due to superlative packet transmission.

The frequency of the successive packet loss is illustrated in Figure 18 under the vehicular density of 100 and 300, the worse performance in this graph belongs to AODV. The AODV-CD obtains the best performance due to enhancement of packet retransmissions. Drop ratio impact versus the different vehicle density is shown in Figure 19 which present the superiority of our algorithm in the large-scale network. The lower routing overhead for AODV-CD protocol against improved-AODV is obtained due to clustering and applying DA-TRLD algorithm. This claim is demonstrated in Figure 20.
CONCLUSION

Network stability and scalability are vital issues in heterogeneous environment of vehicles. Therefore, efficacious network management and effective communication are essential challenges in IoVs due to high motion of vehicles that have effect on the data delivery in the formed network. Variations in traffic dynamics and travel behavior which cause vehicle mobility patterns can lead to substantial difficulty on how efficient and reliable the communication networks of vehicles can be. A novel methodology which is efficient and systematic for adjusting the factors of clustering and routing protocols is explicated through this study. This research proposed a unique protocol to elevate the AODV from view of throughput, routing load, PDR and E2E-delay. The AODV-CD is hybridization of the dynamic transmission range algorithm and modified AODV based-clustering in IoV. Our proposed approach applies two unique messages as HELLO-packet and CH-packet during route/path detection and route preservation process in the clustering technique for AODV protocol. The experiments in which we carried out on NS-2 and SUMO, proved significant enhancements and superiority of AODV-CD over conventional AODV. Combining AODV-CD with an artificial intelligence algorithm which is a sub category of emerging technologies is our future direction in order to enhance QoS in IoV and have greener and smarter cities.

REFERENCES

