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Abstract—A new model of ideal signal sampling operation is 

developed in this paper. This model does not use the Dirac comb 

in an analytical description of sampled signals in the continuous 

time domain. Instead, it utilizes functions of a continuous time 

variable, which are introduced in this paper: a basic Kronecker 

time function and a Kronecker comb (that exploits the first of 

them). But, a basic principle behind this model remains the same; 

that is it is also a multiplier which multiplies a signal of a 

continuous time by a comb. Using a concept of a signal object (or 

utilizing equivalent arguments) presented elsewhere, it has been 

possible to find a correct expression describing the spectrum of a 

sampled signal so modelled. Moreover, the analysis of this 

expression showed that aliases and folding effects cannot occur in 

the sampled signal spectrum, provided that the signal sampling is 

performed ideally. 
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I. INTRODUCTION 

NHERENTLY, the notions of aliasing and folding are 

connected with the sampling operation of analog signals. 

However, they, specifically aliasing, are used in different 

contexts. But, here, we are must be precise. Therefore, yet at 

the beginning of our considerations presented in this paper, we 

define precisely the context in which the aforementioned 

notions are used. So, first of all, they refer to the effects or 

phenomena occurring in the spectra of sampled signals. In 

other words, they refer to what happens with images of the 

sampled signals viewed in the frequency domain. Second, 

aliasing and aliases regard repetitions of the signal spectra 

curves calculated in the range of frequencies from 0 to 0,5 sf , 

where 
sf  means the sampling frequency. That is we see their 

repetitions when we observe the whole frequency axis. And, 

we consider folding here as something similar in principle to 

aliasing, however, with focusing on the mirroring effect 

around the frequencies 0,5 sf ,  1,5 sf , and so on. 

Our understanding of the notions of sampling and folding, 

as described above, is illustrated in Fig. 1. And, note that this 

is the only and commonly used in the literature model of 

presenting that what happens in the spectrum of an analog 

signal after its sampling. In this paper, we show that this model 

is false, at least in the case of considering the sampling 

operation as being ideal. 

 
The author is with the Department of Marine Telecommunications, Faculty 

of Electrical Engineering, Gdynia Maritime University, Gdynia, Poland; (e-

mail: a.borys@we.umg.edu.pl). 

The effects of spectrum aliasing and folding as shown in 

Fig. 1 follow solely from the kind of modeling of the sampled 

signal in a continuous time domain as a series of the weighted 

Dirac deltas occurring on the time axis t at regular intervals 

1 sT f= – as shown by an upper curve of Fig. 2. 

Fig. 1.  Illustration to the notions of aliasing, aliases, and folding in an 

example spectrum ( )sX f  of a sampled bandlimited signal. 

Fig. 2. Example sampled signal representation (upper curve) in form of a 

series of weighted Dirac deltas occurring uniformly on the continuous time 

axis in distance of T from each other, and its un-sampled version (lower 

curve), where t stands for a continuous time variable. Figure shows a signal 

discussed also in [1] and [2]. 

 

The modeled sampled signal ( )Tx t  presented in Fig. 2 is 

described analytically as a signal ( )x t  multiplied by the so-

called Dirac comb ( )T t . That is 

 

 ( ) ( ) ( )T Tx t t x t=   , (1) 

 

where the Dirac comb ( )T t  is defined as 

 

 ( ) ( )T

k

t t kT 


=−

= −   (2) 

Spectrum Aliasing Does not Occur in Case 

of Ideal Signal Sampling 
Andrzej Borys 

I 

f  

( )s
X f  

0  s
f  0,5

s
f−  0,5

s
f  

aliases 

folding 

x(t) 

t  0  -T  T 2T  3T  -2T  -3T  4T  5T  

xT(t) 

t  0  -T  T 2T  3T  -2T  -3T  4T  5T  



72 A. BORYS 

 

 

where ( ) ,  ., 1,0,1,.,t kT k − = −  mean the time-shifted Dirac 

deltas (called also Dirac distributions or Dirac impulses). 

 A graphical representation of the Dirac comb ( )T t  given 

by (2) is presented in Fig. 3. 

Fig. 3. Visualization of a Dirac comb signal given analytically by (2). 

 

Observe now that the signal sampling model illustrated 

graphically by the upper curve of Fig. 2 and given analytically 

by (1) is rather not an adequate one. Why? Because the values 

of the signal ( )Tx t  in Fig. 2 at the sampling points ,t kT=  

..., 2, 1,0,1,2,... ,k = − − are not simply real numbers, but some 

“strange” objects called the Dirac deltas. That is they are not 

physical quantities registered as the outputs of the signal 

sampling process. Note that as the outputs in any signal 

sampling process, we obtain sequences of real numbers. 

Therefore, because of this reason, we should conclude that a 

proper form of any ideally sampled signal is the one which is 

illustrated by an upper curve of Fig. 4. 

Fig. 4. Example sampled signal representation (upper curve) in form of a 

series of time-dependent signal samples occurring uniformly on the continuous 

time axis in distance of T from each other, and its un-sampled version (lower 

curve), where t stands for a continuous time variable. Figure shows a signal 

discussed also in [1] and [2]. 
 

The signals: ( )Tx t  of Fig. 2 and ( ),K Tx t  of Fig. 4, which 

evidently represent two different models of the sampling 

operation, are, however, related to each other. A difference 

between them can seem to be of only minor importance. This 

is so because, graphically, they differ from each other only 

slightly: the „posts” of ( )Tx t  in Fig. 2 end with arrows, but 

those of ( ),K Tx t  in Fig. 4 end with dots. Nevertheless, this has 

significant consequences as regards spectra of the above 

signals. They are considerably different – as we will see; and 

in the course of this paper, we will thoroughly explain why. 

Furthermore, we will also show, in the next section, that 

analytical descriptions of the signals ( )Tx t  and ( ),K Tx t  

differ from each other clearly. 

In this paper, we present another model of the analog signal 

sampling operation that avoids the use of Dirac deltas. It is not 

an alternative to the one used nowadays everywhere in the 

literature. The model introduced here is basically a new one. 

And, we will show and prove throughout this paper that it is a 

more proper one because it avoids occurrence of such artifacts 

as the spectrum aliasing and folding illustrated in Fig. 1. Or, in 

other words, it will be utilized here to show that the artifacts 

mentioned above cannot appear in the case of an ideal 

modeling of the analog signal sampling process. 

The remainder of this paper is organized as follows. In the 

next section, we introduce a basic Kronecker time function and 

a Kronecker comb, which utilizes it. Then, with the help of 

these tools, we develop an analytical description of a sampled 

signal. In Section III, an expression determining its spectrum is 

derived and afterwards analyzed. Here, a basic result of this 

paper is achieved. Namely, it is shown that aliases and folding 

effects cannot occur in the sampled signal spectrum The papers 

ends with two remarks. 

II. ANALYTICAL DESCRIPTION OF A SAMPLED SIGNAL IN THE 

MODEL PROPOSED 

In our model, we will use the so-called Kronecker deltas to 

describe any sampled signal that can be displayed graphically 

as shown by the upper curve of Fig. 4. Generically, we will 

denote such a signal as ( ),K Tx t  with the first subscript K 

pointing to the use of the Kronecker delta and the second one T 

indicating that the signal sampling period equals T.  

Furthermore, note that the usual Kronecker delta is defined as      

 
 

 
1  if  

0  otherwise
ij

i j


=
= 


 , (3) 

 

where the subscripts i and j at 
ij  belong to the set of integers. 

We denote this set here as Z . 

For the purposes of this paper, we must however modify 

slightly the Kronecker’s delta definition given above. Namely, 

in what follows, we will extend it to 

 

 
,

1   if     with    meaning now a real

     number (or, in other words, when

     a real-valued    assumes an integer

     value  )

0   otherwise,

i r

i r r

r

i



=



= 




  (4) 

 

where it is assumed that the second subscript r at 
,i r  stands, 

now, for a generalized one. That is its value belongs to the set 

of real numbers; R  stands here for this set. Further, note also 

a slight modification in notation of 
,i r  compared to 

ij . 
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Because of the fact that one of the subscripts of 
,i r  is declared 

as an integer, but the second as a real number, to avoid any 

misunderstandings, they are separated from each other by a 

comma. Usefulness of this modified notation will prove in 

what follows. 

By substituting r t T=  in 
,i r  given by (4), we get a very 

useful function of a continuous time variable t, ( ),i t T t , for a 

given value of the integer subscript i. 

By the way, note that 
,i t T  with both i and t treated as 

variables represents a function of two variables, ( ), ,i t T i t . In 

this paper, however, we use solely the form ( ),i t T t  – with t 

assumed to be a variable and i being a parameter of that 

function. The function ( ),i t T t  is illustrated in Fig. 5. 

Fig. 5. Illustration of the function ( ),i t T t  for the parameter 1i = .  

Consider now how to incorporate an operation of time 

shifting on the t axis of that single nonzero impulse seen in 

Fig. 5 – into the description of the function ( ),i t T t  

introduced above. And, for this purpose, take into account a 

function 
( ) ( ) ( ),, i t T ki t kT T

t kT t kT  −−
− = − , where k Z . 

Observe that this function expresses a time shift of k time units 

T of the “one” occurring in the function ( ),i t T t  at t iT=  – 

to the right of the time axis t if 0k  , and to its left when 

0k  . 

In what follows, we will be interested in delays, or more 

generally, time shifts of a function ( )0,t T t  calculated for the 

parameter 0i = . This function will play a role of a “reference” 

in our further considerations because it positions the only 

nonzero value occurring in the function ( ),i t T t  just at the 

origin of the time axis (where 0t = ). Let us call it here a basic 

Kronecker time function. 

So, in view of what was said above, our basic time-shifted 

Kronecker time function ( )0,t T k t −
 will mean the function 

( )0,t T t  shifted kT units to the right, when 0k  , or kT  

units to the left, when 0k  . This interpretation follows 

obviously from the definition of 
,i r  given by (4). That is for 

,i r  to be equal to 1 we need to have i r= . Or, in other words, 

the following: 0 t T k= −  must now hold. And, this results in 

t kT= . 

Further, observe that multiplication of a signal of continuous 

time ( )x t  by ( ),i t T t  gives 

 

 ( ) ( ) ( ) ( ) ( ) ( ), , ,i t T i t T i t Tx t t t x t x iT t   =  = . (5) 

 

That is this multiplication is a commutative operation and 

results in a modified function ( ),i t T t  that has its “one” 

occurring at t iT=  replaced by the value of the signal ( )x t  

calculated at t iT= . So, one might say that the function 

( ),i t T t  just sifts the sample ( )x iT  from ( )x t . 

Note also that a signal of continuous time ( )x t  multiplied 

by our basic time-shifted Kronecker time function ( )0,t T k t −
 

results in 

 

 ( ) ( ) ( ) ( ) ( ) ( )0, 0, 0,t T k t T k t T kx t t t x t x kT t  − − − =  = . (6) 

 

Thus, we obtain here a similar result, namely, a resulting 

function that is a modified function ( )0,t T k t −
 with its “one” 

occurring at t kT=  replaced by the value of the signal ( )x t  

calculated at t kT= . So, as just before, one might say that the 

function ( )0,t T k t −
 sifts the sample ( )x kT  from ( )x t . 

Furthermore, one can guess that putting i k=  in (5) results 

in the same functions on the right-hand sides of (5) and (6). 

Really, the last observation is true; it follows from the fact 

that we can add the same integer to both the indices of 

( )0,t T k t −
 without changing this function. That is the 

following: 

 

 ( ) ( ) ( )0, 0 , ,t T k k t T k k k t Tt t t  − + − += =  (7) 

 

holds because the condition 0 t T k= − , when adding k on 

both sides of this equality, remains unchanged. 

Note also that incidentally we arrived in (7) at a new 

notation for the „delayed” function ( )0,t T k t −
, which was 

introduced before, and which incorporates the time shift of kT 

time units with reference to ( )0,t T t . Namely, it can be 

expressed in a shorter form as ( ),k t T t , where the first index 

k means now a normalized integer-valued time shift, 

k kT T= . Because of this fact, in what follows, we will use 

rather this more compact form. 

Finally, note also that the description of ( ),i t T t  given 

above and beneath Fig. 5 corresponds with that for ( ),k t T t  – 

as it should be. 

In the next step that aims in finding an analytical description 

of such signals as the one illustrated by the upper curve in Fig. 

4, we need to define an alternative for the Dirac comb. 

Intuitively, the best way will be by choosing a similar comb, 

however now with functions ( ),k t T t  in places of Dirac 

deltas. So, let us define it as 
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 ( ) ( ) ( ), 0, ,K T t T k k t T

k k

t t kT t  
 

−

=− =−

= − =  ,  (8) 

 

where the first index K at ( ),K T t  stands for the name of 

Kronecker, but the second one, T, means a repetition period. 

Further, because of the reasons given above, let us call the 

function ( ),K T t  a Kronecker comb. It is illustrated in Fig. 6. 

Fig. 6. Visualization of a Kronecker comb given analytically by (8). 

 

Using (6), (7), and (8), we are now able to describe a 

sampled signal, ( ),K Tx t , analytically in terms of our model. 

So, then, it will be given by 
 

 ( ) ( ) ( ), ,K T k t T

k

x t x kT t


=−

=    (9) 

 

where, similarly as before, the first index K at ( ),K Tx t  stands 

for the name of Kronecker, but the second one, T, means a 

repetition period. 

Further, the following 

 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , ,

0, ,

=K T k t T k t T

k k

t T k K T

k

x t x kT t t x t

t kT x t t x t

 

 

 

=− =−



−

=−

=  =

 
= −  =  

 

 



  (10) 

  

then also holds. So, concluding (10), it allows us to write 
 

 ( ) ( ) ( ), ,K T K Tx t t x t=   . (11) 

 

Finally, at the end of this section, it would be advisable as 

well as instructive to compare the common analytical 

description of sampled signals that exploits Dirac deltas with 

the one just derived using Kronecker time functions. So, to this 

end, observe first that the form of the corresponding describing 

equations (1) and (11) is the same. That is both the  ( )Tx t  in 

(1) and  ( ),K Tx t  in (11) are expressed by the signal ( )x t  

multiplied by a comb. However, the corresponding combs in 

these two cases are different, what we can symbolically 

express as ( ) ( ),T K Tt t  . Therefore, the expressions 

describing ( )Tx t  and ( ),K Tx t  differ from each other. 

Second, ( )Tx t  is not an ordinary function; it is strictly a 

distribution. Unlike this, ( ),K Tx t  is an ordinary function. 

Thirdly, it is possible to find a relation between these two 

representations of sampled signals. To this end, note first that 

the following:  
 

 ( ) ( ) ( ) ( ) ( ), , 1K T K Tx nT nT x nT x nT x nT=  =  =  (12) 

 

holds. Next, see that using the well-known sifting property of 

the Dirac delta in the definition of the Dirac comb gives 
 

 ( ) ( ) ( )T

n

t nT x t dt x nT
 

=−−

−  =  . (13) 

 

And, finally, applying (12) in (13) results in 
 

 
( ) ( ) ( )

( ) ( )

,

,  .

T K T

n

K T

n

t nT x t dt x nT

nT x nT





 

=−−



=−

−  = =

= 





 (14) 

  

Furthermore, note that we can show in a similar way that the 

following:  
 

 ( ) ( ) ( ) ( ),n t Tt nT x t dt t nT x nT 


−

−  = =   (15) 

 

holds, too. Moreover, some other interesting and useful 

properties, which hold within our model, like for example this 

one 

 

 ( ) ( ) ( ) ( ), ,k t T k t Tt x t x kT t  =   (16) 

 

can be also easily derived using the relationships already 

given. 

III. SPECTRUM OF A SAMPLED SIGNAL IN THE MODEL 

PROPOSED 

In the previous section, it has been shown that in our model 

not only the graphical but also the analytical representation for 

sampled signals differs, evidently, from the description in the 

model that uses Dirac deltas. So, it is logical to suppose that 

the sampled signals in the models mentioned have also 

different representations in the frequency domain. In other 

words, that they have different spectra; specifically having in 

mind the fact that the Fourier transform used for calculation of 

spectra is a linear operation. 

This section is devoted to discussion of differences in the 

spectra of sampled signals we obtain in these two different 

models mentioned above. And, our considerations presented 

here will aim in answering a natural question: which of these 

models is more proper in description of a real world? 

We start with recalling a common result that is given in the 

literature, for example see [3], for a spectrum of a sampled 

signal, namely the following expression: 

 

 ( ) ( )
1

s s

k

X f X f kf
T



=−

= −   , (17) 
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where ( )X f  and ( )sX f  mean the spectra (Fourier 

transforms) of an un-sampled signal ( )x t  and of its sampled 

version ( )sx t , respectively. The frequency variable is denoted 

by f in (17). Furthermore, ( ) ,  ,sX f kf k− Z  in (17) stand 

for the frequency-shifted ( )X f . Moreover, as before, T  and 

sf  mean the sampling period and the sampling frequency, 

accordingly; 1 sT f= . 

As well known, the formula given by (17) is “responsible” 

for these effects, which are visualized in Fig. 1. That is for the 

occurrence of spectrum aliasing and folding in the spectrum of 

a sampled signal. The formula (17) is their analytical 

description; for more details regarding this, see, for example, 

[3]. 

The formula given by (17) has been derived with the use of 

the first model mentioned; that is with the application of the 

Dirac comb to describe analytically a sampled signal, as 

presented by (1). In other words, in this case, it has been 

assumed that the sampled signal ( )sx t , generally denoted so in 

this paper, is modelled by ( )Tx t  given by (1). In what follows, 

we will show that the form of (17) obtained is solely due to the 

use of the modelling with application of the Dirac deltas. It 

will be absolutely impossible to get it or something similar 

within the second model considered in this paper. 

 Let us start with the following observation: the analytical 

descriptions of a sampled signal in our models, given by (1) 

and (11), respectively, have the same form. That is this is a 

multiplication of the corresponding comb by an un-sampled 

signal. Therefore, (1) and (11) must also possess the same 

form in the frequency domain. More precisely, this form in the 

frequency domain is a convolution of the corresponding 

Fourier transforms. That is 
 

 
( ) ( )( ) ( )( ) ( )( )

( ) ( )

T T T

T

X f x t t x t

f X f

= =  =

=  

F F F
  (18a) 

 

and 

 

( ) ( )( )

( )( ) ( )( )

( ) ( )

, ,

,

,  ,

K T K T

K T

K T

X f x t

t x t

f X f



= =

=  =

=  

F

F F   (18b) 

 

respectively. In (18), ( )F  means a Fourier transform of an 

object or a function indicated. So, more precisely, 

( ) ( )( )T TX f x t= F , ( ) ( )( )T Tf t = F , ( ),K TX f =  

( )( ),K Tx t= F , and ( ) ( )( ), ,K T K Tf t = F . Furthermore, 

the symbol   in (18) means performing the operation of 

convolution. 

Performing calculation of the convolution indicated in (18a) 

leads to (17), as shown, for example, in [3]. Shortly, it follows 

from the fact that ( ) ( )( )T Tf t = F  is itself a Dirac comb 

[3],  

 

 ( ) ( )( )
2

2T s

k

f f kf
T


 



=−

 = −   (19) 

 

and that 

 

 ( )( ) ( ) ( )
1

2
2

s skf X f d X f kf    




−

− − = −   (20) 

 

holds. 

Let us now calculate the Fourier transform 

( ) ( )( ), ,K T K Tf t = F . To this end, we will use a standard 

definition of this transform, (8), and (11). Applying this, we 

get 

 

 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

,

0,

0,

exp 2

exp 2

1 exp 2  .

K T

t T k

k

t T k

k

kT

k kT

f

t kT x t j ft dt

t kT x t j ft dt

x t j ft dt

 

 



 

−

=−−



−

=− −



=−

 =

 
= −  − = 

 

= − − =

=  −



 

 

 (21) 

 

In the next step, observe that the integrals under the 

summation symbol in (21), if considered as the Riemann’s 

integrals, do not exist. So, consequently, ( ),K TX f  after (18b) 

also does not exist. 

However, note that when the integrals under the summation 

symbol in (21) are treated in the sense of Lebesgue, then they 

are correctly determined. But, all of them are then equal to 

zero leading to ( ), 0K T f = . Therefore, applying the latter in 

(18b) gives 
 

 

( ) ( ) ( )

( )

, ,

0

0 const 0 .

K T K TX f f X f

X f d

d

 





−




−

−

=   =

=  − =

=  = 





  (22) 

 

So, in this case, the spectrum of the sampled signal does 

exist, however, it is identically equal to zero. But, we would 

await rather another outcome because it is really difficult to 

imagine that every nonzero sampled signal possesses the 

identically zero spectrum. 

In this paper, we argue that both the results (17) and (22), 

obtained in the case of an ideal sampling, are not correct. The 

formula (17) and its interpretation as illustrated in Fig. 1 are 

not correct because they have been received in the model that 

uses a description of the sampled signal in the continuous time 

domain as visualized by an example in Fig. 2 (upper curve), 

( )Tx t . Obviously, this image of the sampled signal that 
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utilizes non-physical objects, which are the Dirac impulses, is 

not true. The true image of the sampled signal in the 

continuous time domain is the one which is illustrated in Fig. 4 

(upper curve), ( ),K Tx t . However, there are problems with the 

latter when calculating its spectrum. Simply because the signal 

spectrum is defined as a Fourier integral (Fourier integral 

transform); and in this specific case either the integrals do not 

exist or have identically zero values. More precisely, these 

integrals considered as Riemann’s ones do not exist, but 

assumed to be Lebesgue integrals provide zeros (see 

discussion of (21)). 

The above problem of unsatisfactory expressions 

determining the spectra of sampled signals can be however 

solved with help of a concept of a signal object. This powerful 

idea was proposed for the first time by the author of this paper 

in [1], and successfully utilized in [2]. Note also that in 

principle the solution to the problem posed in [4] is based on 

the idea of a signal object, too. 

According to the results already obtained in [2] and [4] (we 

do not want to repeat here their accompanying derivations), the 

spectrum of the sampled signal (let us use a special notation 

SPECT for denoting it in our model) is given by 

    

 
( ) ( )( )

( ) ( ) ( )

,SPECT

  rect exp 2

s K T

n

f x t x t

x nT T fT j fnT


=−

= =

= − =
  (23) 

 

( )

( ) ( )( ),

1
exp 2

  for   1 2    and

SPECT 0

   for   1 2  ,

ns s

s

s K T

s

f
x nT j n

f f

f f

f x t x t

f f




=−

 
= − 

 



= 





 

 

where the function ( ) ( )( ),SPECT s K Tf x t x t=  of frequency 

f stands for the spectrum of the sampled signal 

( ) ( ),s K Tx t x t= . Furthermore, the function ( )rect x  used in 

(23) means the following: 
 

 ( )
1 1

rect 1  for   and   0  for 
2 2

x x x=    . (24) 

 

 It has been shown in [2] and [4] that when the sampling is 

so performed that the so-called Nyquist frequency is larger or 

equal to the maximal frequency in the spectrum of a signal to 

be sampled the following: 
 

  ( ) ( )( ) ( )( ),SPECT s K Tf x t x t x t= = F   (25) 

 

holds. That is in this case the spectrum of the sampled signal 

equals the spectrum of its un-sampled version. In other words, 

this means that the sampling operation does not introduce any 

distortion into the signal spectrum. 

 Also, it has been shown in [2] and [4] that when the 

sampling is carried out in such a way that the Nyquist 

frequency is smaller from the maximal frequency in the 

spectrum of a signal to be sampled (that is in the case of its 

under-sampling) the following:  

 

  ( ) ( )( ) ( )( ),SPECT s K T af x t x t x t= = F   (26) 

 

holds. In (26), ( )ax t  stands for a signal that is reconstructed 

from the samples of the signal ( )x t  in case of under-sampling. 

Obviously, the signal ( )ax t  resembles in some way the signal 

( )x t ; its spectrum can be viewed as a filtered and shaped at 

the same time spectrum of the signal ( )x t . Moreover, the 

spectrum of the signal ( )ax t  remains a bandlimited one. For 

more details regarding these topics, see [2] and [4]. 

 Observe now that because the spectra ( )( )x tF  and 

( )( )ax tF  on the right-hand sides of (25) and (26), 

respectively, are bandlimited ones this fact precludes 

occurrence of such effects as aliases and foldings (as defined 

graphically in Fig. 1) in the signal spectrum. Consequently, 

according to the equalities (25) and (26), the spectrum 

( ) ( )( ),SPECT s K Tf x t x t=  of the sampled signal, 

independently of whether it is sampled to enable a later perfect 

recovery or not, does not contain any aliases and foldings. 

Note that the above finding follows, directly, also from (23) 

expressing the spectrum ( ) ( )( ),SPECT s K Tf x t x t= . 

Simply, see that the second part of (23), which has the 

following form: 

 

 ( ) ( )( ),SPECT 0 for 1 2s K T sf x t x t f f=    , (27) 

 

says that the spectrum ( ) ( )( ),SPECT s K Tf x t x t=  is 

identically zero for the frequencies 1 2sf f  . Obviously, 

this fact precludes occurrence of any infinite series of aliases 

and foldings. 

 Therefore, finally, it follows clearly from the above that the 

spectrum aliasing and folding do not occur in case of ideal 

signal sampling. 

IV. TWO REMARKS 

Finally in this paper, we want to remark, first, that many 

people believe that such topics like sampling of signals, 

sampling theorem, and reconstruction formula are fully 

developed. The results achieved and presented in this paper, 

however, as seen, contradict this believing. They show that the 

problem of modelling of the sampled signal should be treated 

rather in another way, without an undue use of Dirac deltas. 

Second, we would like to draw here the reader’s attention 

also to the fact that the tools developed in the theory of 

sampling of analog signals can be successfully used in other 

areas, as for example, to model – quite generally – the 

measuring process. The first results regarding this interesting 

approach have already appeared [5], [6]. 



SPECTRUM ALIASING  DOES NOT OCCUR IN CASE OF IDEAL SIGNAL SAMPLING 77 

 

 

REFERENCES 

[1] A. Borys, “Some topological aspects of sampling theorem and 
reconstruction formula,” Intl Journal of Electronics and Telecommu-

nications, vol. 66, no. 2, pp. 301-307, 2020. 

[2] A. Borys, “Filtering property of signal sampling in general and under-
sampling as a specific operation of filtering connected with signal 

shaping at the same time,” Intl Journal of Electronics and Telecommu-

nications, vol. 66, no. 3, pp. 589-594, 2020. 
[3] A. V. Oppenheim, R. W. Schafer, and J. R. Buck,  Discrete-Time Signal 

Processing. New Jersey: Prentice Hall, 1998. 

[4] A. Borys, “On derivation of discrete time Fourier transform from its 

continuous counterpart,” Intl Journal of Electronics and Telecommu-

nications, vol. 66, no. 2, pp. 355-368, 2020. 

[5] A. Borys, “Measuring process via sampling of signals, and functions 
with attributes,” Intl Journal of Electronics and Telecommunications, 

vol. 66, no. 2, pp. 309-314, 2020. 

[6] A. Borys, “Further discussion on modeling of measuring process via 
sampling of signals,” Intl Journal of Electronics and Telecommu-

nications, vol. 66, no. 3, pp. 507-513, 2020. 


