1. Introduction

Recent decades witnessing an increasing energy demand and expected from 2006-2030, it rises about 44% and causing global warming. Green energy from reliable, and clean energy systems were attracting considerably [1]. Thermoelectric (TE) a revolutionary technique directly converts heat energy to power generation long been used for space power and recently implemented in car exhaust waste heat into electricity [2]. The thermoelectric module performance depends on dimensionless figure of merit, \(ZT = \sigma^2 T / \kappa \). Where \(\sigma \), \(\alpha \), \(\kappa \), and \(T \) were electrical conductivity, Seebeck coefficient, thermal conductivity, and corresponding temperature. The discrepancy dependent thermoelectric properties (\(\sigma \ll 1/\alpha \ll 1/\kappa \)) hinder the elevation of \(ZT \) value. The TE potential advantages stimulates researchers to improve \(ZT \) with novel approaches and enhances the \(ZT \).

Among various TE materials, bismuth telluride (Bi\(_2\)Te\(_3\)) alloys were dominant room temperature commercial industry with its high \(ZT \) value [3,4]. Basically, bismuth (Bi) shows metallic behavior, with tellurium (Te) acts as a semiconductor compound used in thermoelectric refrigeration and power generators. Due to room temperature advantages, it is implemented in state-of-art applications like computer chip cooling [5], chip sensing [6]. Thermoelectric materials with high \(ZT \) are ideal to obtain high energy conversion. Low dimensional material capable of improving power factor in thermoelectric materials through energy filtering effect and effectively enhances the phonon scattering to minimize thermal conductivity [7-11]. Energy filtering effect was successfully obtained by Sabarinathan et al. [8] through enhancing mobility, Seebeck coefficient and power factor improved from 10 \(\mu W/mK^2 \) to 75 \(\mu W/mK^2 \). The suppression of bipolar thermal conductivity and achieving peak \(ZT \) at higher temperature in literatures [10,11]. The electrical conductivity and the electric thermal component (\(\kappa_e \)) are strongly inseparable. Hence, reducing thermal conductivity through phonon scattering is the plausible route without deteriorating electronic components. The concept for decoupling thermoelectric parameters and reducing thermal conductivity was suggested by Dresselhaus and Hickes [12] through low-dimensional materials.

Among different low-dimensional materials, carbon based nanostructures were highly investigated due to their peculiar structural, thermal, mechanical, optical, and electrical properties.
Their ability to chemically alter their nanostructures to enhance their solubility attracted its usage in various sectors like sensors [13], medicine [14], composite materials [15], and semiconductor devices [16]. Carbon nanostructure, carbon nanofiber (CNF) forms when graphene sheets curve at some angle to arrange as stacked nano cones. The advantages of CNF over CNT is easier to disperse, process and functionlize, cost-effective, and available in large amount/year than CNT [13-17]. Therefore, we used CNF as a secondary phase in BST matrix and its influence was studied through thermoelectric measurements and microstructure investigations.

2. Experimental procedure

The required elementals (5N) for the preparation of Bi$_{0.5}$Sb$_{1.5}$Te$_3$ (BST) were brought from the Alfa Aesar company. They were weighted accordingly Bi$_{0.5}$Sb$_{1.5}$Te$_3$ composition and fabricated using water atomization technique. The powder seived under 200 μm and carbon nanofiber (CNF) was used as a dispersant phase. The BST/CNF composites was started by weighing the BST and CNF (0, 0.05, 0.1, 0.2 wt.%) and filled in zirconium jars with zirconium balls (15:1 BPR) in argon medium, milled using 800 rpm for 20 min. Resultant powders were consolidated using spark plasma sintering (SPS) at 400°C temperature at 50 MPa for 10 min. For simplicity, the samples are indicated as CNF-0, CNF-0.05, CNF-0.1, CNF-0.2 according to the CNF wt.% in the BST matrix. The thermoelectric properties measured in between 300-500 K range. Thermal diffusivity (D) was measured by laser flash method using a 10 mm square sample under 300-500 K and correspondingly specific heat (c) also measured. The density (ρ) was measured using Archimedes principle. Correspondingly, the thermal conductivity (κ) was measured by the product of thermal diffusivity, specific heat, and density. The bulk phase analysis was carried out using X-ray diffraction technique with 10-80° range. The carbon nanofiber (CNF) in bulk composites was analyzed using Raman spectroscopy at room temperature. The morphology and microstructure were observed with scanning electron microscope (SEM). Vickers hardness test was performed on a bulk sample.

2. Results and discussion

Fig. 1 displays the SEM morphology images, XRD and Raman spectroscopy analysis. As seen in Fig. 1(a,b), the BST powder has randomly shaped with a wide particle size and CNF morphology shows elongated cylinder with a diameter.
in nanometer range. The XRD patterns in Fig. 1(c) confirms the bulk BST phase (JCPDS: 00-043-1530) and regardless of CNF, all shows a similar XRD pattern. The CNF related XRD peaks were not observed due to minimal wt.% in the matrix. Raman spectroscopy is an effective tool to elucidate the carbon in composite materials and analyzed results shown in Fig. 1(d). CNF Raman peaks clearly identified and found as D, G and 2D bands, respectively and confirms the presence of CNF in the BST matrix. The observed CNF peaks were consistent with reported literature [16,18].

Fig. 2 represents the SEM images of fracture surface of BST/CNF composites with varying CNF content. The grains were fully dense and obtained relative density above 99% (See Table 1). The grains were randomly dispersed with grain size in micron range. As closely monitored, the significant differences in grain size were clearly visible with increasing CNF content. Noteworthy that grain size was sharply suppressed with CNF content, which was due to the Zener pinning effect [9,19]. The similar behavior of grain size reduction was observed upon the distribution of secondary phases such as Y2O3 [9], B4C [19]. Therefore, it is anticipated to control the grain size of BST matrix through CNF dispersion and concurrently enhancing the mechanical properties.

Table 1

<table>
<thead>
<tr>
<th>CNF</th>
<th>Relative density</th>
<th>Lorentz number</th>
<th>Effective mass</th>
<th>Reduced Fermi</th>
<th>Vickers hardness (Hv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNF-0</td>
<td>99.7</td>
<td>1.667</td>
<td>0.897</td>
<td>-0.509</td>
<td>80.12</td>
</tr>
<tr>
<td>CNF-0.05</td>
<td>99.59</td>
<td>1.669</td>
<td>0.905</td>
<td>-0.525</td>
<td>86.74</td>
</tr>
<tr>
<td>CNF-0.1</td>
<td>99.24</td>
<td>1.673</td>
<td>0.919</td>
<td>-0.556</td>
<td>94.88</td>
</tr>
<tr>
<td>CNF-0.2</td>
<td>99.13</td>
<td>1.673</td>
<td>0.924</td>
<td>-0.562</td>
<td>101.8</td>
</tr>
</tbody>
</table>

Fig. 3 shows the temperature variation of electrical conductivity, Hall measurement, Seebeck coefficient and power factor of CNF dispersed BST composites, respectively. In Fig. 3(a), electric conductivity (σ) monotonically decreases with temperature and shows the metallic behavior. The σ nature specifies degenerate behavior of BST does not change with addition of CNF. Notable difference with CNF dispersion was found in σ value, as the values undergo decreasing with CNF content and reached 485.6 $\Omega^{-1}cm^{-1}$ with CNF-0.2 sample. To find out conductivity versus CNF trend, room temperature Hall measurement performed and shown in Fig. 3(b). As depicted,
the carrier concentration was consistent in all composites, while the mobility decreased with CNF. The reduction of mobility well-matches with grain size reduction observed in Fig. 2. As the grain size reduces, the density of the grain boundaries raises to enhance the carrier scattering, which strongly diminishes mobility values. The carbon atoms in curved graphene sheets form as CNF and they are SP2 hybridized [13-16]. If the carbon hybridization altered with oxygen, it acts as an insulator [20]. It is anticipated that carbon atoms reacted with oxides available in water atomized BST powder. This might be reason for the unchanged carrier concentration in all samples.

Temperature dependent Seebeck coefficient in BST/\(x\)-CNF bulk samples were shown in Fig. 3(c). All values were in positive sign and confirmed p-type BST materials. It is noticed that Seebeck coefficient values slightly varied among them and could be observed in the inset picture of Fig. 3(c). The unchanged carrier concentration could be the responsible for the unaltered Seebeck coefficient. Meanwhile, the highest Seebeck values were obtained for 0.2 wt.% dispersed CNF sample. The similar behavior of unaltered Seebeck values also observed upon the dispersion of B4C into the BiTe matrix [19]. Further understanding of Seebeck coefficient behavior, we estimated band parameters such as effective mass (\(m^*/m^0\)) and reduced fermi level (\(\eta\)) using the SPB models [9,21]. There were no severe fluctuations upon the addition of CNF into BST, could be responsible for the unchanged Seebeck coefficient values. The changes in power factor with temperature was displayed in Fig. 3(d). The CNF-0 sample obtained the highest power factor at 300 K with its high electrical conductivity value. The mobility influenced conductivity affects the power factor of BST/CNF composites.

Fig. 4 shows the thermal conductivity (\(\kappa\)) and its lattice (\(\kappa_L\)) and electronic (\(\kappa_e\)) thermal components. As observed in Fig. 4(a), the total thermal conductivity of BST alloy was strongly reduced along with CNF content (See inset picture) as a secondary phase. The value decreased from 1.06 to 0.94 W/m-K about 11% reduction achieved in CNF-0.2 sample. The \(\kappa\) value decrement with CNF dispersion is realized, while constant and higher \(\kappa\) values were reported with CNT, CNF and B4C dispersed thermoelectric materials [19,22, 23]. Meanwhile, to identify the role of \(\kappa_L\) and \(\kappa_e\) with total \(\kappa\), we estimated the \(\kappa_e\) utilizing \(\kappa_e = L_0\sigma T\), where \(L_0\) is Lorenz number estimated using equations in literatures [9,21] and shown in Fig. 4(b). As predicted with \(\sigma\) value, lowest \(\kappa_e\) value produced in CNF-0.2 sample. The phonon component (\(\kappa_L\)) to total thermal conductivity (\(\kappa\)) was calculated by \(\kappa_L = \kappa - \kappa_e\).
and plotted in Fig. 4(c). As observed in κ, lattice thermal conductivity (κ_L) was also consistently reduced by increasing CNF percentage in BST matrix. Therefore, it is speculated that κ was strongly influenced by κ_L value. Compared to CNF-0 sample, about 14% decreased κ_L was acquired in CNF-0.2 sample. Minimized κ_L values was observed at 300, 350 K and after instantly exceeded due to bipolar excitation [19-22]. The high dense grain boundaries enhance phonon scattering, and strongly reduced lattice thermal conductivity. The CNF containing samples shows lower κ_L values at high temperatures suggests that CNF shows impact on reducing bipolar excitation.

Fig. 4(d) displays the temperature dependence (300-500 K) of dimensionless figure of merit (ZT). The enhancement of ZT value with CNF was clear, obtained highest ZT of 0.95 seen in CNF-0.1 sample. Identification of ZT variation could be found in the inset picture of Fig. 4(d). The grain boundary modification with reduced thermal conductivity assists in enhanced ZT even though with reduced power factor. Improvement of ZT with CNF is realized, while Quentin et al. [23] reported decreased values in BST/CNT composite indicates CNF is a viable secondary phase in BST material.

3. Conclusion

The BST/CNF composites were prepared by combining water atomization and mechanical milling techniques. CNF dispersion effect on thermoelectric properties were investigated and interesting results were evaluated. The microstructure was modified with reduction of grain size simultaneously with CNF content. The unaltered Seebeck coefficient with reduced electrical conductivity decreased the final power factor of composite bulks. However, grain size decrement strongly reduced the total and lattice thermal conductivity due to severe phonon scattering. Altogether, CNF improved the overall ZT value with optimum power factor and reduced thermal values. The mechanical properties were greatly enhanced and attains Vickers hardness of 102 Hv about 27% improvement.
Acknowledgement

This work was supported by the research grant of the Kongju National University in 2020.

REFERENCES

