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chapter presents the results obtained. The last chapter focuses 
on conclusions and perspectives for further work.

The preliminary results of the work were presented in the 
CPEE 2020 conference [12]. The paper broadens the subject 
with segmentation performed by FCN network and modifi-
cations of the U-net network. Evaluation of the results was 
performed on much larger dataset with the use of additional 
fitting measures.

2.	 Literature review and goal

Recent publications reported that deep neural networks are 
capable to perform segmentation task on medical images with 
the accuracy comparable to human expert. One of the com-
mon tasks performed successfully by the deep neural network 
is organ segmentation. In [13] novel superpixel-based and 
boundary sensitive CNN was used for liver segmentation out 
of CT data and achieved high Dice coefficient value equal to 
97.31 ± 0.36%. Authors of [14] successfully performed seg-
mentation of head and neck organs at risks utilising 3D U-net 
architecture with performance similar to the expert.

The segmentation process is also used in detection of patho-
logical changes in the human body. Authors of [15] performed 
segmentation of polycystic kidneys with mean volume differ-
ence 0.68 ± 2.2.% in comparison to expert segmentation. Vari-
ous deep convolutional neural networks are also utilised to the 
task of automatic brain tumour segmentation [16].

In addition to the CT and MRI imaging analysis, deep neural 
networks are also used in the processing of histopathological 
images for example in segmenting and classifying epithelial 
and stromal regions [17] or in damaged tissue detection [18].

Several papers tackled the subject of bone structure seg-
mentation. In [19] a custom deep learning method was devel-
oped for segmentation of 49 bones out of PET/CT datasets. 

1.	 Introduction

Individualised bone models play an important role in various 
medical applications such as orthopaedic operation planning 
[1, 2], motion visualisation [3] or radiotherapy treatment plan-
ning [4]. The traditional way of bone model creation is a manual 
or semi-manual time-consuming process. One of its key steps 
is the precise segmentation of bone structures out of a series 
of medical images.

In recent years the use of deep convolutional neural net-
works is becoming more popular in the field of computer vision 
and image processing as well as in medical applications, includ-
ing segmentation of anatomical structures out of CT data [5, 6].

The aim of this paper is the verif ication of usefulness 
of popular deep model networks, used for general purpose 
segmentation to the task of bone structure segmentation out 
of CT data series. The automatic deep learning based bone 
segmentation can be further used in the method of automatic 
femur bone creation described in [7], replacing its current 
bone edge detection phase, based on state of the art image 
processing algorithms. Four models of neural networks are 
compared: FCN [8], PSPNet [9], U-net [10] and Segnet [11]. 
During the segmentation phase network assigns each pixel 
in the image to the 3 following classes: background, patient 
outline and bones.

The article is organized as follows: the second chapter dis-
cusses the current state of knowledge on segmentation of med-
ical images, the third chapter briefly characterizes four models 
of neural networks that are used in the work. The fourth chapter 
describes the set of data used to train the networks. The next 
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The training set consisted of 100 data series. In [20] the suit-
ability of the U-net network to the bone segmentation task 
was shown obtaining a Dice coeff icient value of 92% and 
an IoU value equal to 85%. The method for creation of STL 
skull models described in [21] is also based on convolutional 
neural network.

Alternative approaches to segmentation of biological struc-
tures do not use CNNs, however they do also often incorporate 
additional knowledge about the shape topology of segmented 
structures. For example, in [22] reconstruction of overlapping 
cells in breast cancer FISH images with the use of PatchMatch 
algorithm and database of cell shapes was performed. Another 
popular approach is Statistical Shape Model used in [23] for 
the segmentation of pelvic and femur bones.

Encouraged by the reports about the effectiveness of deep 
learning networks the authors aim to use CNN as an alternate 
and possibly better approach to creation of 3D skeleton models 
out of CT data. To check this possibility we evaluated four 
different models of neural networks to segment pelvis region.

3.	 Models used

The section briefly describes neural network models used in 
the paper.

3.1. FCN. Fully convolutional network (FCN), described in [8] 
consists only of convolutional layers (it does not contain any 
fully connected layers). The network can be trained to create 
the segmentation of an image of any size. In order to obtain the 
output segmentation image of the same size as the input one, 
after the series of convolutions and pooling layers the image is 
upsampled by using the deconvolutional layers.

Two types of FCN networks are considered in this paper: 
FCN32 and FCN8 network. In FCN32 network, after being 
processed by several convolution layers, the features map is 
upsampled 32 times to obtain the output size of the image. The 
output of the network may be rough because of the loss of the 
information about the spacial location, during pooling opera-
tion. To prevent this FCN8 network upsamples and combines 
the feature maps of higher resolution, from previous layers, 
which gives information on both general and specific features 
of the image.

3.2. PSPNet. Pyramid Scene Parsing Network [9] (PSPNet) 
introduces pyramid pooling module which allows to incorporate 
global context information into the network knowledge. It also 
uses dilate convolutional layers.

3.3. U-net. U-Net [11] is FCN based segmentation network with 
symmetric encoder and decoder parts which give the network 
architecture a characteristic U-like shape. The U-net network 
also provides the skip connections between corresponding 
parts of encoder and decoder, using the concatenation operator 
instead of sum (like in case of FCN network). In combination 
with extensive data augmentation U-net network showed to give 
good results in segmentation of biomedical images.

3.4. Segnet. Segnet [11] network uses similar encoder-decoder 
architecture as the FCN network, but introduces more skip con-
nections than FCN. In the encoder (downsampling) part of the 
network the indices of max-pooling operation are stored and 
further used in decoder part, during the upsample operation 
instead of copying features. This makes Segnet network more 
memory efficient than FCN and U-net networks.

4.	 Dataset used

The training dataset consists of 987 images extracted from 10 
CT series of pelvis and its surrounding. 97 images from the 
set were considered as validation data. 730 images taken from 
5 different CT series, separate from training data, were used 
as a testing data. Example slices from the training data are 
presented in Fig. 1. Corresponding labels map was created for 
each of the training images classifying each pixel to one of 
3 classes: background (class 0), patient outline (class 1) and 
bone (class 2).

Fig. 1. Example CT slices from training data presenting cross-section 
of a) sacrum and ilium b) sacrum and ilium c) ischium and upper 

extremity of femur d) body of femur

The number of images was additionally augmented by geo-
metrical operations like scaling, translation or rotation as well 
as by changing image contrast, performing histogram equalisa-
tion or gaussian blur. Examples of augmented data are shown 
in Fig. 2.

The heavy augmentation procedure from [24] based on oper-
ations implemented in [25] was applied to the set of training 
images. The following operations were applied most frequently: 
vertical flip – in 20% of images, horizontal flip, cropping and 
padding by –5% to 10% (50% of images), the sequence of 
scaling (from 80% to 120%), rotation (–45° to 45° degrees) 
and shear (from –16° to 16° degrees) – in 50% of images. 0 
to 5 following operations were randomly performed per each 
image: blurring operation (gaussian (σ  parameter with value 
from 0 to 3), average or median (kernel size form 2 to 7) blur-
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ring), image sharpening, edge detection and addition of them 
to the image, additive gaussian noise, removal of up to 10% of 
image pixels, inversion of the pixel values (in 5% of images), 
change of the brightness of the image by –10% to 10% of the 
original value, moving pixels locally with different strength, 
image distortion by applying the affine geometric transforma-
tions to the local neighbourhoods of pixels, the random four-
point perspective transformation of the image. The sequence of 
above operations is applied in random order to the image set, 
10 times to each image.

All CT images have size 512£512 pixels and pixel spac-
ing equal to 1.5625 mm. The distance between neighbouring 
images in the series (slices) was equal to 2.5 mm.

The data were obtained due tu courtesy of Maria Sklodows-
ka-Curie National Research Institute of Oncology.

5.	 Results

5.1. Network training. In order to verify the effectiveness of 
deep neural networks for the task of bone segmentation out 
of CT data 4 different deep neural network architectures were 
tested: FCN, PSPNet, U-net and Segnet. We trained network 
models available in the library [24].

The code was written with the use of Keras library (ver-
sion 2.3.1) [26] with Tensorflow (version 1.5) [27] backend and 
launched in Jupyter notebook environment. In order to speed up 
the training step it was performed on GPU (NVIDIA GeForce 
RTX 2080 Ti).

All of the networks were trained on the data set described 
in Section 4 for 10 epochs with 512 steps per epoch. The 
loss function was categorical cross-entropy. As optimiser the 
default stochastic gradient descent method which implements 
“adadelta” algorithm, was used.

5.2. Segmentation evaluation measures. During the training 
step, the value of pixel accuracy (1) was registered:

	 accuracy =  TP
TP + TN + FP + FN

, � (1)

where accuracy measure can be defined as the number of pix-
els correctly predicted by the network divided by the number 
of all pixels. TP (true positive) is the number of pixels correctly 
assigned to a given class; TN (true negative) is a number of pix-
els which are correctly predicted as not belonging to a given 
class. FP (false positive) denotes pixels which were wrongly 
classif ied as belonging to given class and FN (false negative) 
is the number of pixels which network missed to assign to the 
class.

Example plot of overall accuracy measure for U-net net-
work is depicted in Fig. 3.Fig. 2. Examples of data augmentation: a) original data, data after: 

b) rotation and contrast change c) salt, and  non-affine deformation, 
d) rotation and scaling. Pixels belonging to “background” class were 

set to the white colour to increase readability of the image

Fig. 3. U-net: accuracy value of the validation (blue colour) and 
training set (orange colour) for subsequent epochs

The value of mean Intersection over Union (IoU) measure 
as well as per class IoU value were evaluated for the validation 
set, for each training epoch. IoU measure is understood as the 
number of common pixels from given class, between the refer-
ence image (PR) and predicted image (PP) divided by the union 
of the pixels from reference and predicted image.

	 IoU = 
PR 
T

 PP

PR 
S

 PP
 = 

TP
TP + FN + FP

.� (2)

The example of IoU value for consecutive training epochs, 
for U-net model is presented in Fig. 4. The IoU value for 
“background” and “patient outline” class achieves value greater 
than 90% in early phase of the training (after the first epoch 
for “background” class and after the third epoch for “patient 
outline” class), and does not change rapidly in the following 
epochs. The IoU value for the “bone” class changes dynami-
cally until the 5th epoch and then it flattens on the value equal 
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to approximately 80%. The lower value of IoU measure can be 
caused by the small representation of pixels belonging to the 
“bone” class in comparison to the first two classes.

Third measure used in further evaluation of network models 
is Dice coefficient (F1 score) (3) which is equal to twice the 
number of common pixels from a given class in the reference 
image and predicted image divided by the sum of the pixels 
belonging to the class from reference and predicted image:

	 Dicecoe f f  = 
2jPR 

T
 PPj

jPRj + jPPj
 = 

2TP
2TP + FN + FP

.� (3)

The measure is positively correlated with the IoU measure, 
however in IoU measure case individual bad segmentation 
results influence the overall evaluation of the model more 
severely (Fig. 5).

5.3. Evaluation of the segmentation results. As IoU measure 
is considered as the most strict, the network weights established 
for the epoch with the highest mean IoU, where chosen for 
further computations. Then, for weights chosen in such a way 
the IoU, Dice coefficient and pixel accuracy measures were 
computed for separate test data set. The detailed performance 
of each network is summarised in the Table 1.

Table 1 
IoU, Dice coefficient and Pixel accuracy measures evaluated for 

segmentation results obtained by FCN, PSPNet, U-net and Segnet 
networks

Name It. No. Measure [%]
Mean 
value

Classwise measure
0 1 2

FCN8 10

IoU 92.39 99.78 96.45 80.95

Dice Coeff. 95.85 99.89 98.19 89.47

Pixel Acc. 99.72 99.81 99.58 99.78

FCN32 10

IoU 82.83 99.29 90.12 59.09

Dice Coeff. 89.58 99.64 94.80 74.28

Pixel Acc. 99.22 99.37 98.83 99.46

PSPNet 6

IoU 83.26 99.61 92.78 57.38

Dice Coeff. 89.66 99.81 96.26 72.92

Pixel Acc. 99.42 99.66 99.14 99.48

U-net 10

IoU 93.91 99.76 96.65 85.32

Dice Coeff. 96.75 99.88 98.30 92.08

Pixel Acc. 99.74 99.79 99.61 99.83

Segnet 7

IoU 90.30 99.67 95.30 75.93

Dice Coeff. 94.58 99.84 97.60 86.32

Pixel Acc. 99.63 99.71 99.45 99.73

The example segmentation performed by each of the models 
is depicted in Fig. 6.

All network models obtained mean IoU value higher than 
83%, and mean Dice coefficient value higher than 89% but 
only 3 models resulted with the IoU value over 90% – FCN8, 
U-net and Segnet. Background and patient classes were seg-
mented in all cases with high accuracy. The greatest discrepan-
cies are noticeable in the case of, most important, “bone” class. 
The IoU values for “bone” class vary from 57.38% to 85.32%, 
whereas Dice coefficient ranges from 72.92% to 92.08% for 
PSPnet and U-net models respectively. Non-intuitively, the low-
est IoU value was obtained by PSPNet which is the only tested 
network incorporating global context into the segmentation 
task. The pixel accuracy measure in all cases resulted with the 
value grater than 99% – which is not reliable result, because 
of the imbalanced ratio of true negative to true positive pixel 
detections. (Especially in case of “bone” class).

Example segmentation of upper part of the pelvis bone 
presented in Fig. 6 shows that only FCN8 model and U-net 
network segmentation results have shape similar to the ref-

Fig. 4. U-net: IoU value of the validation set for subsequent epochs for 
3 classes: background (blue colour), patient outline (orange colour), 

bones (green colour)

Fig. 5. U-net: mean IoU value (orange colour) and mean Dice coeffi-
cient value (blue colour) of the validation set for subsequent epochs
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erence one. In other cases pelvis wings are not segmented or 
under-segmented.

The most memory efficient model (with the smallest num-
ber of parameters) is PSPNet followed by the Segnet and U-net 
networks. The mean time of prediction of one 512£512 pixels 
image is similar for those three models and vary from 23.3 ms 
for Segnet to 26.3 ms for U-net model. Both FCN networks 
have an order of magnitude larger number of parameters and 
thus are much more memory expensive, they also need signifi-
cantly more time to perform the segmentation. The detailed 
number of parameters and mean execution time for each of the 
discussed models is presented in Table 2.

Table 2 
Models mean execution time and parameters number

Model Mean execution 
time [ms]

No. of 
parameters

No. of trainable 
parameters

FCN8 57.6 69,736,873 69,734,953

FCN32 59.5 69,769,603 69,767,683

PSPNet 23.3 3,282,819 3,275,779

U-net 26.3 4,472,323 4,468,995

SegNet 24.4 3,698,179 3,694,851

The IoU value obtained for “bone” class by U-net model is 
over 4% higher than the result obtained by the model second 
in line (FCN8) and over 9% higher than SegNet model, which 

obtained third best mean IoU score. Moreover the model is rel-
atively compact and fast in prediction process. Thus, the U-net 
network model is considered best suited for bone structures 
segmentation task.

For a single test image the lowest IoU value for “bone” 
class obtained by U-net was equal to 57.49% and the high-
est one was equal to 98.39 %, with mean IoU value equal to 
87.15% and standard deviation 5.98%.

Example segmentations performed by U-net model for var-
ious test images are shown in Fig. 7. The most exact segmenta-
tion results are obtained for diaphysis part of femur bone visible 
in the first row of the image (“bone” class IoU value equal to 
98.38%). In further examples some regions are slightly over or 
under-segmented. In case of the image from the third row of 
Fig. 7 markers used in oncological treatment were wrongly clas-
sified as bone structure. Small separated groups of pixels were 
also incorrectly classified as bone in image from row number 4.

Fig. 6. Examples of 3-class segmentation results: a) reference seg-
mentation, b) FCN8 model, ”bone” class IoU: 73.72% , c) FCN32 
model, ”bone” class IoU: 63.66%, d) PSPNet model, ”bone” class IoU: 
58.74% e) U-net model, ”bone” class IoU: 79.75%, Segnet model, 

”bone” class IoU: 60%

Fig. 7. Examples of 3-class segmentation results: reference segmen-
tation – left column; segmentation performed by U-net model – right 
column. a) Mean IoU: 98.69%, ”bone” class IoU: 98.38%, b) Mean 
IoU: 95.81%, ”bone” class IoU: 91.63%, c) Mean IoU: 93.5%, ”bone” 
class IoU: 85.2%, d) Mean IoU: 93.5%, ”bone” class IoU: 79.75%

5.4. U-net modification. In the further step two modifications 
from [24] of the classical U-net model are considered in order 
to improve the accuracy of the results. The encoder of the U-net 
network is replaced by the VGG [29] model and Resnet [28] 
model. In both cases models pre-trained on ImageNet [30] 
database were applied. The weights used in VGG and Resnet 
models can be found in [31] and [32] respectively.

VGG network was created by Visual Geometry Group from 
University of Oxford. VGG is a CNN model based on Alex-
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Net which uses set of small receptive fields (of size 3£3 with 
the stride equal to 1) instead of large one as well as multiple 
non-linear ReLUs, which allowed to create deeper network, 
with ability to learn more complex features. VGG has also less 
parameters than AlexNet.

ResNet (Residual Network) was the first architecture which 
allowed to efficiently train very deep neural networks (even 
with over 150 layers) by introducing the skip connection con-
cept. The Resnet50 version of the network was used.

The networks were trained for 30 epochs and the weights 
from epoch with the best IoU score computed for validation set 
were chosen for further evaluation. The standard U-net network 
was trained for 30 epochs as well, to allow the further com-
parison. The detailed comparison of the models is presented 
in Table 3.

Table 3 
IoU, Dice coefficient and Pixel accuracy measures evaluated for 
segmentation results obtained by VGG-U-net and Resnet-Unet

Encoder It. No. Measure 
[%]

Mean 
value

Classwise measure
0 1 2

U-net 30

IoU 94.64 99.83 97.41 86.67

Dice Coeff. 97.16 99.92 98.69 92.86

Pixel Acc. 99.80 99.85 99.70 99.84

VGG 28

IoU 96.55 99.85 98.05 91.76

Dice Coeff. 98.21 99.92 99.02 95.70

Pixel Acc. 99.85 99.87 99.78 99.91

Resnet 20

IoU 96.92 99.83 98.05 92.87

Dice Coeff. 98.41 99.91 99.01 96.31

Pixel Acc. 99.85 99.85 99.77 99.92

The longer training did not improve the results obtained by 
the standard U-net network significantly resulting with 0.73% 
better mean IoU value and by 1.35% greater IoU for “bone” 
class. Both networks using pre-trained backbones significantly 
outperformed traditional U-net model with over 90% IoU mea-
sure for “bone” class. The best result was achieved by the Res-
net-U-net model giving 92.87% IoU accuracy for the class of 
interest.

The IoU measure was additionally calculated for each CT 
data serie used in the test data, separately, for the best per-
forming network, in order to f ind out if different examples 
are segmented with similar accuracy. The detailed results are 
presented in Table 4. The values of mean IoU measure obtained 
for all 5 sets differ less than 0.86% and in case of “bone class” 
the difference between the worst and best segmentation case 
is equal to 2.88%. The bone structures in all sets were seg-
mented with over 90% IoU precision which can indicate that 
model is capable to properly perform segmentation for various 
input data.

6.	 Conclusion and future work

The paper compared 4 models of deep neural networks applied 
to the task of bone segmentation out of CT data. The most exact 
results were obtained by U-net network with 93.91% mean IoU 
value and 85.32% IoU value for “bone” class. The network is 
also more compact and faster than FCN8 model which obtained 
second best prediction result.

The U-net network analysis was enhanced by replacing its 
standard encoder with two different backbones – VGG and 
Resnet50 models. Both networks outperformed standard U-net 
model with Resnet50 backbone yelding the best result with 
mIoU measure – 96.92%, “bone” class IoU – 92.87%, mDice 
coefficient – 98.41% and Dice coefficient for “bone” class 
equal to 96.31%.

Several, recent publications tackled the subject of various 
bone segmentation using deep convolutional neural network. 
The authors of [20] performed bone segmentation based on 
U-net inspired network as well. The network was trained with 
8 whole-body CT scans (6800 axial slices). The obtained mIoU 
value was equal to 91%, the mDice coefficient value was 95%, 
which are lower values than in case of U-net-Resnet model. 
afiga141!@tion, much wider range of anatomical regions was 
segmented. In case of pelvic and femur regions the network 
described in [15] obtained better than average results – pre-
sented only in bar diagram form – the value of mDice coef-
ficient approximately corresponds to the one obtained by our 
U-net-Resnet model.

The CNN network presented in [21], trained on 20 CT series 
performed segmentation of skull with mean Dice similarity 
coefficient of 92% between the prediction and golden standard.

In [33] the U-net network prediction combined with prepro-
cessing techniques resulted in segmentation of bone structures 
in whole body CT scans with the value of mDice coefficient 
equal to 97.9% and 96.5% for two in-house data-sets and 
93.4% for external dataset.

In [19] results of segmentation of 49 bones out of CT data 
series are presented. The authors implemented three-step proce-
dure which combines the use of CNN and active shape method. 
The training set consisted of 100 CT series. The results were 
compared with manual segmentation of 5 different bones in 5 
test CT series. The values of Dice coefficient obtained for each 
type of bone were: 86%(Th 7), 85% (L3), 88% (sacrum), 84% 
(7th rib) and 83%(sternium).

Table 4 
IoU measure calculated for each CT dataset separately,  

for Resnet-U-net model

CT set No. Img. No. mIoU [%]
Classwise measure
0 1 2

1 85 97.10 99.88 98.59 92.83
2 152 97.10 99.87 98.32 93.10
3 124 96.25 99.90 97.96 90.87
4 143 96.79 99.88 98.27 92.22
5 226 97.04 99.71 97.66 93.75

Combined 730 96.92 99.83 98.05 92.87
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The Dice coefficient value between golden standard and 
segmentation performed by neural networks in discussed works 
varies from 83% to 97.9%, where only predictions obtained 
in [33] resulted in higher value of mDice coefficient then 
described U-net-Resnet model. The obtained results cannot 
be directly compared because they apply to different range of 
bone structures of various anatomical characteristics. In case of 
biological structures even segmentations performed by human 
experts differ from one another, thus the similarity measure 
between two segmentation results will almost never be equal 
to 100%. Values of mDice coefficient obtained by U-net-Res-
net segmentation, similar to ones obtained in different papers 
indicate that segmentation result described in our paper is on 
a satisfactory level.

In further research the authors would like to incorporate 
the U-net-Resnet based segmentation step into the automatic 
bones model creation framework [7]. The prior step will include 
enriching the training data set by providing additional images 
of the pelvis bone and upper part of the femur bone – thus 
they are under-represented and more anatomically complex in 
comparison to the images of the lower part of the femur.

The next step will include constraining the segmentation 
space to the bone area by performing first the bone detection 
by YOLO network.

Finally, the network can be trained to recognise specific 
bone structures such as femur or plevis.

Nevertheless, obtained results achieved good accuracy and 
are promising.
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