Introduction

Since metal pollution affects the quality of drinking water, great efforts have been made in the last two decades to reduce pollution of water resources by wastewater discharges in order to contribute to environmental sustainability (goal 6 of the Sustainable Development Goals) (UN 2021). A promising cost-effective alternative to conventional clean-up methods is rhizofiltration, a phytotechnology in which plants grown in water absorb, concentrate and precipitate potentially toxic metals (such as Cd) from polluted effluents (Yadav et al. 2015). On the other hand, salinity has been shown to affect numerous bioprocesses applied to wastewater treatments such as biodegradation (He et al. 2011a) and biosorption (Green-Ruiz et al. 2008) but the effects of salinity on rhizofiltration are still poorly understood.

In general, the free uncomplexed cadmium ion (Cd\(^{2+}\)) form has been widely reported to be the determinant for phytoavailability by plants (e.g. Elouear et al. 2014). In a previous hydroponic trial maintaining constant Cd\(^{2+}\) in solution, it has been demonstrated that chloride salinity greatly influenced both Cd speciation in solution and Cd accumulation in \textit{Brassica juncea} (López-Chuken and Young 2005) due to the formation, increased diffusion and uptake of the positively charged ion CdCl\(^+\) ion (Weggler-Beaton et al. 2000). In a rhizofiltration system where all Cd in solution is uncomplexed in the absence of Cl\(^-\), it would be reasonable to assume that the individual uptake characteristics of the free Cd\(^{2+}\) ion by tobacco plants could be isolated to then extrapolate them to a system where equivalent Cd\(^{2+}\) ion activities are in the presence of CdCl\(^-\) complexes, notwithstanding variation in ionic strength.

Plants used for rhizofiltration should be able to tolerate and accumulate the target metals in high amounts. Recent reports using \textit{Populus x canescens} have suggested that Cd tolerance, uptake and detoxification are tissue-specific (He et al. 2011b, 2013, 2015). For the present rhizofiltration trial,
tobacco (*Nicotiana tabacum* var., K326) was chosen due to its easy adaptation to hydroponic conditions, in conjunction with high production of biomass and high transpiration rates from leaves. Tobacco plants have been shown to accumulate Cd from agricultural soil (Lin et al. 2016) and to develop large hairy roots when cultivated under hydroponic conditions (Candelario-Torres 2014) suggesting its potential use to treat metal-affected waste water. In contrast to some other plants, tobacco plants, having big leaves that can reach up to 60 cm length, offer the possibility of expressing Cd uptake as a function of the leaf surface area (LSA). For these reasons, the present study was aimed to (A) investigate the effect of CdCl+ and irrigated for 7 weeks with a complete nutrient solution (pH = 4.9) containing KNO3 10 mM, KH2PO4 2 mM, MgSO4•7H2O 4 mM, Ca(NO3)2•4H2O 13 mM, H3BO3 2 mM, MnCl2•4H2O 5.59 μM, ZnSO4•7H2O 1.53 μM, CuSO4•5H2O 640 nM, (NH4)6Mo7O24•4H2O 30 nM, FeSO4•7H2O/Na2EDTA 40 μM. After this period, seedlings selected for homogeneity (average height 12.78 cm ± 1.89, n=36) were thoroughly washed with deionized water and transplanted to a 27.5-L hydroponic tray filled with aerated 12.5 mM Ca(NO3)2 solution, for another week. One plant was transplanted per experimental rhizofiltration pot (800 mL filled with aerated 12.5 mM Ca(NO3)2 solution), and treatments (Table 1) were applied at the same time. These treatments were chosen to be at concentrations commonly found in salt-affected wastewater (Li et al. 2002).

Table 1. Rhizofiltration experimental design: Cadmium concentration (added as Cd(NO3)2•4H2O) and predicted speciation as modeled by WHAM-VI in a 12.5 mM Ca(NO3)2 solution containing different NaCl concentrations

<table>
<thead>
<tr>
<th>Treatment (NaCl (mM))</th>
<th>Cd (μM)</th>
<th>Activity (nM)</th>
<th>Ionic strength</th>
<th>Cd^2+</th>
<th>CdCl−</th>
<th>CdCl2 (aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.36</td>
<td>0.03</td>
<td>193</td>
<td>0.15</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td>0.37</td>
<td>0.03</td>
<td>299</td>
<td>0.24</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>0.72</td>
<td>0.37</td>
<td>0.03</td>
<td>390</td>
<td>0.31</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>0.89</td>
<td>0.37</td>
<td>0.03</td>
<td>482</td>
<td>0.39</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1.25</td>
<td>0.07</td>
<td>193</td>
<td>576</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>1.93</td>
<td>0.07</td>
<td>298</td>
<td>889</td>
<td>116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.53</td>
<td>0.07</td>
<td>391</td>
<td>1166</td>
<td>152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.12</td>
<td>0.07</td>
<td>482</td>
<td>1438</td>
<td>187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>2.24</td>
<td>0.11</td>
<td>193</td>
<td>1098</td>
<td>273</td>
<td></td>
</tr>
<tr>
<td>4.54</td>
<td>0.11</td>
<td>391</td>
<td>2226</td>
<td>553</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.59</td>
<td>0.11</td>
<td>481</td>
<td>2741</td>
<td>681</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nutrient Solution and Plant Analysis
Immediately after solution sampling, pH was measured. After harvest, shoots and intact root systems were cut apart at the transition point between the hypocotyl and root and washed thoroughly with deionized water. Roots were additionally desorbed in a 5 mM CaCl2 solution and excess water removed (blotted) before analyses. Plant roots were analyzed for RSA using the software WinRIZHO® (Regent Instruments, Inc.) which is an image analysis system specifically designed for root measurement in different forms (e.g., morphology, topology, architecture, color). Additionally, the leaf surface area (LSA, cm²) for each individual plant was measured assuming rhomboid-shaped leaves based in a non-destructive methodology (Pandey and Singh 2011). Measurements of the LSA were undertaken both before treatment application and after harvest, in order to determine changes during treatment exposure and express Cd uptake by tobacco plants including LSA as a possible determinant of uptake rate. Fresh and dry biomass was determined. Plant material was finely milled prior to digestion in hot concentrated HNO3 and the analysis of Cd was conducted by Flame Atomic Absorption Spectrometry (F-AAS) (Varian® Australia Ltd.) or Graphite Furnace Atomic Absorption Spectrometry (GF-AAS) (Varian® Australia Ltd.) depending on concentrations.

Modeling Cd uptake by tobacco with a ‘BLM’
Metal uptake by plants was modeled using a ‘biotic ligand model’ (BLM) based on the one widely described by López-
-Chuken et al. (2010). This approach has proven advantages in studies dealing with metal accumulation by plants since it assumes initial sorption of free metal ions (e.g. Cd\(^{2+}\)), or defined metal complex species (e.g. CdCl\(^{+}\)) from solution (or soil pore water) onto hypothetical plant root sorption sites considering competition between cations and protons for sorption sites.

This specific experiment was intended to implement the BLM to separately model Cd uptake by tobacco as a function of the free ion Cd\(^{2+}\) and the CdCl\(^{+}\) complexes as modeled by WHAM (VI). In this way, the Cd uptake constants for the free ion Cd\(^{2+}\), (using Cd uptake data from Cl\(^{-}\)-free treatments), and subsequently of the CdCl\(^{+}\) complex (using data from the 40 and 80 mM Cl\(^{-}\) treatments) could be independently determined. This approach was intended to enable the independent fitting of ion reaction constants.

Data Quality Measurements

All treatments were replicated three-fold in a randomized block design. Plant and solution variables were analyzed using ANOVA/Tukey’s test. The Kruskal-Wallis/MSD (minimum significant difference) test was used. Data were not normally distributed according to the Anderson-Darling data normality test. A standard reference material (1573a tomato leaves by the National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA), containing a certified concentration of Cd (1.52 mg/kg ± 3%) was used to ensure the quality of the data. This quality standard was run with each plant digestion batch and averaged 1.48 ± 0.08 mg/kg over the whole trial. For all analyses, blanks and known standard samples were analyzed to ensure consistency. If these standards disagreed (≥5%), the analysis was repeated.

Results and Discussion

Cadmium speciation in nutrient solution

As suspected, a rapid initial decrease (9.97%) in the average Cd concentrations in solution was observed during the first 12 h caused by an immediate approach to a pseudo-equilibrium state between root surface sorption sites (and onto the experimental pots internal surface) and the treatment solutions. On the other hand, after the treated solutions were replaced and Cd concentrations were replenished 4, 6 and 11 days after treatment, only a low variation (+4.23%) for the rest of the 12 days rhizofiltration trial was detected. The simplification of the nutrient solution (containing only 12.5 mM Ca(NO\(_3\))\(_2\)) used for this experiment ensured that virtually all (>99.9%) Cd present in solution was computed to be either as Cd\(^{2+}\), CdCl\(^{+}\) or the uncharged CdCl\(^{0}\) complex, while minimal organic Cd-complexation in the nutrient solution was calculated (<0.01 of the total Cd) as modelled by WHAM-VI. The calculated post-trial activities of Cd\(^{2+}\) (Fig 1.) were kept convincingly constant between replicates, in spite of a noticeable general decrease (20.0%±0.84) compared to the original calculated pre-trial activities (Table 1). This could be reasonably attributable to insufficient precision caused by manual adjustments of Cd in treatment solutions in each sampling time and also to a rapid approach to a pseudo equilibrium state between root surface sorption sites (and onto the experimental pots internal surface) and the treatment solutions (López-Chuken et al. 2012). On the other hand, the activities of the NaCl-treated solutions CdCl\(^{-}\) and CdCl\(^{2+}\) increased (P<0.01) with increasing Cl\(^{-}\) concentrations (Fig. 1).

Plant development and biomass

The 36 tobacco plants used for this trial weighed within the range of 13.1 g±0.38 (fresh biomass) when treatments were applied. The treatments had no statistical effect (P>0.05) on shoot and root biomass, indicating both good tolerance of tobacco plants to Cd and salinity. Similarly, the treatments had no statistical effect (P>0.05) on RSA (total average 111.0 cm\(^2\)±16.2, n=36). The LSA values had an initial average value of 207.1 cm\(^2\) (n=36) and showed an average increment of 20.8 during the trial period. Erdem et al. (2012) reported antagonistic effects of Cd on 2 cultivars of tobacco yield (up to 39.2% reductions) when added to soil at concentrations up to 10 mg/kg, however, there is a lack of the available literature data on Cd-affected tobacco yield under hydroponic culture to compare our results.

Plant Cd concentrations

Tobacco is regarded as an efficient accumulator of Cd in its tissues (Lugon-Moulin et al. 2004) and may well be suitable for rhizofiltration because they produce longer, extensive, often fibrous root systems with large surface areas for metal sorption (López-Chuken & Young 2010) from wastewater effluents. In our study, the Cl\(^{-}\) treatments led to significant but irregular differences in Cd uptake among tobacco plants (ranging from 185 to 280 mg/kg) (P<0.05). In general, Cd uptake by tobacco plants was consistently better explained by the activity of the CdCl\(^{+}\)-complexes in solution compared to the activity of the free ion Cd\(^{2+}\), and the best correlations were obtained when expressing Cd uptake by plants per unit of RSA (μmol/m\(^2\) root) (correlation coefficient R = 0.39, P<0.05). Similar tendencies have been found in wheat (Berkelaar and Hale 2000) and maize (López-Chuken and Young 2010) as differences between Cd accumulations were reduced when expressing Cd uptake as μg/cm\(^2\) RSA.

The disruption of plant water status after Cd exposure has been addressed in a number of studies (e.g. Perfuss-Barbeoch et al. 2002), showing a decrease in transpiration, as well as reduction of the moisture content (Wani et al. 2005). Reduced transpiration may result from reduced LSA caused by decreased leaf growth (Durand et al. 2010, Garg and Chandel 2012). Nevertheless, it has been also shown that in the presence of toxic metals (i.e. Cd), some plants are capable of coping with reduced evapotranspiration by increasing the stomatal density on leaf surface (Hetherington and Woodward 2003), which is thought to be an evolutionary adaptation of plants to environmental stress (Xu and Zhou 2008). Conversely, for the current trial, including LSA to express Cd uptake by plants resulted in a very weak correlation with any form of Cd in solution (R= -0.06 to 0.4, P>0.05), thus suggesting that mechanisms controlling Cd uptake by tobacco plants under the current experimental conditions were independent of leaf morphology and/or evapotranspiration rate.

Figure 1 shows a consistent increase (P<0.05) in the Cd uptake rate (μmol/m\(^2\) root) by tobacco plants calculated when the free Cd\(^{2+}\) ion was the only Cd ion species in solution (i.e. 0 mM Cl\(^{-}\) treatments). However, when Cd-Cl\(^{-}\)-complexes were present in the nutrient solution (40 and 80 mM Cl\(^{-}\) treatments),
an initial increase in Cd uptake over equivalent Cd2+ concentrations for both Cl− treatments was modelled followed by no further significant variation (Fig. 1). While the increase in Cd uptake from both Cl− treatments at low Cd levels gives indication of Cd\textsuperscript{Cl+} uptake, the lack of further Cd uptake with increasing Cd concentration and the similar trend followed by both the 40 and 80 mM Cd2+ concentration treatments strongly suggest that at both Cd2+ levels, the root sorption sites for CdCl+ complexes were saturated (see later in Fig. 3). Therefore, further increase in the activity of CdCl+-complexes in solution was not reflected in greater Cd uptake by plants. This suggests that after this assumed saturation point, CdCl+-complexes are not being taken up with the same efficiency as the free ion Cd2+ (Fig. 1).

Testing a biotic ligand model ‘BLM’

The best-fit BLM predicting the uptake of Cd by tobacco plants was parameterized (equation 1) including the Cd2+ and CdCl+ activity (as it was shown to be the principal determinant for Cd2+ uptake by tobacco plants (López-Chuken et al. 2012)) and expressed as μmol/m2 of root (Fig. 2).

\[
Cd_{Tobacco} = \frac{K_{iT_{Cd}}(Cd2+)}{1 + K_{iT_{Cd}}(Cd2+)} + \frac{K_{iT_{CdCl}}(CdCl+)}{1 + K_{iT_{CdCl}}(CdCl+)} \quad (eq. 1)
\]

This BLM formulation assumed two root sorption sites (R\textsubscript{t}), K\textsubscript{Cd2+} and K\textsubscript{CdCl+} are the absorption reactions for the (Cd2+) and (CdCl+) respectively, and ‘K\textsubscript{R\textsubscript{t}}’ is a proportionality constant which expresses the assumption that metal concentrations in plant shoots reflect the concentration of metal ions adsorbed on root sites (i.e. Cd2+ and CdCl+) integrated over the growing time of the plant, in this case meaning no competition between Cd2+ and CdCl+ for the same sorption sites at root level (López-Chuken and Young 2010).

For the present dataset, the constants describe Cd2+ uptake that resulted from modeling Cd uptake by tobacco plants (μmol Cd/m2 of root) at 0 mM NaCl were K\textsubscript{RtCd2+} = 7.97×108 and K\textsubscript{Cd2+} = 5.40×108. A strong regression coefficient for the Cd2+ uptake modeling was obtained (R2 = 0.92) (P<0.05) (Fig. 2; filled circles). Modeling CdCl+ uptake from the 40 and 80 mM NaCl treatments resulted in the constants K\textsubscript{RtCdCl+} = 2.48×1011 and K\textsubscript{CdCl+} = 1.65×1010. A correlation coefficient of R = 0.56 (P<0.05) between the measured and modeled Cd in shoots (μg/cm2 of root) was observed for the best-fit BLM (Fig. 2).

Again, the greater scatter associated with data from the Cl− treatments arises primarily because the uptake rate of the CdCl+ complex is assumed to be close to maximal across the range of conditions. In the context of the BLM this would be interpreted as implying that the occupancy of the sites associated with CdCl+ uptake are close to saturation.

Figure 3 illustrates the hypothetical Cd uptake by tobacco plants when using the Cd2+ and CdCl+ uptake constants resulting from the best-fit BLM (equation 1 and Fig. 2). According to the parameterized BLM resolved from the data, the uptake of Cd2+ would continue to higher concentrations than the uptake of the CdCl+ complex (i.e. uptake sites are saturated at 15.03 μmol m−2 root in the case of the latter). The lack of variation on Cd uptake rates with varying activity of CdCl+ in solution may explain the considerable scatter shown in the best-fit BLM (Fig. 2) when including uptake of Cd complexes. While other studies have found exceptions to the BLM when including various Metal2+-ligand combinations (Berkelaar and Hale 2003), we demonstrated, under this hypothetical scenario, that the levels of chloride (or CdCl+) chosen appeared to saturate the uptake rate of this complex, which could be translated, for rhizofiltration purposes and under the present conditions, that after roots become saturated with metals, plants can be harvested for further treatment/disposal (Sas-Nowosielska et al. 2004).

Conclusions

- Root surface area (RSA) was found to be an important source of variation of Cd accumulation, while leaf surface area (LSA) had little influence on mechanisms controlling Cd uptake by tobacco plants.
A systematic improvement of the predicted Cd uptake in tobacco plants (μmol/m² root) by the BLM was achieved when Cd²⁺ and CdCl⁺ uptakes were separately modeled. An active and almost linear uptake of the free Cd²⁺ ion by tobacco plants was predicted while virtually there were no changes in CdCl⁺ uptake within the range of activities present in solution, indicating that CdCl⁺ saturated the hypothetical root sorption sites at the concentrations used in this rhizofiltration trial.

Nicotiana tabacum var. K326 was evidenced to be a potential species suitable for biological wastewater treatment using rhizofiltration. In simultaneous Cd and salt-affected effluents, tobacco showed to have a high Cd accumulation rate (185 to 280 mg/kg) while showing non-statistically significant decrease on biomass productivity caused by Cd and/or water salinity (P>0.05).

References

