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sympathetic index (CSI). CSI is based on the quantitative anal-
yses of Poincare plot features. Several studies indicate that it is 
possible to use CSI to detect and predict seizures [14–17]. For 
CSI calculation, the method proposed by Toichi et al. in [18] is 
most often used. In this article, the symbolic name "Toichi" is 
used to refer to the algorithm described in this work. To deter-
mine CSI, first R-waves must be detected in the ECG signal. 
For this purpose, the well-known Pan-Tompkins algorithm [19] 
or another method can be used. Next, the RR intervals should 
be analysed using the Poincare plot [20].

The purpose of the article is to use a 1D-convolutional neu-
ral network [21–23] to calculate the CSI values based on the 
registered ECG signal. For a trained neural network, there is 
no need to perform R-wave detection [24] and Poincare plot 
analysis. It was assumed that deep learning, with many training 
examples from many patients, would allow the network to work 
effectively. A 1D-convolutional neural network was used to esti-
mate the CSI. Then it was checked whether the CSI was reliable 
for the prediction of epileptic seizures. It was also examined 
how the loss of part of the recorded signal or artifacts affected 
the calculation of the CSI using both the standard Toichi algo-
rithm and the proposed method. The presented research is an 
extension of the study described in the conference paper [25].

2.	 Materials

Video EEG (vEEG) with simultaneous ECG was recorded in 
patients with refractory temporal epilepsy for long-term mon-
itoring of epileptic seizures during presurgical evaluation. The 
signals were acquired at the Medical University of Warsaw. 

1.	 Introduction

Around 50 million people worldwide have epilepsy, making it 
one of the most common neurological diseases globally [1]. In 
some cases, it is not possible to prevent epileptic seizures by 
using drugs or resection of the part of the cerebral cortex that 
is the source of seizures [2]. Certain changes in the autonomic 
nervous system (ANS) in people suffering from epilepsy can be 
observed. Changes and abnormal heart rhythm are among the 
most important symptoms. The following changes occur before 
and during seizures: tachycardia, bradycardia and asystole, con-
duction disturbances, and heart ischemia. Their description is 
presented in many works [3–6]. As shown, heart rate changes 
are associated with sudden unexpected death (SUDEP) in 
patients with epilepsy. Most researchers believe that insular 
cortex changes lead to the dysregulation of the ANS in patients 
with temporal lobe epilepsy (TLE).

Therefore, methods of predicting epileptic seizures are 
being sought. For this purpose, attempts have been made to 
use electrophysiological signals, in particular EEG [7–9]. The 
effectiveness of the developed methods is not fully satisfactory. 
Therefore, any additional physiological signal that can support 
the prediction of a seizure is valuable. In this task, attempts are 
made to use the ECG signal [10]. Numerous methods of quan-
tifying the heart rate variability have been proposed [11–13]. 
One of the features of the ECG signal is the so-called cardiac 

*e-mail: marcin.kolodziej@ee.pw.edu.pl

Manuscript submitted 2020-10-08, revised 2020-12-23, initially accepted  
for publication 2021-02-13, published in June 2021

SPECIAL SECTION

© 2021 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Abstract. Epilepsy is a neurological disorder that causes seizures of many different types. The article presents an analysis of heart rate variability 
(HRV) for epileptic seizure prediction. Considering that HRV is nonstationary, our research focused on the quantitative analysis of a Poincare 
plot feature, i.e. cardiac sympathetic index (CSI). It is reported that the CSI value increases before the epileptic seizure. An algorithm using 
a 1D-convolutional neural network (1D-CNN) was proposed for CSI estimation. The usability of this method was checked for 40 epilepsy 
patients. Our algorithm was compared with the method proposed by Toichi et al. The mean squared error (MSE) for testing data was 0.046 and 
the mean absolute percentage error (MAPE) amounted to 0.097. The 1D-CNN algorithm was also compared with regression methods. For this 
purpose, a classical type of neural network (MLP), as well as linear regression and SVM regression, were tested. In the study, typical artifacts 
occurring in ECG signals before and during an epileptic seizure were simulated. The proposed 1D-CNN algorithm estimates CSI well and is 
resistant to noise and artifacts in the ECG signal.

Key words: epilepsy; seizure detection; seizure prediction; convolutional neural network; deep learning; ECG; HRV; cardiac sympathetic index.

A new method of cardiac sympathetic index estimation  
using a 1D-convolutional neural network

Marcin KOŁODZIEJ 1*, Andrzej MAJKOWSKI 1 , Paweł TARNOWSKI 1 , 
Remigiusz Jan RAK 1 , and Andrzej RYSZ 2

1 Warsaw University of  Technology, Institute of  Theory of  Electrical Engineering, Measurements and Information Systems,  
ul. Koszykowa 75, 00-662 Warsaw, Poland

2 Medical University of  Warsaw, Department of  Neurosurgery, ul. Banacha 1, 02-097 Warsaw, Poland

mailto:marcin.kolodziej@ee.pw.edu.pl
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-2856-7298
http://orcid.org/0000-0002-6557-836X
http://orcid.org/0000-0003-0392-4084
http://orcid.org/0000-0003-0674-453X
http://orcid.org/0000-0002-8272-7275


2

M. Kołodziej, A. Majkowski, P. Tarnowski, R.J. Rak, and A. Rysz

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e136921

Fig. 1. Example of calculating SD1 and SD2 based on Poincaré plots

In 40 patients who underwent epilepsy surgery in the years 
2005–2015, ictal vEEG recordings provided localization infor-
mation and identification of temporal seizure type as well as 
ECG recordings. After non-invasive presurgical evaluation, all 
patients had anterior tailored lobectomy with pre-resection elec-
trocorticographic recordings (iECoG). The temporal ictal onset 
zone was localized based on seizure ictal semiology and ictal 
patterns. Thirty-two biosignals were registered (1 ECG chan-
nel and 31 EEG channels) using an EEG DigiTrack amplifier. 
The ECG signal was recorded with the sampling frequency 
fs = 250 Hz. For EEG registration, cup-shaped electrodes were 
used, and for ECG precordial disposable electrodes were located 
at V1 and V2 positions. During signal registration, patients were 
either sitting or lying, but they could freely move their heads 
and limbs. The registration time was from several minutes to 
several hours.

3.	 Methods

3.1. Pre-processing of the ECG signal. The disturbance caused 
by the power line frequency (50 Hz) was removed from the 
ECG signal. For this purpose, a narrow-band (48‒52 Hz) But-
terworth digital filter was used [26, 27]. For the Toichi method, 
the R-waves were determined in the ECG signal using the Pan 
and Tompkins algorithm.

3.2. Cardiac sympathetic index. Poincaré plots were used to 
analyse the nonlinear dynamics of ECG signals [28–32]. Each 
point in the plot is specified as n = 1, 2, 3, …N (RRn, RRn + 1), 
where N represents the number of recorded R-waves. Such 
mapping reveals the correlation between consecutive RR inter-
vals. The mapping gives useful information on short-term and 
long-term fluctuations of RR intervals. The mapping is shown 
in Fig. 1, along with the standard deviation parameters SD1 
and SD2.

The SD1 shows beat-to-beat rapid changes, which are more 
related to respiratory sinus arrhythmia. However, SD2 describes 

long-term beat-to-beat changes [33]. cardiac sympathetic index 
CSI = SD2/SD1 is calculated to describe the relationship 
between these components [18]. The SD1 and SD2 values in 
Poincaré mapping directly depend on the statistical values of 
the standard deviation of heart rate and two consecutive inter-
vals of R peaks. Ellipses are described so that at least 95% of 
the RR data is in the ellipse area.

3.3. 1D-convolutional neural network. To determine the CSI 
value, we proposed the use of a 1D-convolutional neural net-
work (1D-CNN). A one-minute ECG signal (15,000 samples) is 
fed to the network input, sampled at a frequency of fs = 250 Hz 
(Input Layer). The other layers in the network are Convolu-
tion, Batch Normalization, ReLU, MaxPooling, Dropout, Fully 
Connected, and Regression Output [21, 34–36]. The network 
structure is shown in Table 1.

Table 1 
Structure of the neural network used

No. Name of Layer Parameters

01 Input Layer 15,000 samples with zero centre 
normalization

02 Conv_1 20 filters 150x1 convolutions with stride 1 
and padding same

03 Batchnorm_1 Batch normalization with 20 channels

04 Relu_1 ReLU

05 Maxpool 2x1 max pooling with stride 2 and padding 0

06 Conv_2 40 filters 150x20 convolutions with stride 1 
and padding same

07 Batchnorm_2 Batch normalization with 40 channels

08 Relu_2 ReLU

09 Conv_3 60 filters 10x40 convolutions with stride 1 
and padding same

10 Batchnorm_3 Batch normalization with 60 channels

11 Relu_3 ReLU

12 Conv_4 60 filters 10x60 convolutions with stride 1 
and padding same

13 Batchnorm_4 Batch normalization with 60 channels

14 Relu_4 ReLU

15 Conv_5 60 filters 20x60 convolutions with stride 1 
and padding same

16 Batchnorm_5 Batch normalization with 60 channels

17 Relu_5 ReLU

18 Conv_6 60 filters 10x60 convolutions with stride 1 
and padding same

19 Batchnorm_6 Batch normalization with 60 channels

20 Relu_6 ReLU

21 dropout 50% dropout

22 fc 1 Fully connected layer

23 Regression 
output

Mean-squared-error with response
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Fig. 3. CSI values calculated using the 1D-CNN
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classification accuracy than networks equipped with the 
hyperbolic tangent (tanh) function. Moreover, the authors 
of [39] found that the use of ReLU speeds up the training 
of the neural network four times, compared to the neural 
network using tanh. The most common operations that 
occur in the subsampling layers are MaxPooling [37]. 
These operations aggregate a group of adjacent samples, 
replacing them with samples with the maximum value. 
Dropout is a technique that improves the performance of 
neural networks across many different applications, 
including object classification, natural language 
processing, and scientific data analysis [40]. Dropout 
overcomes this problem by providing a way to 
approximately combine multiple neural networks into a 
single model. The method is to temporarily remove certain 
neurons during training. The group of neurons to be 
removed is selected randomly. The holding probability of 
a neuron is a tunable hyperparameter called the dropout 
rate. Neurons are drawn and removed each time a batch of 
samples is delivered to the network. In practice, a neuron is 
removed by multiplying its output by zero. The FC layer 
refers to a fully connected layer like in the case of a 
classical neural network [41]. 

In our research, electrocardiographic signals recorded 
for 40 patients were used to train CNN. Pre-seizure ECG 
fragments, starting ten minutes before the seizure, were 
selected. Windows lasting 1 minute, moved every 1 second, 
were used for signal analysis. In that way, 540 examples 
were generated for each patient. A total of 21600 examples 
were created for 40 patients. The data was randomly 
divided into three parts: 80% (17280) for training, 10% 
(2160) for validation, and 20% (4320) for testing.  

The ADAM algorithm with the initial learning rate 
parameter of 0.001 was used to train the network. During 
training, GPU graphics processors of GeForce GTX 1070 
graphics card were used. The process of training the 
network lasted several dozen minutes. 

Figure 2 presents the procedure for the Toichi algorithm 
when calculating the CSI. The recorded ECG signal lasting 
one minute (ECG signal) is digitally filtered to remove the 
power line frequency (Notch filter). Then R-waves are 
detected in the ECG signal (R-wave detection). The well-
known Pan and Tompkins algorithm is used for this 
purpose. In the next step, the time between the individual 
RR waves is calculated (RR interval calculation). The 
calculated RR intervals allow the computation of the 
Poincare plot (Poincare plot). Based on the Poincare plot, 
the SD1 and SD2 values are calculated (SD1 and SD2 
calculation). The determined values allow the calculation 
of the CSI coefficient.  
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Figure 3 presents the procedure for the algorithm we 
propose using 1D-CNN. The recorded ECG signal lasting 
one minute (ECG signal) is subjected to digital filtering, 
the purpose of which is to remove the power line frequency 
– 50Hz (Notch filter). Then, each 1-min segment of ECG 
signal is fed to the input of the 1D-CNN. A trained 1D-
Convolutional Neural Network calculates the CSI. 
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4. Results and discussion 

To prevent overfitting of the neural network, a 
validation set was used. An expert verified all examples 
used for training, validation, and testing to assess the 
correct R-wave detection. The proposed by Toichi et al. 
CSI calculation method was considered as the reference – 
showing the correct values. 

The difference between the estimations of the CSI value 
calculated using the Toichi algorithm and the 1D-
Convolutional Neural Network was calculated. We 
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one minute (ECG signal) is digitally filtered to remove the 
power line frequency (Notch filter). Then R-waves are detected 
in the ECG signal (R-wave detection). The well-known Pan 
and Tompkins algorithm is used for this purpose. In the next 
step, the time between the individual RR-waves is calculated 
(RR interval calculation). The calculated RR intervals allow 
the computation of the Poincare plot (Poincare plot). Based 
on the Poincare plot, the SD1 and SD2 values are calculated 
(SD1 and SD2 calculation). The determined values facilitate 
the calculation of the CSI coefficient.

Figure 3 presents the procedure for the algorithm we pro-
pose using 1D-CNN. The recorded ECG signal lasting one min-
ute (ECG signal) is subjected to digital filtering, the purpose of 

which is to remove the power line frequency of 50 Hz (Notch 
filter). Then, each 1-minute segment of the ECG signal is fed 
to the input of the 1D-CNN. A trained 1D-convolutional neural 
network calculates the CSI.
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4.	 Results and discussion

To prevent overfitting of the neural network, a validation set 
was used. An expert verified all examples used for training, 
validation, and testing to assess the correct R-wave detection. 
The CSI calculation method proposed by Toichi et al. was con-
sidered as the reference, showing the correct values.

The difference between the estimations of the CSI value 
calculated using the Toichi algorithm and the 1D-convolutional 
neural network was calculated. We calculated the mean squared 
error (equal to 0.046) and the mean absolute percentage error 
(0.097) for the testing set as a measure of the difference. Addi-
tionally, to determine the correctness of the CSI estimation, the 
maximum, minimum, and average values of this index were 
calculated using both algorithms. The maximum CSI value 
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calculated using the Toichi algorithm was 7.873 while using 
a 1D-CNN 7.324. The minimum CSI value calculated using 
the Toichi algorithm was 1.001 while using a 1D-CNN 0.092. 
The average CSI value calculated using the Toichi algorithm 
was 1.956 while using a 1D-CNN 1.849. The obtained results 
proved the correct estimation of the CSI value by a 1D-CNN.

Figure 4 presents an example of the calculated CSI values 
with the Toichi and 1D-CNN algorithms for one of the patients. 
We can observe significant fluctuations in CSI values. Although 
the CSI values calculated with the Toichi method slightly differ 
from these calculated with a 1D-CNN, there is a large correla-
tion between them, ρ = 0.97.

Figure 5 presents the RR interval variability for subsequent 
heartbeats. We can observe significant variation in the RR inter-
val. Figure 6 shows Poincare plots for one patient for an ECG 
signal registered 10 minutes before the seizure (blue) and one 
minute before the seizure (red). For this patient, the CSI value 
calculated using the Toichi algorithm was 1.535 for ten minutes 

before the seizure and 2.417 for one minute before the seizure. 
In contrast, the CSI value estimated using a 1D-CNN was 1.549 
for ten minutes before the seizure and 2.018 for one minute 
before the seizure.

The influence of disturbances that may occur during the 
registration of ECG signals on the CSI estimation error was also 
examined. For this purpose, a one-minute ECG signal record-
ing was chosen, with correctly detected R-waves. The standard 
deviation for the selected ECG signal samples was σ = 0.928. 
CSIs were calculated using the Toichi and 1D-CNN algorithms. 
Then, signal fragments (from 0.5 to 20 seconds) were removed 
from the centre of the ECG waveform, and CSI values were cal-
culated again using the Toichi algorithm and a 1D-CNN. Such 
removal of the signal was intended to simulate the artifact of 
the temporary disconnection of the ECG electrode. Figure 7 
shows the ECG signal fragment with the simulated removal of 
8 seconds of the signal.

Fig. 7. A fragment of the ECG signal with the removal of 8 seconds 
of the signal

Fig. 4. CSI values calculated using the Toichi and 1D-CNN algorithms

Fig. 5. Example of RR interval variation for the signal one minute 
before the seizure

Fig. 6. Poincaré plots for one patient 10 minutes before the seizure 
(blue) and one minute before the seizure (red)
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Then the CSI was calculated for each case using the Toichi 
and 1D-CNN algorithms. The calculated CSI values for the 
loss of the ECG signal fragments are presented in Table 2. For 
each calculated CSI value, an error was determined, that is, the 
difference between the calculated CSI value for the disturbed 
signal and the CSI value calculated for the undisturbed signal 
using the Toichi algorithm.

Table 2 
CSI values for loss of fragments of the ECG signal

Loss of signal
Toichi et al. 1D-CNN

CSI Error CSI Error

Undisturbed 2.200 – 2.196 –0.004

20.0 sec 1.101 1.099 2.037 –0.163

10.0 sec 1.012 1.188 2.283 –0.083

04.0 sec 1.026 1.174 2.355 –0.155

02.0 sec 1.096 1.104 2.176 –0.024

01.0 sec 1.265 0.935 2.152 –0.048

00.5 sec 1.265 0.935 2.112 –0.088

The proposed 1D-CNN algorithm estimates the CSI values 
much more accurately than the Toichi algorithm. Even for a loss 
of 20 seconds of the ECG signal, the CSI estimation correctness 
is acceptable. Table 3 presents the calculated CSI values for 
floating electrode artifacts.

Table 3 
CSI values for floating electrode artifacts 

Sinusoidal signal Toichi et al. 1D-CNN

CSI Error CSI Error

Undisturbed 2.200 – 2.196 –0.004

0.05 Hz 1.920 0.280 2.233 –0.033

0.1 Hz 1.923 0.277 2.249 –0.049

0.2 Hz 1.607 0.593 2.223 –0.023

1 Hz 1.956 0.244 1.092 –1.108

10 Hz 1.792 0.408 3.471 –1.271

For the ECG signal disturbed by a sinusoidal waveform with 
frequencies from 0.05 Hz to 0.2 Hz, we obtain a more accu-
rate estimation of the CSI value using the proposed 1D-CNN 
algorithm than with the Toichi algorithm. Worse results of the 
CSI coefficient approximation were obtained for the sinusoidal 
signal in the range of 1 Hz to 10 Hz.

Table 4 presents the results of the calculated CSI values for 
ECG signal with added noise of normal distribution (simulated 
EMG artifacts). For the noise values from 0.5σ to 1.5σ, a more 
accurate estimation of the CSI value is obtained with the pro-
posed 1D-CNN algorithm than with the Toichi algorithm. How-Fig. 9. A fragment of ECG signal with a floating electrode artifact

Fig. 8. A fragment of ECG signal with 4-second EMG artifact

In the next stage, the ECG signal was disturbed by noise with 
a normal distribution and an amplitude of 0.5σ, 1σ, 1.5σ, and 2σ 
of the standard deviation of the ECG waveform. In this case, the 
signal noise was intended to simulate low-amplitude, long-term 
EMG artifacts. Then the ECG signal was disturbed by noise 
with a normal distribution and amplitude from 2σ to 6σ times 
greater than the ECG signal standard deviation. The duration of 
the signal disturbance ranged from 2 to 4 seconds. This signal 
noise was intended to simulate high-amplitude, short-term EMG 
artifacts. An example of such an artifact is presented in Fig. 8.

Finally, the influence of sinusoidal disturbances was exam-
ined. Such kind of disturbance simulates floating electrode arti-
facts. For this purpose, a sinusoidal signal with amplitude 1 
and frequencies from 0.05 Hz to 10 Hz was added to the ECG 
signal. An example of a disturbed signal with a sinusoidal arti-
fact is presented in Fig. 9.
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ever, for a disturbance with an amplitude of 2σ, it happened in 
one case that the value of the CSI coefficient determined by 
the Toichi algorithm was more accurate.

Table 4 
CSI values for ECG signal with simulated low-amplitude long-term 

EMG artifacts

Normal 
distribution noise 

Toichi et al. 1D-CNN

CSI Error CSI Error

Undisturbed 2.200 – 2.196 –0.004

0.5σ 1.781 0.419 2.193 –0.007

0.5σ 1.904 0.296 2.347 –0.147

0.5σ 1.616 0.584 2.103 –0.097

1σ 1.220 0.980 2.403 –0.203

1σ 1.159 1.041 2.191 –0.009

1σ 1.609 0.591 2.150 –0.050

1.5σ 1.166 1.034 1.577 –0.623

1.5σ 1.532 0.668 1.937 –0.263

1.5σ 1.286 0.914 2.047 –0.153

2σ 1.391 0.809 1.930 –0.270

2σ 1.404 0.796 1.206 –0.994

2σ 1.175 1.025 1.974 –0.226

Table 5 presents the results of CSI value estimation for 
ECG signal with 2 seconds high-amplitude EMG artifacts. For 
the disturbance amplitude from 2σ to 6σ, again, the 1D-CNN 
algorithm gave better results than the Toichi algorithm. The 
presented results indicate that the 1D-CNN algorithm is more 
robust to artifacts specific to the ECG signal recordings.

Table 5 
CSI values for ECG with simulated high-amplitude, short-term 

EMG artifacts

Normal 
distribution noise

Toichi et al. 1D-CNN

CSI Error CSI Error

Undisturbed 2.200 – 2.196 –0.004

2σ 1.440 0.760 2.248 –0.048

2σ 1.332 0.868 2.177 –0.023

2σ 1.065 1.135 2.238 –0.038

4σ 1.611 0.589 2.072 –0.128

4σ 1.645 0.555 2.142 –0.058

4σ 1.588 0.612 2.065 –0.135

6σ 1.259 0.941 2.022 –0.178

6σ 1.071 1.129 2.077 –0.123

6σ 1.765 0.435 2.071 –0.129

The CSI calculation time for one minute of the ECG signal 
was tested using the Toichi and 1D-CNN algorithms. The aver-
age calculation time for 1D-CNN was 0.0048 seconds, while 
for Toichi 0.0029. For both algorithms, the CSI calculation time 
is comparable and can be used in practice.

It was also checked whether an advanced neural network 
(1D-CNN) is really needed to approximate the CSI coefficient. 
For this purpose, the performance of MLP with one hidden 
layer was compared with the results obtained for 1D-CNN. 
During the research, the number of neurons in the hidden layer 
was changed. The Levenberg-Marquardt algorithm was used 
to train the MLP. The same data was used for the MLP and 
1D-CNN: 17,280 examples were used for training; 2,160 for 
validation; and 4,320 for testing. Table 6 presents the mean 
squared errors for a particular number of neurons in the hidden 
layer of MLP. The obtained results indicate that the proposed 
1D-CNN facilitates a much more accurate estimation of the 
CSI values. The smallest MSE error (0.637) for the MLP was 
obtained for 300 neurons in the hidden layer. This is a bigger 
order of magnitude than for the 1D-CNN.

Table 6 
MSE error comparison for MLP and 1D-CNN

Neural 
network

Number of neurons 
in the hidden layer MSE

MLP 1,000 0.704

MLP 500 1.600

MLP 300 0.637

MLP 100 0.726

MLP 50 0.667

MLP 10 0.804

1D-CNN – 0.046

The performance of the 1D-CNN was also compared with 
other regression methods. Two algorithms, linear regression and 
SVM regression (quadratic kernel) were selected for compari-
son. The PCA method was used to reduce the input data set. For 
this purpose, components explaining 95% of the variance of the 
set were selected. The same data was used for regression and 
1D-CNN training and testing. Table 7 presents the MSE errors 
for the testing set for individual regression methods. Again, 
the MSE error for 1D-CNN is a smaller order of magnitude.

Table 7 
MSE error for the regression and 1D-CNN methods

Regression method MSE

PCA + Linear Regression 0.878

PCA + SVM Regression 0.860

1D-CNN 0.046

Figure 10a presents an exemplary 5-second segment of the 
ECG signal fed to the input of the 1D-CNN and three exem-
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plary ECG signals after passing through the network digital 
filters of the first convolutional layer (Figs. 10b–10d). The 
interpretation of the received signals is difficult. However, 
for the third signal (Fig. 10d), we can observe the effective 
“extraction” of R-waves. Further layers of the neural network 
use the created filters to calculate new features and, as a result, 
to calculate the CSI.

In another experiment, the influence of the size of the first 
convolution layer of 1D-CNN on the accuracy of the obtained 
results was checked. Table 8 shows the MSE error for sample 
filter size (50, 150, 300, and 500). In each case, very similar 
MSE error values were obtained. However, the best results were 
obtained with a filter size of 150.

Table 8 
Comparison of the MSE error for 1D-CNN for different  

filter sizes of the first convolution layer

Filter size 50 150 300 500

MSE 0.049 0.046 0.056 0.064

To emphasize the purposefulness of the conducted research, 
it was additionally checked whether there is a chance of using 
CSI to predict or detect an epileptic seizure. CSI variability 
was calculated using the Toichi and 1D-CNN algorithms for 
each user. Then the result obtained for each of the 40 users was 
averaged. Figure 11 presents the average value of CSI for the 
Toichi and 1D-CNN algorithms 9 minutes before an epileptic 
seizure. For CSI calculated using Toichi and 1D-CNN, we can 
observe a significant increase about a minute before the seizure.

The mean pre-seizure CSI value for 1D-CNN is 2.205 
and for the Toichi algorithm is 2.300 (the difference is 4.3%). 
Higher CSI values determined using the Toichi algorithm than 
using a 1D-CNN can be observed. Figure 12 shows the statis-
tical distribution of the CSI values calculated using the Toichi 
algorithm and 1D-CNN. Using both the Toichi and CNN meth-

Fig. 10. a) An example of a 5-second segment of the ECG signal fed to the neural network input and the exemplary signals after the different 
filters created by the first layer of 1D-CNN; b) filter number one; c) filter number two; d) filter number three

Fig. 12. Boxplot of CSI values calculated using Toichi and 1D-CNN 
algorithm for 9 to 1 and 1 to 0 minutes before the seizure

Fig. 11. CSI values averaged for 40 people for the Toichi and 1D-CNN 
algorithms 9 minutes before the epileptic seizure

(a)

(c)

(b)

(d)
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ods, it is possible to indicate a statistically significant increase 
( p > 0.001) of the CSI value a minute before the seizure.

This confirms the assumption that, in general, there is an 
increase in the CSI before epileptic seizures. However, to assess 
the effectiveness of such a prediction method, further research 
is required regarding the CSI variability over a longer period 
of time. This is outside the scope of this work.

5.	 Conclusions

The proposed structure of a 1D-CNN facilitates an effective 
approximation of the cardiac sympathetic index. The mean 
squared error is MSE = 0.046 and the mean absolute percent-
age error MAPE = 0.097. The proposed solution, based on 
1D-CNN, facilitates a better estimation of the Cardiac Sympa-
thetic Index than other regression methods and is more resis-
tant to various types of disturbances. Unfortunately, training 
a 1D-CNN requires many examples from many people, and the 
ECG data must be of good quality. The use of a 1D-CNN for 
the CSI calculations is more reliable for an ECG signal contain-
ing disturbances that may occur during the ECG signal registra-
tion, especially during an epileptic seizure. The CSI variability 
indicates that there is a chance to use the ECG signal to predict 
or detect an epileptic seizure.
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