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The use of synthesis methods in position optimisation
and selection of tuned mass damper (TMD) parameters

for systems with many degrees of freedom

Andrzej DYMAREK and Tomasz DZITKOWSKI

The paper formulates and formalises a method for selecting parameters of the tuned mass
damper (TMD) for primary systems with many degrees of freedom. The method presented
uses the properties of positive rational functions, in particular their decomposition, into simple
fractions and continued fractions, which is used in the mixed method of synthesis of vibrating
mechanical systems. In order to formulate a method of tuning a TMD, the paper discusses the
basic properties of positive rational functions. The main assumptions of the mixed synthesis
method is presented, based on which the general method of determining TMD parameters in the
case of systems with many degrees of freedom was formulated. It has been shown that a tuned
mass damper suppresses the desired resonance zone regardless of where the excitation force is
applied. The advantages of the formulated method include the fact of reducing several forms
of the object’s free vibration by attaching an additional system with the number of degrees of
freedom corresponding to the number of resonant frequencies reduced. In addition, the tuned
mass damper determined in the case of excitation force applied at a single point can be attached to
any element of the inertial primary system without affecting the reduction conditions in this way.
It results directly from the methodology formalised in the paper. As part of the paper, numerical
calculations were performed regarding the tuning of the TMD to the first form of free vibration
of a system with 3 degrees of freedom. The parameters determined were subjected to analysis
and verification of the correctness of the calculations carried out. For the considered case of a
system with 3 degrees of freedom together with a TMD, time responses of displacement, from
each floor, were generated to excitation induced by a harmonic force equal to the first form of
vibration of the basic system. In addition, in the case of the parameters obtained, the response
of the inertial element system to which the TMD was attached to random white noise excitation
was determined.
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1. Introduction

Nowadays, interest in reducing vibration in various types of building struc-
tures, in particular high rise buildings, is growing due to not only horizontal but
also vertical construction trends. Buildings are becoming taller, slimmer and thus
more likely to be excited by natural phenomena such as earthquakes and winds.
The reduction of vibration in such structures subjected to these phenomena takes
place through the use of passive, active or semi-active control systems [1–11].
Among these systems, one of the most reliable and simplest is a tuned mass
damper (TMD), i.e. a passive control system. Optimal selection of a tuned mass
damper, which would be best in reducing vibration, is one of the biggest prob-
lems encountered by engineers in the development of TMDs, which is heading
in various direction. In [12] Ghaedi et al. have carried out a detailed review of
previous and latest research on the reduction of vibrations in building structures.
One of the proposed approaches, they offer certain formulas based on simpli-
fied models of the building reduced to a system with one degree of freedom and
load [1,3,13–16]. On the other hand, the current requirements enforce procedures
for including the total structure of the building in the model in order to obtain a
TMD’s parameters [2,17–23]. The main idea is to tune the frequency of the TMD
near the first frequency of the natural structure. The selection of parameters must
be such that the damping applies to each point of the structure, irrespective of the
place of loading and the attachment of the tunedmass damper. Hahnkamm [1]was
one of the first to derive the optimal natural frequency coefficient according to the
optimisation criterion and had described this method. Nishihara and Asami [24],
Asami et al. [25] derived exact series solutions for the stiffness and damping
coefficient. Nigdeli et al. [26] proposed an optimisation methodology to find the
optimal period and damping of base isolation systems. In Sinan Melih Nigdeli,
Gebrail Bekdas [27] proposed methods for selecting the optimal TMD frequency
ratio and a superstructure with an optimal damping factor. In Shen et al. [2,17] and
Wang et al. [18], negative stiffness was introduced to optimise parameters. Re-
cently, combining a TMD with an inverter has been very popular. This issue was
dealt with in [20], Hu et al. [21], Shen et al. [22], Brzeski et al. [23]. In addition
to papers dealing with methods of optimal determination of TMD parameter, the
impact of the place of TMD attachment on primary system’s response was also
dealtwith [11,27]. The impact of specially developed two-wayBTMDdampers on
skyscraper vibration was also investigated [19]. This paper formulates a method
for selecting the parameters of a tuned mass damper by tuning to the natural fre-
quency of the structure with many degrees of freedom. In order to formalise the
task of tuning the parameters of a tunedmass damper, a mixedmethod of mechan-
ical systems synthesis was used, in particular the decomposition of dynamic char-
acteristics of the examined building [5]. This approachmakes it possible to employ
the properties of positive rational functions [28] and in particular the methods of
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their decomposition to determine the parameters of a tuned mass damper. The
mixed method of synthesis [5–8] allows for such a decomposition of dynamic
characteristics that allows presenting a convenient form of a characteristic func-
tion corresponding to the primary structure together with a tuned mass damper
presentation of the characteristic function in the form of dynamic characteristics.
On the basis of the proposed decomposition of the dynamic characteristics of the
structure together with the characteristics of the sought tuned mass damper, its
parameters are determined. The properties of positive rational functions used in
the paper and the mixed synthesis method allow to tune the parameters of a tuned
mass damper so that the reduction of vibration is not affected by the place of appli-
cation of the excitation force. In addition, the presented method makes it possible
to determine the place of attachment of the TMD and select its parameters due to
the optimal location of resonant frequencies of the systemwith a passive vibration
damper. The goal of the paper is to formulate a method for determining the pa-
rameters of a tuned mass damper for systems with many degrees of freedom. The
paper does not deal with the analysis of natural phenomena that cause vibration,
instead it only focuses on formalising amethod for tuning a TMD’s parameters. In
order to check the correctness of the obtained results, numerical calculations were
carried out for a system with three degrees of freedom and dynamic excitation
with excitation using the first harmonic of the examined system was adopted.

2. The method of selecting the parameters of a tuned mass damper
for systems with n ­ 2 degrees of freedom

This chapter formulates a method of solving the problem of selection and tun-
ing of a tunedmass damper’s parameters in the case of systemswith n ­ 2 degrees
of freedom. The paper uses the properties of characteristic functions describing
vibrating systems, in particular their decomposition into a continued fraction and
a simple fraction. Both methods of decomposition of dynamic characteristics in
the form of positive rational functions are included in the methods of synthesis
of discrete vibrating systems. The combination of the decomposition of dynamic
characteristics into simple fractions and a continued fraction enabled the authors
to introduce a mixed synthesis method. The mixed method has become the start-
ing point for formulating the task of selecting a tuned mass damper’s parameters
in systems with many degrees of freedom.

2.1. Mixed synthesis method

The dynamic characteristics of the considered class of vibrating systems are
positive rational functions of a complex variable in the form of the function of
stiffness, compliance, mobility and slowness in accordance with the theorems
quoted after [28].
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Theorem 1 Function U (s) is a dynamic characteristic if and only if it is a
measurable real positive function of variable s (s – Laplace operator) satisfying
the conditions:




ImU (s) = 0, if Im s = 0,

ReU (s) ­ 0, if Re s ­ 0.

Theorem 2 Each positive-real rational function can be implemented as dynamic
characteristics of a model of a mechanical system with concentrated parameters,
built of inertial, elastic or damping mechanical double-connectors.

Due to the application of positive-real rational functions in the case of tuning
the parameters of a tuned mass damper, it will be appropriate to provide these of
their characteristics that result directly from the quoted theorems, which will be
used in the paper, i.e.:

• The sum of the finite number of positive-real rational functions is the
positive-real rational function; this property was used in the decomposition
of dynamic characteristics into simple fractions.

• The product of the positive-real rational function and a positive constant is
the positive-real rational function; this property is used to present dynamic
characteristics in normal form and to scale them.

• The inverse of the positive-real rational function is the positive-real rational
function; i.e.

U (s) =
1

V (s)
. (1)

The aforementioned mixed synthesis method is a combination of known
methods for the synthesis of mechanical (electrical) systems such as the decom-
position of characteristic functions into a continued fraction and simple frac-
tions. The starting point in the case of using any decomposition of a positive
rational function in the synthesis of mechanical or electrical systems is the dy-
namic characteristics of the tested systems. On the basis of these functions, it
is possible to identify parameters by reducing the examined system to a struc-
ture obtained as a result of the decomposition of dynamic characteristics. The
structure obtained results directly from the applied method of decomposition of
the function describing the system. And so, as a result of the applied decom-
position of the positive rational function of a complex variable, systems with a
cascade structure are obtained in the case of a decomposition into a continued
fraction and a branched structure in the case of a decomposition into simple
fractions. The combination of methods of decomposition of rational functions
into a simple fraction and a continued fraction enables obtaining a branched
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cascade structure of the system. In this case, the structure obtained may corre-
spond to the model of the tested system together with the tuned mass damper
determined.

In order to discuss the mixed method, it was assumed that the dynamic
characteristics considered describe the properties of a fixed vibrating system
without damping with n degrees of freedom in the form of the set slowness
function U (s). Characteristics U (s) presented in general form must meet the
property of the positive-real rational function. Such conditions will be met in the
case of dynamic characteristics of the analysed system determined at the place of
excitation, which takes the form of:

U (s) =
ck sk + ck−2sk−2 + · · · + c0

dl sl + dl−2sl−2 + · · · + d1s
, (l = k − 1), (2)

where: k, l – natural numbers, s – Laplace operator, dl , ck – real numbers.
Function U (s) can also be represented as the quotient of the product of

resonance frequencies to the product of anti-resonance frequencies in the form:

U (s) =
1

V (s)
=

1
sY (s)

=

H
n∏

i=1

(
s2 + ω2

bpi

)
s

n−1∏
i=1

(
s2 + ω2

zi

) , (3)

where:ωbpi – frequency values of the basic system,ωzi – anti-resonance frequency

values of the basic system, n =
k
2

– number of resonance frequencies of the
system, H – proportionality factor, V (s) – mobility of the analysed system, Y (s)
– compliance function of the analysed system.

The characteristic function obtained (3) is decomposed into simple fractions.
As a result of its decomposition, slowness U (s) takes the form of the sum of
simple fractions:

U (s)
H
= k∞s +

k0

s
+

A1

s − iωz1
+

A2

s + iωz1
+

A3

s − iωz2
+

A4

s + iωz2

+ · · · +
A2n−3

s − iωzn−2
+

A2n−4

s + iωzn−2
. (4)



190 A. DYMAREK, T. DZITKOWSKI

Values of residues k∞, k0, A1, A2, A3, A4, . . . , A2n−3, A2n−4 are determined
using:

k∞ = lim
s→∞

U (s)
s
,

k0 = lim
s→0

sU (s),

A1 = lim
s→iωz1

(
s − iωz1

)
U (s), A2 = lim

s→−iωz1

(
s + iωz1

)
U (s),

A3 = lim
s→iωz2

(
s − iωz2

)
U (s), A4 = lim

s→−iωz2

(
s + iωz2

)
U (s),

...
A2n−3 = lim

s→iωzn−2

(
s − iωzn−2

)
U (s), A2n−4 = lim

s→−iωzn−2

(
s + iωzn−2

)
U (s).

(5)

Knowing that the considered characteristics (2) are a measurable positive-real
function, i.e. all residues on the imaginary axis are positive-real, and A1, A2, . . . ,
A2n−3, A2n−4 are the values of conjugate numbers, we can write:

A1 = A2 =
k1

2
, A3 = A4 =

k2

2
, · · · , A2n−3 = A2n−4 =

kn

2
from where we get:

A1

s − iωz1
+

A2

s + iωz1
=

k1s
s2 + ω2

z1
,

A3

s − iωz2
+

A4

s + iωz2
=

k2s
s2 + ω2

z2
,

...

A2n−3

s − iωzn
+

A2n−4

s + iωzn
=

kns
s2 + ω2

zn
.

(6)

Finally, the sum of simple fractions of the slowness function (2) after taking
into account (5) in (3) takes the form:

U (s)
H
= k∞s +

k0

s
+

k1s
s2 + ω2

z1
+

k2s
s2 + ω2

z2
+ · · ·

kns
s2 + ω2

zn
. (7)

The physical interpretation of the decomposition of the characteristic function
(7) into the sum of simple fractions is a vibrating system, in this case a fixed one,
with a branched structure corresponding to n−1 harmonic oscillators attached to
an inertial element with the value of k∞ and suspended on an elastic element of
with the value of k0.
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The mixed method uses the decomposition of dynamic characteristics into
simple fractions, which can be presented as the sum of any rational functions.
This approach makes it possible to obtain a vibrating system with any branched
cascade structure, whose characteristics correspond to the function subjected to
decomposition into simple fractions. By adding any components of the sum (7),
rational functions (8)–(11) are determined, which are interpreted physically as
subsystems with cascade structure obtained as a result of the decomposition of
functions into a continued fraction (Fig. 1).

U (s)
H
= k∞s +

k0

s
+

k1s
s2+ω2

z1
+

B1s2n−4 + B2s2n−6+ · · ·+B0s
n−2∏
i=2

(
s2 + ω2

zi

) , (8)

U (s)
H
= k∞s +

k0

s
+

k1s
s2+ω2

z1
+

k2s
s2+ω2

z2
+

C1s2n−6+C2s2n−8+ · · ·+C0s
n−2∏
i=2

(
s2 + ω2

zi

) , (9)

U (s)
H
= k∞s +

k0

s
+

D1s3+D2s
(s2+ω2

z1)(s2+ω2
z2)
+

C1s2n−6+C2s2n−8+ · · ·+C0s
n−2∏
i=2

(
s2+ω2

zi

) , (10)

U (s)
H
= k∞s +

E1s3+E2s+E0

(s2+ω2
z1)(s2+ω2

z2)
+

C1s2n−6 + C2s2n−8+ · · ·+C0s
n−2∏
i=2

(
s2 + ω2

zi

) , (11)

where: m∞, m11, m1(n−1), m1n, . . . , m(n−1)(n−1) – value of the inertial components
of the sought system, c10, c20, cn0, c(n+1)0 – values of the springs restrained
components, c11, c1(n−1), c1n, c(n−1)(n−1) – values of the springs components of
the sought system.
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�m

m11 
�m

m12 

�m

c11 
�m

c12 
�m

m1(n-2) 
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Figure 1: Structure of the system’s model obtained as a result of using the mixed method
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The presented functions (8)–(11) are not the only ones that can be obtained
from dynamic characteristics (7). The number of rational functions created as
components of the sum of the considered characteristics (2) depends on the
real system or model of such a system in which identification or synthesis is
carried out, but also on the experience of the design engineer. One form of the
characteristic functions obtained as a result of the decomposition using the mixed
method can take the form (12). The sum of the rational functionU (s) and a simple
fraction whose denominator assumes a zero value in the characteristic pole U (s)
(ωzi = ωbi), presented in this way is synonymous with the characteristics of the
reduced system using a tuned mass damper.

U1(s) = U (s) +
ks

s2 + ω2
z1
, (12)

U1(s) = m1s +
1

s
c1
+

1

m2s+
1

s
c2
+

1

m3s+
1

s
c3
+

1

m4s+ · · ·
1

mns+
cn

s

+
ks

s2 + ω2
z1
, (13)

where: m1, m2, m3, m4, . . . , mn – value of inertial elements of the system, c1, c2,

c3, c4, . . . , cn – value of elastic elements of the system,
ks

s2 + ω2
z1

– characteristics

of the tuned mass damper, ωz1 – eliminated vibration frequency of the tested
system = vibration frequency of the damper.

2.2. Selection of tuned mass damper parameters

Let’s assume that dynamic characteristics of the system subjected to vibration
reduction are specified U (s). In this case, the system characteristics including a
tuned mass damper take the form:

UR(s) = U (s) +
ks

s2 + ω2
z01

, (14)

The decomposition of characteristics UR(s) shown is synonymous with the
characteristics of a system with a tuned mass damper. Frequency ωz01 occurring
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in the simple fraction’s denominator is the value of the dangerous resonance
frequency of the system subjected to vibration reductionwith characteristicsU (s).
In order to determine the parameters of the damper used, the natural frequencies
(resonance and anti-resonance frequencies) of the tested structure should be
calculated. In this case, the rigidity matrix of the examined system subjected to
vibration reduction is determined, in the form:

Z(s) =



m1s2 + (c11) −(c12) · · · −(c1n)

−(c21) m2s2 + (c22) · · · −(c2n)
...

... · · ·
...

−(cn1) −(cn2) · · · mns2 + (cnn)



. (15)

Algebraic complement Dnn(Z ) is determined based on the matrix relative to
the inertial element mn to which a tuned mass damper will be attached:

Dnn (Z) = (−1)n+n |Znn | , (16)

Y (s) =
Xn(s)
Fn(s)

=
Dnn(Z)
det Z (s)

, (17)

where: Fn(s) – excitation force acting on n inertial element, Xn(s) – response of
the n-th inertial element system.

Using the relationships (16) and (17), resonance ωbpi and anti-resonance ωzi
frequencies are determined, which will be used to determine the characteristic
function of the examined system in the form of slowness U (s) (18):

U (s) =
1

V (s)
=

1
sY (s)

=
M (s)
L(s)

=

H
n∏

i=1

(
s2 + ω2

bpi

)
s

n−2∏
i=1

(
s2 + ω2

zi

) , (18)

where: M (s) – characteristic equation (polynomial) of the system subjected to
reduction, L(s) – denominator (polynomial) of a characteristic function U (s).

Among the resonance frequencies of the building, the dangerous frequency
value is determined for which the tuned mass damper will be selected. The
frequency determined, which in the new system adopts the value of anti-resonance
frequency ωz01, is added in the form of a simple fraction to the characteristics of
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the analysed building U (s) in the form of:

U (s) +
ks

s2 + ω2
z01
=

H
n∏

i=1

(
s2 + ω2

bpi

)
s

n−2∏
i=1

(
s2 + ω2

zi

) + ks
s2 + ω2

z01

=

H
n∏

i=1

(
s2 + ω2

bpi

)
s

n−2∏
i=1

(
s2 + ω2

zi

) + 1
s
k
+

1
k

ω2
z01

s

=

H
n∏

i=1

(
s2 + ω2

bpi

)
s

n−2∏
i=1

(
s2 + ω2

zi

) + 1
s

cTMD
+

1
mTMDs

= UR(s). (19)

Dynamic characteristics (19), taking into account several dampers to reduce
vibrations of a structure loaded with many harmonics, take the form:

U (s) +
k1s

s2 + ω2
z01
+

k2s
s2 + ω2

z02
+ · · · +

kns
s2 + ω2

z0n

=

H
n∏

i=1

(
s2 + ω2

bpi

)
s

n−2∏
i=1

(
s2 + ω2

zi

) + 1
s

cT MD1
+

1
mT MD1s

+
1

s
cT MD2

+
1

mT MD2s

+ · · · +
1

s
cT MDn

+
1

mT MDns

, (20)

where: kn – the coefficient sought for determining the parameters of the tuned
mass damper,ωz0n – value of the reduced frequency of the analysed system, cTMD
– value of the sought elastic element of the tuned mass damper, mTMD – value of
the sought inertial element of the tuned mass damper.

The determined dynamic function (19) of the system has zeros (anti-resonance
frequencies) in the place of zeros of the examined systemωzi and zero at the place



THE USE OF SYNTHESIS METHODS IN POSITION OPTIMISATION AND SELECTION
OF TUNED MASS DAMPER (TMD) PARAMETERS FOR SYSTEMS

WITH MANY DEGREES OF FREEDOM 195

of the reduced natural frequency of the basic system ωz0n. The poles of the new
n+1 characteristic are unknown in value compared to the output system. One of
the frequencies is assumed as a known value (ωbp), which can be treated as an
advantage, but it should be remembered that all frequencies in terms of values
alternate with the values of known zeros of the characteristic. This is the case
when excitation and response are measured relative to the same inertial element.
The adopted assumptions in accordance with the conditions presented above take
the form of the following relationship:

M (s)
L(s)

+
ks

s2 + ω2
z01
=

H (s2 + ω2
bp)

n∏
i=1

(s2 + ω2
bri)

s(s2 + ω2
z01)

n−1∏
i=1

(s2 + ω2
zi)

, (21)

where:ωz01 – value of the reduced frequency of the analysed system,ωbp – value
of the adopted frequency or value of the frequency of the basic system, ωbri –
values of the system’s frequency after reduction,ωzi – values of the anti-resonance
frequency of the basic system.

First of the components of the sum of the expression (21) should be multiplied
by the quotient of the value of inertial elements of the analysed system starting

from the second element
n∏

i=2
mi

/ n∏
i=2

mi and the other by coefficient H . The mass

of the system relative to which the dynamic characteristic is determined U (s)
is marked as the first inertial element of the considered system. In the case of a

system with one degree of freedom, the product
n∏

i=2
mi equals unity. As a result

of applying the above, equation (21) takes the form (22):

M (s)
1

n∏
i=2

mi

L(s)
1

n∏
i=2

mi

+
Hks

s2 + ω2
z01
=

H
(
s2 + ω2

bp

) n∏
i=1

(
s2 + ω2

bri

)
s
(
s2 + ω2

z01

) n−1∏
i=1

(
s2 + ω2

zi

) , (22)
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where:

M (s)
1

n∏
i=2

mi

= m1

n∏
i=1

(
s2 + ω2

bpi

)
= M1(s), (23)

L(s)
1

n∏
i=2

mi

=

n−1∏
i=1

(
s2 + ω2

zi

)
= L1(s), (24)

M1(s)(s2 + ω2
z01) + L1(s)Hks

L1(s)(s2 + ω2
z01)

=

H
(
s2 + ω2

bp

) n∏
i=1

(
s2 + ω2

bri

)
s
(
s2 + ω2

z01

) n−1∏
i=1

(
s2 + ω2

zi

) , (25)

M1(s)(s2 + ω2
z01) + L1H (s)ks

s(s2 + ω2
z01)

n−1∏
i=1

(s2 + ω2
zi)

=

H (s2 + ω2
bp)

n∏
i=1

(s2 + ω2
bri)

s(s2 + ω2
z01)

n−1∏
i=1

(s2 + ω2
zi)

, (26)

m1 – value of the inertial element to which the tuned mass damper is attached,
mi – value of the i-th inertial element.

The denominators of both rational functions of the expression (26) are the
same, therefore the determination of the tuned mass damper’s parameters and
the resonance frequencies of the obtained system boils down to comparing the
numerators of both characteristics (27).

Taking into account (28), in (29) we receive:

M1(s)(s2 +ω2
z01) + s

n−1∏
i=1

(
s2 + ω2

zi

)
Hks = H

(
s2 + ω2

bp

) n∏
i=1

(
s2 + ω2

bri

)
, (27)

m1(s2 + ω2
z01)

n∏
i=1

(
s2 + ω2

bpi

)
= H *

,

(
s2 + ω2

bp

) n∏
i=1

(
s2 + ω2

bri

)
− s

n−1∏
i=1

(s2 + ω2
zi)ks+

-
, (28)
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from where:

m1 = H . (29)

After taking into account (29) in (28) the form obtained:

(
s2 + ω2

z01

) n∏
i=1

(
s2 + ω2

bpi

)
+ s

n−1∏
i=1

(s2 + ω2
zi)ks

=
(
s2 + ω2

bp

) n∏
i=1

(
s2 + ω2

bri

)
, (30)

and assuming that

ωz01 = ωb1 , ωbp1 = ωb2 , ωbp2 = ωb3 , · · · , ωbpn = ωbn+1 ,

ωbp = ωbr1 , ωbr1 = ωbr2 , ωbr2 = ωbr3 , · · · , ωbrn = ωbrn+1 ,

the equation (30) is simplified to the expression (31)

n+1∏
i=1

(
s2 + ω2

bi

)
+ s

n−1∏
i=1

(s2 + ω2
zi)k =

n+1∏
i=1

(
s2 + ω2

bri

)
. (31)

Based on the relationship (31) and (29), a system of n+2 equations is deter-
mined in the case of vibration reduction in a structure with n degrees of freedom
using a tuned mass damper:

m1i = H,

n+1∑
i=1

ω2
bri =

n+1∑
i=1

ω2
bi + k,

n∑
j=1

ω2
br j

n+1∑
i= j+1

ω2
bri =

n∑
j=1

ω2
bj

n+1∑
i= j+1

ω2
bi + k

n−1∑
i=1

ω2
zi ,

n−1∑
l=1
ω2

brl

n∑
j=l+1

ω2
br j

n+1∑
i= j+1

ω2
bri =

n−1∑
l=1
ω2

bl

n∑
j=l+1

ω2
bj

n+1∑
i= j+1

ω2
bi + k

n−2∑
j=1
ω2

z j

n−1∑
i= j+1

ω2
zi ,

(32)
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(Eq. (32) cont.)

n−2∑
s=1
ω2

brs

n−1∑
l=s+1

ω2
brl

n∑
j=l+1

ω2
br j

n+1∑
i= j+1

ω2
bri =

n−2∑
s=1
ω2

bs

n−1∑
l=s+1

ω2
bl

n∑
j=l+1

ω2
bj

n+1∑
i= j+1

ω2
bi

+ k
n−3∑
l=1
ω2

zl

n−2∑
j=l+1

ω2
z j

n−1∑
i= j+1

ω2
zi ,

...

2∑
z=1
ω2

brz

3∑
k=z+1

ω2
brk · · ·

n∑
j=l+1

ω2
br j

n+1∑
i= j+1

ω2
bri =

2∑
z=1
ω2

bz

3∑
k=z+1

ω2
bk · · ·

n∑
j=l+1

ω2
bj

n+1∑
i= j+1

ω2
bi

+ k
1∑

k=1
ω2

zk

2∑
s=k+1

ω2
zs · · ·

n−2∑
j=l+1

ω2
z j

n−1∑
i= j+1

ω2
zi ,

n+1∏
i=1

ω2
bri =

n+1∏
i=1

ω2
bi .

Thismanner of presenting individual components of the system of equations is
a convenient tool for determining sought values of the parameter k and resonance
frequencies of the systemwith a tunedmass damper attached. The task formulated
in this way boils down to determining the value of the coefficient k according to
the adopted system of equations (32). The calculations can also be carried out by
determining only the resonance frequencies of the system after reduction, while
the coefficient k can be determined from the dependence on the residual of the
function UR(s) in the value of reduced frequency iωz01 (33), (34):

k
2
= lim

z→iωz01

(
s − iωz01

) H
(
s2 + ω2

bp

) n∏
i=1

(
s2 + ω2

bi

)
s
(
s2 + ω2

z01

) n−2∏
i=1

(
s2 + ω2

zi

) , (33)

k
2
= lim

z→−iωz01

(
s + iωz01

) H
(
s2 + ω2

bp

) n∏
i=1

(
s2 + ω2

bi

)
s
(
s2 + ω2

z01

) n−2∏
i=1

(
s2 + ω2

zi

) . (34)
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The above dependencies result directly from the properties of positive-real
rational functions – all residues on the imaginary axis are real positive and are
the values of the residues of conjugated numbers.

3. Numeric description

In order to check the correct operation of the formulated method of deter-
mining the parameters of the tuned mass damper, numerical calculations were
carried out for the vibration system with n > 2 degrees of freedom. The analysed
system has three degrees of freedom and its parameters have the following values
m1 = m2 = m3 = 1 kg, c1 = 100 N/m, c2 = 150 N/m, c3 = 200 N/m, (Fig. 2).
Based on the parameters adopted in this way, the rigidity matrix of the system
adopted was determined in the form:

Z(s) =



m1s2 + c1 −c1 0
−c1 m2s2 + c1 + c2 −c2

0 −c2 m2s2 + c2 + c3


. (35)

Using the matrix (35), the dynamic characteristic relative to the inertial ele-
ment is determined m1 (according to Eqs. (15)–(18)) to which the sought tuned
mass damper will be attached to reduce loads caused by harmonic force equal
to the first form of system vibration F11 sin(5.66t) (Fig. 1). Force F1 acts on the
inertial element m1 causing resonance in the system (Fig. 3).

m1 

c1 

c2 

c3 

m2 

m3 

F1 

Figure 2: Model of the analysed building
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Figure 3: Response of the analysed system to excitation using harmonic force F1

The system characteristics determined take the form of the slowness function
in the following form:

U (s) =
1

sY11(s)
=

F1(s)
X1(s)

=

(
s2 + ω2

bp1

) (
s2 + ω2

bp2

) (
s2 + ω2

bp3

)
s
(
s2 + ω2

z1

) (
s2 + ω2

z2

)
=

(
s2 + 5.662

) (
s2 + 14.142

) (
s2 + 21.632

)
s
(
s2 + 11.912) (

s2 + 21.402) . (36)

Function (36) is used to determine the slowness UR(s) of the newly created
system with a tuned mass damper in the form of:

UR(s) = U (s) +
ks

s2 + ω2
z01=b1

=

(
s2 + 5.662

) (
s2 + 14.142

) (
s2 + 21.632

)
s
(
s2 + 11.912) (

s2 + 21.402)
+

ks
s2 + 5.662 . (37)
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The set of equations (32) in the case of the analysed system is as follows:
H = 1,

4∑
i=1
ω2

bri =

4∑
i=1
ω2

bi + k,

3∑
j=1
ω2

br j

4∑
i= j+1

ω2
bri =

3∑
j=1
ω2

bj

4∑
i= j+1

ω2
bi + k

2∑
i=1
ω2

zi ,

2∑
l=1
ω2

brl

3∑
j=l+1

ω2
br j

4∑
i= j+1

ω2
bri =

2∑
l=1
ω2

bl

3∑
j=l+1

ω2
bj

4∑
i= j+1

ω2
bi + k

1∑
j=1
ω2

z j

2∑
i= j+1

ω2
zi ,

4∏
i=1

ω2
bri =

4∏
i=1

ω2
bi ,

(38)

where: ωb1 = 5.66 rad/s, ωb2 = 5.66 rad/s, ωb3 = 14.14 rad/s, ωb4 =
21.63 rad/s, ωbr1 = 5.2 rad/s, ωz1 = 11.91 rad/s, ωz1 = 21.40 rad/s and ωbr2,
ωbr3, ωbr4 – values of the sought frequencies of natural vibrations of the newly
created system.

In order to solve the system of equations, one of the frequencies of the system
sought with a tuned mass damper was adopted (Fig. 4). It has been assumed that
the adopted frequency is equal to ωbr1 = 5.2 rad/s. In the case of assumptions
formulated in this manner, the following values of the obtained system were
determined in the form:
resonant frequencies

ωbr1 = 5.2
rad
s
, ωbr2 = 6.17

rad
s
,

ωbr3 = 14.16
rad
s
, ωbr4 = 21.63

rad
s
,

(39)

and coefficient
k = 1.218. (40)

Based on the determined coefficient k the parameters of the tuned mass
damper are selected in accordance with the decomposition of its characteristics
into an elastic and inertial element (41).

ks
s2 + ω2

b1
=

1.218s

s2 + 5.662 =
1.218s

s2 + 32.036

=
1

s
1.218

+
1

0.038s

=
1

s
cTMD

+
1

mTMDs

, (41)
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where: cTMD = 1.218 N/m – value of the elastic element of the tuned mass
damper, mTMD = 0.038 kg – value of the inertial element of the tuned mass
damper.

The sought tuned mass damper that reduces the first form of natural vibrations
in the system is assumed to be attached to the inertial element m1 (for which the
dynamic characteristics in the form of slowness were determined (36)), which is
shown in Fig. 4.

F3 

F2 

c1 

m1 

mTMD 

c2 

c3 

m2 

m3 

F1 

cTMD 

Figure 4: The resulting model of the system and possible
attachment points of the vibration excitation force

On the basis of the obtained system (Fig. 4) dynamic characteristics in the
form of slowness in the case of the excitation force acting on individual floors of
the building were determined. The results are presented in the form of diagrams
of the inertial elements’ responses in the analysed building. In addition, for each
of the considered cases of attaching the force exciting the first harmonic vibration,
resonance and anti-resonance frequencies (zeros) of the dynamic characteristics
(function of variable s) of the system were determined Y11(s), Y12(s), Y13(s)
responses of the x1(t) inertial element m1 to excitation force F1(t) = F2(t) =
F3(t) = 1 sin(5.66t). As a result of calculations for the excitation force F1(t)
acting on the inertial element m1, resonance frequency values consistent with the
values (39) and the following anti-resonance frequencies were obtained:

ωzr1 = 5.66
rad
s
, ωzr2 = 11.91

rad
s
, ωzr3 = 21.40

rad
s
. (42)



THE USE OF SYNTHESIS METHODS IN POSITION OPTIMISATION AND SELECTION
OF TUNED MASS DAMPER (TMD) PARAMETERS FOR SYSTEMS

WITH MANY DEGREES OF FREEDOM 203

Figure 5 shows the responses of inertial elements of the resulting system
caused by dynamic force F1(s) (Fig. 4) with a frequency equal to the first of
natural vibration of the analysed building.

(a) (b)

(c) (d)

Figure 5: System response to excitation F1(s): a) damper, b) mass element m1, c) mass
element m2, d) mass element m3

In the analysis of the system (Fig. 6) in the case of the excitation force F2(s)
acting on the inertial element m2 the resonance frequency values consistent with
the values (39) and the following anti-resonance frequencies were obtained:

ωzr1 = 5.66
rad
s
, ωzr2 = 18.7

rad
s
. (43)

Below is the response of inertial elements of the system (Fig. 4) caused by
dynamic force with a frequency equal to the first form of natural vibrations of the
analysed building.

As a result of the analysis carried out in the case of the excitation force F3(s)
acting on the inertial element m3 the resonance frequency values consistent with
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(a) (b)

(c) (d)

Figure 6: System response to excitation F2(s): a) damper, b) mass element m1, c) mass
element m2, d) mass element m3

the values (39) and the following anti-resonance frequencies were obtained:

ωzr1 = 5.66
rad
s
. (44)

Figure 7 presents the response of individual inertial elements of the system
(Fig. 4) caused by dynamic force with a frequency equal to the first form of
natural vibration of the analysed building acting on the inertial element m3.

It should be noted that in each of the considered cases of characteristic
functions Y11(s), Y12(s), Y13(s) the zero (anti-resonance frequency) occurs in
ωzr1 = 5.66 rad/s. The value of the repeated resonance frequency indicates the
correctness of the determined parameters of the tuned mass damper. Based on the
calculations carried out, it can be stated that the formulated method enables the
determination of the tuned mass damper’s parameters regardless of the location
of the excitation force. The figures below show the dynamic characteristics de-
termined for a system with a tuned mass damper (Fig. 8b–Fig. 8d) in the case of
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(a) (b)

(c) (d)

Figure 7: System response to excitation F2(s): a) damper, b) mass element m1, c) mass
element m2, d) mass element m3

a different attachment of dynamic force compared to the characteristics (Fig. 8a)
of the output object.

In the case of determined values of parameters of an inertial and elastic tuned
mass damper, the value of the potential damping type element was calculated
assuming that its value is directly proportional to the obtained value cTMD =
1.218 N/m.

bTMD = αcTMD = 0.0609
Ns
m
. (45)

The primary system with a designated damper, taking into account a damping
double-connector with the value of bTMD connected in parallel with the elastic
element cTMD (Voigt-Kelvin), was subjected to random white noise loading with
value 1.00 for height of PSD and 0.003 for correlation time of noise. As the result
of the analysis, a response of the system on the inertial element m1 to which the
TMD was suspended was obtained, as shown in Fig. 9b.
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(a) (b)

(c) (d)

Figure 8: Dynamic characteristics Y (ω) m/N of the basic system (a) and a system with a
damper (b, c, d) as a function of frequency ω rad/s: a) susceptibility of the basic system,
b) susceptibility of the system with a damper Y11(s), c) susceptibility of the system with
a damper Y12(s), d) susceptibility of the system with a damper Y13(s)

(a) (b)

Figure 9: System response to random forcing of the primary system (a) and the system
with a TMD (b)
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A comparison of the described method (blue line) with the classic method
of selecting eliminator parameters (red line) was also carried out (Fig. 10). The
functions were determined according to the relationships derived in [14]. In both
cases, dynamic characteristics were generated for identical mass and damping
factor of the eliminator. The characteristic function of the mobility Y (ω) m/N,
the mechanical impedance V (ω) m/sN and accelerance inertance A(ω) m/s2N
are shown in Fig. 10.
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Figure 10: Comparison of TMD tuning methods to the first harmonic ωzr1 = 5.66 rad/s:
a) the mobility Y (ω) m/N, b) the mechanical impedance V (ω) m/sN, c) the accelerance
inertance A(ω) m/s2N

4. Conclusions

The paper aims at formulating and formalising the general method of selecting
parameters of a tuned mass damper for vibrating systems with n> 2 degrees of
freedom. The parameters of the analysed building were selected so as to present
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the process of selecting the damper’s parameters in a clear way. This does not
mean, however, that the considered system cannot have other values of its inertial,
elastic or energy dissipating elements. As can be seen from the calculations
carried out, the presented method concerns not only the determination of the
tuned mass damper reducing the first form of natural vibrations of the analysed
building, but also subsequent forms. In the case of discrete systems, this number
may be equal to the number of degrees of freedom of the analysed building.
Another of the advantages of the formulated method is the reduction of several
forms of the building’s natural vibrations by attaching to it an additional system
with a number of degrees of freedom corresponding to the number of resonant
frequencies reduced. In addition, as demonstrated in the paper, the location of the
excitation force in the system does not matter in the method used. The damper’s
parameters are selected so that in each case the tuned mass damper will always
reduce the desired frequency. Based on the above, it can be concluded that in
the event of an excitation force acting only at the point of attachment of the
designated damper, the vibration reduction system can be mounted to any mass,
and its values multiplied by any factor whose value does not exceed a value the
mass of the entire system. The determined TMD parameters can be successfully
applied to any level of the considered system, however, these parameters will not
be optimal. In order to adjust the eliminator parameters with regard to its location,
consider the input–output characteristics of the system at the TMD connection
point and then determine its parameters. The place of attachment of the tuned
mass damper, i.e. the inertial element of the basic system, affects the values of
the damper’s parameters. They are then directly proportional to the mass value
and depend on the zeros of the dynamic characteristic. The presented method
can be successfully used in conjunction with the currently popular inverters. In
the case of reduction of vibrations in tall structures caused by earthquakes or
wind gusts (random forcing), the selection of tuned mass damper can be made
in the form of an additional system with a number of degrees of freedom equal
to the next first significant forms of natural vibrations of the analysed building
(structure).
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