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Abstract. Polyester coatings are among the most commonly used types of powder paints and present a wide range of applications. Apart 
from its decorative values, polyester coating successfully prevents the substrate from environmental deterioration. This work investigates the 
cavitation erosion (CE) resistance of three commercial polyester coatings electrostatic spray onto AW-6060 aluminium alloy substrate. Effect 
of coatings repainting (single- and double-layer deposits) and effect of surface finish (matt, silk gloss and structural) on resistance to cavitation 
were comparatively studied. The following research methods were used: CE testing using ASTM G32 procedure, 3D profilometry evaluation, 
light optical microscopy, scanning electron microscopy (SEM), optical profilometry and FTIR spectroscopy. Electrostatic spray coatings present 
higher CE resistance than aluminium alloy. The matt finish double-layer (M2) and single-layer silk gloss finish (S1) are the most resistant to 
CE. The structural paint showed the lowest resistance to cavitation wear which derives from the rougher surface finish. The CE mechanism of 
polyester coatings relies on the material brittle-ductile behaviour, cracks formation, lateral net-cracking growth and removal of chunk coating 
material and craters’ growth. Repainting does not harm the properties of the coatings. Therefore, it can be utilised to regenerate or smother the 
polyester coating finish along with improvement of their CE resistance.
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1. INTRODUCTION
Continuous demand for increasing wear resistance of engi-
neering components stimulates the development of organic and
polymer coating systems and motivates the research into broad-
ening the application of engineering materials [1–3]. Metal-
lic and polymer materials performance is increased using sur-
face engineering technologies and coatings deposition [3–6].
Generally, the coating is the outer layer of the material, pro-
duced in a natural or artificial way and differing from it in
terms of its physicochemical properties or structure [7, 8]. Elec-
trostatic spray polyester coatings are among the most com-
monly used types of paints [9]. They are characterised by
good corrosive and mechanical properties. The widespread use
of polyester coatings is linked with such advantages as rela-
tively simple technology, reasonable price, satisfactory resis-
tance against various environmental interactions, high quality
surface, including aero- and hydrodynamic smoothness, and
last, but not least – aesthetic features.

The durability of paint coatings depends on the material ag-
ing properties, resistance to mechanical factors and the degree
of environmental aggressiveness [10, 11]. Application of pro-
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tective polyester based coatings systems is a promising candi-
date to prevent elements of machines and devices operating in
conditions of abrasive [12], erosive [13], and corrosive [14] de-
terioration, it seems an effective technique for increasing the
durability of elements in different industrial sectors [15]. The
protective polymer-based coatings allow combining the advan-
tageous properties of deposited layer and substrate. Moreover
the cost of regenerating elements of devices and machines is
usually much lower than manufacturing, it is a practice often
used in industry [16]. Regeneration by second layer deposition,
in addition to restoring functional properties, can simultane-
ously increase the durability of the protected objects even sev-
eral times. Still, the coatings with regenerated layer or double-
layer systems of polymer coatings are not sufficiently discussed
in the current papers.

Due to good mechanical properties, low density, corro-
sion resistance, good thermal, and electrical conductivity, alu-
minium alloys are an important construction material in the
aviation, automotive, shipbuilding, chemical and food indus-
tries, but also in construction and architecture. Unfortunately,
general aluminium alloys wear behaviour is considered as rel-
atively poor [17, 18]. The application of polymer coatings is
considered an easy for deposition and cost-effective idea for in-
creasing the operation time of aluminium based structures. Alu-
minium components can be easily covered by electrostatic de-
position of coatings. Deposits made of powder feedstock based
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on polyester resin are usually used as a coating material for
civil engineering purposes. These structures can be cleaned by
high-pressure water fluids, and the cleaning process can re-
sult in appearance of erosive droplet impingement or cavitation
wear. Consequently, polyester coatings can be damaged. How-
ever, the water droplet impingement erosion and CE resistance
of electrostatic spray polyester coatings seems not sufficiently
discussed by the up-to-date literature.

Moreover, the main deterioration processes present in fluid
machinery are corrosion, erosion by solid particle, erosion by
liquid (water droplet impingement erosion) and erosion by fluid
namely, CE. Many research papers are referring to the corro-
sive and solid particle erosion of organic coatings, in turn, the
droplets and CE studies are limited. It is known that polyester
coatings cannot easily compete with such polymer and compos-
ite products like Belzona, MetalClad, CeramAlloy, or FLEX-
ICLAD, Duratough. Moreover, the authors are aware about
PVD, HVOF and other highly advanced technologies for anti-
cavitation coatings deposition. Therefore, polyester coatings
can be hardly recommended as a protection against CE of
hydraulic machinery and equipment while they can be rec-
ommended for protection against mild CE or regeneration of
slightly damaged surfaces like yacht hulls or motor-boat rud-
ders.

Despite the fact that the cavitation damage of plastics is de-
scribed by scientific papers [19–21], there is especially little
literature focusing on polyester materials. Moreover, the ero-
sion mechanism is well discussed for epoxy-based materials
[22, 23] but not for polyester electrostatic spray coatings. Gen-
erally, the literature referring to the CER of polyester mate-
rials is scant. Exemplary, Hibi et al. [24] investigated epoxy,
unsaturated polyester, Polycarbonate, and acrylic resin. Tests
were conducted under various tensile stress conditions (Tensile-
Cavitation test) using ASTM G32 procedure however, the re-
lationship between stress and erosion initiation time has not
been stated. Besides, it was noted that the samples manufac-
turing process (moulding) of the polymers (epoxy resin) gener-
ates material nonuniformities which affect the wear resistance
of the polymers. Authors stressed that initial mixed voids and
micro cracks by CE resulted in macroscopic cracks. Further-
more, polymer-based materials CE resistance is compared with
the resistance of metallic structures. In the Taillon et al. work
[25] the fibre reinforced composite material (polyallylate fibre,
commercially registered as "Vectran", chemically it is an aro-
matic polyester) was investigated using a cavitating jet appara-
tus inspired by the ASTM G134 standard. It is reported that
the erosion rate of Vectran is close to that of aluminium al-
loy (A7075), but compared with SUS304 stainless steel and
aluminium bronze, the erosion rate of the composite material
is significantly higher. Summing up, the literature survey indi-
cates limited data about CE damage mechanism of electrostatic
sprayed polyester coatings.

Moreover, damaged polyester coatings can be renovated
by repainting. Taking into consideration the proposed fluid-
environment operation of polyester coatings, it is worth to in-
vestigate the effect of repainting on the functional properties of
coatings. It can be done especially by conducting CE or wa-

ter droplet impingement erosion tests. Besides, the literature
survey indicates scant information about the CE mechanism of
polyester coatings with different coatings finish. This work fills
the lack of knowledge regarding CE testing of electrostatic de-
posited polyester coatings.

The goal of this study was to investigate the CE resistance
of electrostatically sprayed polyester coatings. The results were
compared with those of the reference sample manufactured of
AW-6060 aluminium alloy. Also, the effect of repainting on
CE was investigated. The three different surface finish coatings
(matt, silk gloss, and fine structure surfaces) damage mech-
anisms were compared. The effect of cavitation on polyester
coatings structure development was examined using FTIR and
the wear mechanism was analysed basing on SEM and pro-
filometry.

2. MATERIALS AND METHODS
2.1. Materials
The current work focuses on the research of three types of
polyester powder paints consisting of single- and double-layers
(repainted) deposited using electrostatic spray onto the alu-
minium base, grade EN AW-6060 (AlMgSi), marked as B. This
is a typical alloy used as a substrate in real-life application
of electrostatic spraying of polyester coatings. The prepara-
tion details are given in our previous work [16] while sample
names are given in Table 1. Three commercial polyester pow-
der coatings were deposited: IGP-DURA® face 5803 (marked
as M), IGP-DURA® face 5807 (marked as S) and TIGER Dry-
lac®Series 29 (named as R). The samples covered with a single
layer of paint were marked with the symbols M1, S1 and R1 and
with a double layer of paint (electrostatic spray repainted) were
marked as follows M2, S2 and R2. Deposited electrostatic pow-
der coatings differ in thickness, finish and consequently with
surface morphology, see Table 1.

Table 1
Sample description and selected coatings properties

Sample
code

Sample code
acc. to [16] Layer

Thickness,
µm

Coating
surface finish

M1 1.1 single 60–110
Matt

M2 1.2 double 130–210

S1 2.1 single 60–90
Silk gloss

S2 2.2 double 100–150

R1 3.1 single 60–140 Fine structure,
mattR2 3.2 double 170–260

2.2. Methods
This study continues the research previously published in the
paper [16] where the surface morphology, cross-section mi-
crostructure and coatings mechanical properties such as cup-
ping, bending, impact, adhesion to substrate tests were exam-
ined for single and double layer polyester coatings. In the cur-
rent work we employed the IR-specroscopy, optical profilome-
try, SEM microscopy to evaluate the CE of polyester coatings.
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IR-spectroscopy. The FTIR spectroscopy is a very efficient
and cost-effective method for identifying the chemical structure
of organic materials. This analysis is based on the study of the
intensity and position of the spectral bands characteristic for the
functional groups present in the molecule. The location of the
bands is closely related to the molecular structure of the tested
materials [26, 27]. The aim of the research was the chemical
characterization and observation of the effect of the cavitation
process on the chemical structure of the tested polyester paints.
The tests were performed using the ATR (Attenuated Total Re-
flectance) technique. The ATR spectra of the surface layer of
the tested samples were recorded using an attachment with a
diamond crystal. A Thermo Nicolet 8700 FTIR spectrometer
with a Smart Orbit ™ diamond ATR attachment and a DTGS
(Deuterated Triglycine Sulphate) detector was used to record
the spectra. The tests were carried out in the wavenumber range
4000-400 cm-1 and spectral resolution of 4 cm-1. Spectra were
recorded at room temperature, directly from the surface of the
samples. ATR spectra were subjected to ATR correction, base-
line correction and scaled normalization.

Microscopic analysis. In order to characterise the surfaces of
polyester coatings, the tests of the obtained polyester coatings
were performed using scanning electron microscopy (SEM).
Particular attention was paid to the surfaces’ morphology de-
pending on the number of applied layers. The tests were car-
ried out using a scanning electron microscope Quanta 3D FEG
(FEI). Microscopic images were taken at 5.00 kV with an EDT
detector. There were the following magnifications: ×2500 and
×10000 applied. In order to analyse surface damage, the obser-
vations were performed before and after the cavitation process
using the SMZ 1500 optical microscope (Nikon) and Phenom-
World ProX microscope (SEM), with back-scatter electron
mode with 10 kV accelerating voltage of electron beam pen-
etration.

Optical profilometry. The optical profilometry analyses
were performed using the Countour GT-K1 optical profilome-
ter (Veeco) based on the VXI technique with the 5× magnifi-
cation lens. Surface microgeometry maps were examined in the
area of 2.3 mm×1.7 mm. The surface tests were carried out for
single and double layers of polyester coatings before and after
the cavitation process. The roughness parameters such as arith-
metic mean deviation (Ra), root mean square deviation (Rq),
maximum peak to valley (Rt) of the profile were determined
according to literature and ISO 4287 standard recommenda-
tions [28–30].

Standard Test Method for Cavitation Erosion. The cavita-
tion resistance tests were carried out in accordance with ASTM
G32 [31] using stationary specimen method described else-
where [32]. The gap between the sonotrode and the sample
was set at 1 mm ± –0.05 mm. The distilled water was main-
tained at 24± 2◦C temperature, and gas content was stabilised
for 30 minutes before testing. The total test time lasted 10 min-
utes. The samples were weighed with accuracy of 0.1 mg af-
ter the following exposure time intervals: 1, 3, 6 and 10 min-
utes. To calculate the erosion, depth of polyester-based sam-
ples and AW-6060 aluminium alloy (reference sample), density
of 1.5 g/cm3 and 2.7 g/cm3 was used, respectively. Cumulative

erosion rate curves were estimated by dividing the cumulative
erosion rate at a specified point in the erosion test by the corre-
sponding cumulative exposure duration. After the test, the ero-
sion mechanism was examined using SEM.

3. RESULTS AND DISCUSSION
In the previous study, the electrostatic powder coatings mi-
crostructure, roughness, and mechanical properties were com-
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IR-spectroscopy. The FTIR spectroscopy is a very efficient
and cost-effective method for identifying the chemical structure
of organic materials. This analysis is based on the study of the
intensity and position of the spectral bands characteristic for the
functional groups present in the molecule. The location of the
bands is closely related to the molecular structure of the tested
materials [26, 27]. The aim of the research was the chemical
characterization and observation of the effect of the cavitation
process on the chemical structure of the tested polyester paints.
The tests were performed using the ATR (Attenuated Total Re-
flectance) technique. The ATR spectra of the surface layer of
the tested samples were recorded using an attachment with a
diamond crystal. A Thermo Nicolet 8700 FTIR spectrometer
with a Smart Orbit ™ diamond ATR attachment and a DTGS
(Deuterated Triglycine Sulphate) detector was used to record
the spectra. The tests were carried out in the wavenumber range
4000-400 cm-1 and spectral resolution of 4 cm-1. Spectra were
recorded at room temperature, directly from the surface of the
samples. ATR spectra were subjected to ATR correction, base-
line correction and scaled normalization.

Microscopic analysis. In order to characterise the surfaces of
polyester coatings, the tests of the obtained polyester coatings
were performed using scanning electron microscopy (SEM).
Particular attention was paid to the surfaces’ morphology de-
pending on the number of applied layers. The tests were car-
ried out using a scanning electron microscope Quanta 3D FEG
(FEI). Microscopic images were taken at 5.00 kV with an EDT
detector. There were the following magnifications: ×2500 and
×10000 applied. In order to analyse surface damage, the obser-
vations were performed before and after the cavitation process
using the SMZ 1500 optical microscope (Nikon) and Phenom-
World ProX microscope (SEM), with back-scatter electron
mode with 10 kV accelerating voltage of electron beam pen-
etration.
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the cavitation process. The roughness parameters such as arith-
metic mean deviation (Ra), root mean square deviation (Rq),
maximum peak to valley (Rt) of the profile were determined
according to literature and ISO 4287 standard recommenda-
tions [28–30].

Standard Test Method for Cavitation Erosion. The cavita-
tion resistance tests were carried out in accordance with ASTM
G32 [31] using stationary specimen method described else-
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examined using SEM.
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trostatic deposited polyester coatings mitigate the aluminium
substrate damage. Polyester coatings present lower cumulative
loss (Fig. 1) and mean erosion depth (Fig. 2) than reference alu-
minium alloy. The highest CE resistance was obtained for M2
coating.

Fig. 3. Cumulative erosion rate curves

On the other hand, the R1 coating presents more than five
times higher mass loss than M2 coating. The repainting does
not act beneficially in case of S2 coating, in the case of R2,
the second layer slightly decrease the mass loss while depo-
sition of the second layer onto almost 4 times increased the
wear resistance of M2 polyester coating. S and M type coat-
ings present higher erosion resistance than R coatings. Analy-
sis of erosion curves indicates that aluminium alloy incubation
period lasts for 3 minutes, and further erosion accelerates with
higher erosion rate than for polyester coatings (Fig. 3). The in-
cubation period of the coatings lasts 3 to 5 minutes and after
that, the erosion accelerates. The M2 coating exhibits the low-
est cumulative erosion rate (13.2 mm3/h) which was almost 2
times those noted for S1 (26 mm3/h), Fig. 4. Erosion rate of
other samples presents more than 50 mm3/h (for coatings) and
the highest value of 84.2 mm3/h was noted in the case of alu-
minium.

3.2. The CE performance of coatings
The microscopic examination showed development of the ex-
amined materials surface as a result of the cavitation pro-
cess. The optical microscopy suggests different coating mate-
rial degradation, see Fig. 4, and limited material flake off was
observed for M2 coatings. Other coatings present high rate of
detachment. The profilometry analysis (Fig. 5 and Fig. 6) con-
firmed different tested samples initial surface finish. Samples
R1 and R2 are significantly rougher than M1, M2, S1 and S2
which are characterised by a much more homogeneous sur-
face morphologies. S-type coatings roughness was at the com-
parable level with the reference aluminium sample (Table 2
and Table 3). Overall, apart from the M2 sample, substrate ex-
posure was clearly seen in Fig. 4. Thus, M2 adheres well to
aluminium substrate and undergoes severe surface roughening.
The other polyester coatings were partly removed which facili-
tates the aluminium substrate erosion (see Fig. 4). Wear mech-
anism of the aluminium alloys differs from erosion mechanism

Fig. 4. Surfaces before (left) and after the cavitation process (right)

of polyester coatings. Overall aluminium alloys damage mech-
anism relies on plastic deformation of Al-rich solid solution and
removal of deformed material [18, 35, 36].

The results of the CE resistance of materials are usually af-
fected by the surface morphology and it is generally claimed
that the surface uniformity acts beneficially for resistance to CE
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Fig. 5. Microgeometry maps of base: before (left image) – B1 and after the
cavitaton erosion (right image) – B1-k (vertical scale ragne 300 um)

Table 2
Roughness of the base material B (aluminum alloy) before and after cavitation

erosion testing (marked as B1-k)

Base B1 B1-k

Ra = 0.33 µm Ra = 66.83 µm

Roughness parameters Rq = 0.44 µm Rq = 82.67 µm

Rt = 17.41 µm Rt = 460.65 µm

Table 3
Roughness of polyester coating before and after (name ended with “-k”) cavi-

tation erosion testing

Polyester coating M1 M1-k M2 M2-k

Roughness
parameters (µm)

Ra = 1.09 Ra = 22.5 Ra = 1.16 Ra = 12.12

Rq = 1.34 Rq = 27.54 Rq = 1.50 Rq = 19.70

Rt = 22.17 Rt = 318.92 Rt = 13.79 Rt = 263.24

Polyester coating R1 R1-k R2 R2-k

Roughness
parameters (µm)

Ra = 6.65 Ra = 12.97 Ra = 4.87 Ra = 28.58

Rq = 9.07 Rq = 18.73 Rq = 6,71 Rq = 36.31

Rt = 157.51 Rt = 265.49 Rt = 82.45 Rt = 308.50

Polyester coating S1 S1-k S2 S2-k

Roughness
parameters (µm)

Ra = 0.45 Ra = 14.07 Ra = 0.34 Ra = 26.82

Rq = 0.56 Rq = 21.21 Rq = 0.43 Rq = 34.50

Rt = 18.54 Rt = 306.38 Rt = 11.28 Rt = 277.57

[37, 38]. The tested polyester coatings R1 and R2 are charac-
terised by significantly higher surface roughness compared to
the samples M1, M2, S1 and S2. The arithmetic average rough-
ness for a single layer of paint is Ra = 6.65 µm. The tests also
exhibited that after application of the second paint layer, the sur-
face roughness decreased to Ra = 4.87 µm. An analogous situ-
ation was observed for the paints S1 and S2. The roughness pa-
rameters decreased after the second paint layer application. The
arithmetic average roughness was reduced from Ra = 0.45 µm
to Ra = 0.34 µm. The maximum height of the profile also de-
creases significantly from Rt = 18.54 µm to Rt = 11.28 µm. In
contrary to previous 2D measurements it seems that 3D optical
profiler analysis confirms that repainting smooths the coating
finish and decreasing the Rt parameter.

The tests based on the optical profilometry were also aimed
at observing the surface and determining the roughness parame-
ters after the cavitation process. They showed an increase in the
roughness parameters of all tested samples after the cavitation
process. It was observed for both single and double paint layers.

Fig. 6. Microgeometry maps before (on the left) and after (on the right) the
cavitation erosion (different vertical scale ranges)

Generally, the initial surface finish affects the CE resistance.
Therefore, the roughest R-type coatings present severe cavita-
tion damage. Although no correlation between the initial abso-
lute surface roughness Ra, Rq and Rt and CE indicators were
confirmed, a relationship between the cavitation damage and
increase of Rt roughness parameters was signalised. It seems
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the samples M1, M2, S1 and S2. The arithmetic average rough-
ness for a single layer of paint is Ra = 6.65 µm. The tests also
exhibited that after application of the second paint layer, the sur-
face roughness decreased to Ra = 4.87 µm. An analogous situ-
ation was observed for the paints S1 and S2. The roughness pa-
rameters decreased after the second paint layer application. The
arithmetic average roughness was reduced from Ra = 0.45 µm
to Ra = 0.34 µm. The maximum height of the profile also de-
creases significantly from Rt = 18.54 µm to Rt = 11.28 µm. In
contrary to previous 2D measurements it seems that 3D optical
profiler analysis confirms that repainting smooths the coating
finish and decreasing the Rt parameter.

The tests based on the optical profilometry were also aimed
at observing the surface and determining the roughness parame-
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process. It was observed for both single and double paint layers.
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Generally, the initial surface finish affects the CE resistance.
Therefore, the roughest R-type coatings present severe cavita-
tion damage. Although no correlation between the initial abso-
lute surface roughness Ra, Rq and Rt and CE indicators were
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that the coatings which present higher mass losses display much
uniformity and less roughening of damaged area. This can be a
result of coatings flake off and aluminium substrate exposure
(Fig. 7).

Fig. 7. The change rate of the surface roughness Rq and Rt parmeteres due to
cavitation (estimated for coatings)

For the chemical characterisation of 3 polyester coatings
FTIR-ATR spectra were analysed. The spectra show the spec-
imens for single and double polyester coatings. Figures 8–10
present the FTIR spectra made by the ATR technique of the
polyester paints tested before the cavitation. The tests showed
no differences in the FTIR-ATR spectra of polyester paints de-
pending on the number of applied layers (Figs. 8–10). In the
FTIR-ATR of the spectra samples M1, M2, R1, R2, S1 and
S2 before the cavitation process, the bands in the range 2970–
2850 cm−1 were observed. They correspond to the stretching
vibrations of the C-H groups. At the wavenumbers in the 1760–
1690 cm−1 range, an intense band corresponding to the stretch-
ing vibrations of the C = O groups characteristic of ester com-
pounds occurred. The spectra also showed the presence of in-
tense bands corresponding to the stretching vibrations of the

Fig. 8. The FTIR-ATR spectra of the samples M1 and M2 before and after the
cavitation marked as M1-k and M2-k

Fig. 9. The FTIR-ATR spectra of the samples R1 and R2 before and after the
cavitation marked as R1-k and R2-k

Fig. 10. The FTIR-ATR spectra of the samples S1 and S2 before and after the
cavitation marked as S1-k and S2-k

C-O groups in the range of 1300–1050 cm−1. These bands are
also characteristic of ester compounds. In the FTIR-ATR spec-
tra, the bands in the range of the wavenumbers 730–675 cm−1

corresponding to the non-planar deformation vibrations of C-H
groups were also observed [39–41]. Spectroscopic studies also
suggest the highest contents of O-H groups in the R1 and R2
samples as evidenced by the most intense band in the range
of the wavenumbers 3650–3200 cm−1. Summing up, the re-
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painting process does not change the FTIR-ATR spectra of each
polyester coating.

The spectroscopic investigations after the CE process showed
the presence of bands characteristic of the tested polyester
paints. The conducted analyses also showed differences in the
signal intensity in the case of matt and silk gloss paints in the
wavenumber range 2970–2850 cm−1, corresponding to the C-
H stretching vibrations. Besides, such changes seem to most
visible in case of the R2 sample (Fig. 9). This may indicate the
breakdown of polymer chains due to cavitation.

3.3. Cavitation erosion mechanism
SEM examinations of deposited coatings and the eroded
polyester coatings due to the cavitation process are shown in
Figs. 11 and 12, respectively.

Fig. 11. Microscopic images before the cavitation erosion test

The microscopic research confirmed differences in the sur-
face structure of the tested polyester coatings. The samples R1
and R2 are significantly rougher than other tested materials.
Moreover, the second layer deposition results in the occurrence
of pits. These cavities may have been a result of voids forma-
tion during the deposition of the next paint layers. It conforms
to our previous study [16], where the porosity in R-type coat-
ings was confirmed. Deposition of the second layer smooths
the surface of M2 and S2 which agrees with the optical pro-
filer results and surface morphology emoluments. The uniform
surface morphology affects the higher erosion resistance of S

and M-type coatings. It is known that rougher surfaces usually
undergo much more severe cavitation damage. The CE mecha-
nism of polymer coatings can be read from Fig. 12.

The SEM microscopic examination showed severe damage
of R-coatings. Long, narrow cracks approximately 5 µm wide
and approximately 30 µm long were observed for the M1 coat-
ing. For the R1 coating, long, narrow pits and areal material de-
tachment of about 20 by 30 µm size were observed. In the case
of the S1 coating, long, narrow cracks and losses of approxi-
mately 30 by 20 µm as well as deep pitting were observed.

Ning et al. [21] indicate that adhesion and coating thickness
are factors that have a crucial effect on epoxy resin CE resis-
tance. On the other hand, in the case of Ultra High Molecular
Weight Polyethylene (UHMWPE) Deplanes et al. [20] stated
that the thickness of the polymer coating does not appear to
affect damage in the investigated range from 2 mm to 4 mm.
Similarly, in our study, the influence of repainting on the resis-
tance to CE has not been stated. Findings obtained in the current
paper also confirmed that coatings surface finish (initial surface
morphology) shows a predominant effect on the CE resistance
of polyester coatings. The SEM microscopic tests showed sig-
nificant differences in the resistance to cavitation wear, depend-
ing on the type of polyester surface finish used. In the case of
matt and textured paints, it was also observed that the applica-
tion of the second layer of paint significantly reduced weight
loss due to the cavitation process. This effect was not visible
on the S2, which may be attributed to the low first-layer surface
roughness, and lower adhesion of the second layer to the first
layer. The second-layer detachment is visible in Fig. 12.

Generally, the erosion mechanism of polyester coatings re-
lies on the material brittle-ductile behaviour, cracks formation,
lateral net-cracking growth and removal of chunk coating ma-
terial and formation of craters. Presence of the second phases
in polyester binder acts as the centre of erosion. The cracking
and polyester-binder removal initiates in the vicinity of second
phase particles, which agrees with the findings given by Chi
et al. [22], who claimed that the fillers and glass flakes of the
epoxy-based coatings play a negative role in CE resistance.

Cavitation cyclic impacts due to fluid micro-jets and pres-
sure waves induce the fatigue and fragmentation of coating ma-
terial, connecting of the cracks (net-cracking), and poorly co-
hered material chunks detachment. Finally, polyester coating is
spalling (pit-formation) and the metallic substrate is exposed
to CE. The fracture of M and S samples display brittle-ductile
mode while the R-type coatings present predominantly brittle
behaviour. The ductile wear and uniform surface finish slow the
erosion rate; therefore, the R-type coating is not recommended
for anti-cavitation applications.

Summing up, the repainting, by the electrostatic spray of the
second layer of polyester material reduces Rt roughness param-
eter and does not reduce the coatings CE resistance. In fact,
polyester coatings can be hardly recommended as a protection
against CE of hydraulic machinery and equipment. Although
such protection against mild cavitation may be considered their
secondary task. Moreover, polyester coatings can be success-
fully utilised for regenerating the equipment operated in condi-
tions of cavitation loads.
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the presence of bands characteristic of the tested polyester
paints. The conducted analyses also showed differences in the
signal intensity in the case of matt and silk gloss paints in the
wavenumber range 2970–2850 cm−1, corresponding to the C-
H stretching vibrations. Besides, such changes seem to most
visible in case of the R2 sample (Fig. 9). This may indicate the
breakdown of polymer chains due to cavitation.

3.3. Cavitation erosion mechanism
SEM examinations of deposited coatings and the eroded
polyester coatings due to the cavitation process are shown in
Figs. 11 and 12, respectively.

Fig. 11. Microscopic images before the cavitation erosion test

The microscopic research confirmed differences in the sur-
face structure of the tested polyester coatings. The samples R1
and R2 are significantly rougher than other tested materials.
Moreover, the second layer deposition results in the occurrence
of pits. These cavities may have been a result of voids forma-
tion during the deposition of the next paint layers. It conforms
to our previous study [16], where the porosity in R-type coat-
ings was confirmed. Deposition of the second layer smooths
the surface of M2 and S2 which agrees with the optical pro-
filer results and surface morphology emoluments. The uniform
surface morphology affects the higher erosion resistance of S

and M-type coatings. It is known that rougher surfaces usually
undergo much more severe cavitation damage. The CE mecha-
nism of polymer coatings can be read from Fig. 12.
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and approximately 30 µm long were observed for the M1 coat-
ing. For the R1 coating, long, narrow pits and areal material de-
tachment of about 20 by 30 µm size were observed. In the case
of the S1 coating, long, narrow cracks and losses of approxi-
mately 30 by 20 µm as well as deep pitting were observed.

Ning et al. [21] indicate that adhesion and coating thickness
are factors that have a crucial effect on epoxy resin CE resis-
tance. On the other hand, in the case of Ultra High Molecular
Weight Polyethylene (UHMWPE) Deplanes et al. [20] stated
that the thickness of the polymer coating does not appear to
affect damage in the investigated range from 2 mm to 4 mm.
Similarly, in our study, the influence of repainting on the resis-
tance to CE has not been stated. Findings obtained in the current
paper also confirmed that coatings surface finish (initial surface
morphology) shows a predominant effect on the CE resistance
of polyester coatings. The SEM microscopic tests showed sig-
nificant differences in the resistance to cavitation wear, depend-
ing on the type of polyester surface finish used. In the case of
matt and textured paints, it was also observed that the applica-
tion of the second layer of paint significantly reduced weight
loss due to the cavitation process. This effect was not visible
on the S2, which may be attributed to the low first-layer surface
roughness, and lower adhesion of the second layer to the first
layer. The second-layer detachment is visible in Fig. 12.

Generally, the erosion mechanism of polyester coatings re-
lies on the material brittle-ductile behaviour, cracks formation,
lateral net-cracking growth and removal of chunk coating ma-
terial and formation of craters. Presence of the second phases
in polyester binder acts as the centre of erosion. The cracking
and polyester-binder removal initiates in the vicinity of second
phase particles, which agrees with the findings given by Chi
et al. [22], who claimed that the fillers and glass flakes of the
epoxy-based coatings play a negative role in CE resistance.

Cavitation cyclic impacts due to fluid micro-jets and pres-
sure waves induce the fatigue and fragmentation of coating ma-
terial, connecting of the cracks (net-cracking), and poorly co-
hered material chunks detachment. Finally, polyester coating is
spalling (pit-formation) and the metallic substrate is exposed
to CE. The fracture of M and S samples display brittle-ductile
mode while the R-type coatings present predominantly brittle
behaviour. The ductile wear and uniform surface finish slow the
erosion rate; therefore, the R-type coating is not recommended
for anti-cavitation applications.

Summing up, the repainting, by the electrostatic spray of the
second layer of polyester material reduces Rt roughness param-
eter and does not reduce the coatings CE resistance. In fact,
polyester coatings can be hardly recommended as a protection
against CE of hydraulic machinery and equipment. Although
such protection against mild cavitation may be considered their
secondary task. Moreover, polyester coatings can be success-
fully utilised for regenerating the equipment operated in condi-
tions of cavitation loads.
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and R2 are significantly rougher than other tested materials.
Moreover, the second layer deposition results in the occurrence
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tance. On the other hand, in the case of Ultra High Molecular
Weight Polyethylene (UHMWPE) Deplanes et al. [20] stated
that the thickness of the polymer coating does not appear to
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matt and textured paints, it was also observed that the applica-
tion of the second layer of paint significantly reduced weight
loss due to the cavitation process. This effect was not visible
on the S2, which may be attributed to the low first-layer surface
roughness, and lower adhesion of the second layer to the first
layer. The second-layer detachment is visible in Fig. 12.
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lies on the material brittle-ductile behaviour, cracks formation,
lateral net-cracking growth and removal of chunk coating ma-
terial and formation of craters. Presence of the second phases
in polyester binder acts as the centre of erosion. The cracking
and polyester-binder removal initiates in the vicinity of second
phase particles, which agrees with the findings given by Chi
et al. [22], who claimed that the fillers and glass flakes of the
epoxy-based coatings play a negative role in CE resistance.

Cavitation cyclic impacts due to fluid micro-jets and pres-
sure waves induce the fatigue and fragmentation of coating ma-
terial, connecting of the cracks (net-cracking), and poorly co-
hered material chunks detachment. Finally, polyester coating is
spalling (pit-formation) and the metallic substrate is exposed
to CE. The fracture of M and S samples display brittle-ductile
mode while the R-type coatings present predominantly brittle
behaviour. The ductile wear and uniform surface finish slow the
erosion rate; therefore, the R-type coating is not recommended
for anti-cavitation applications.

Summing up, the repainting, by the electrostatic spray of the
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SEM (scanning electron microscopy) examinations of deposited 
coatings and the eroded polyester coatings due to the cavitation 
process are shown in Figs. 11 and 12, respectively.

Ning et al. [21] indicate that adhesion and coating thickness 
are factors that have a crucial effect on epoxy resin CE resis-
tance. On the other hand, in the case of ultra high molecular 
weight polyethylene (UHMWPE) Deplanes et al. [20] stated that 
the thickness of the polymer coating does not appear to affect 
damage in the investigated range from 2 mm to 4 mm. Similarly, 
in our study, the influence of repainting on the resistance to CE 
has not been stated. Findings obtained in the current paper also 
confirmed that coatings surface finish (initial surface morphol-
ogy) shows a predominant effect on the CE resistance of poly-
ester coatings. The SEM microscopic tests showed significant 
differences in the resistance to cavitation wear, depending on 
the type of polyester surface finish used. In the case of matt 
and textured paints, it was also observed that the application of 
the second layer of paint significantly reduced weight loss due 
to the cavitation process. This effect was not visible on the S2, 
which may be attributed to the low first-layer surface roughness, 
and lower adhesion of the second layer to the first layer. The 
second-layer detachment is visible in Fig. 12.

Generally, the erosion mechanism of polyester coatings relies 
on the material brittle-ductile behaviour, cracks formation, lat-
eral net-cracking growth and removal of chunk coating mate-
rial and formation of craters. Presence of the second phases in 
polyester binder acts as the centre of erosion. The cracking and 
polyester-binder removal initiates in the vicinity of second phase 
particles, which agrees with the findings given by Chi et al. [22], 
who claimed that the fillers and glass flakes of the epoxy-based 
coatings play a negative role in CE resistance.

Cavitation cyclic impacts due to fluid micro-jets and pres-
sure waves induce the fatigue and fragmentation of coating 
material, connecting of the cracks (net-cracking), and poorly 
cohered material chunks detachment. Finally, polyester coating 
is spalling (pit-formation) and the metallic substrate is exposed 
to CE. The fracture of M and S samples display brittle-ductile 
mode while the R-type coatings present predominantly brittle 
behaviour. The ductile wear and uniform surface finish slow the 
erosion rate; therefore, the R-type coating is not recommended 
for anti-cavitation applications.

Summing up, the repainting, by the electrostatic spray of the 
second layer of polyester material reduces Rt roughness param-
eter and does not reduce the coatings CE resistance. In fact, 
polyester coatings can be hardly recommended as a protection 
against CE of hydraulic machinery and equipment. Although 
such protection against mild cavitation may be considered their 
secondary task. Moreover, polyester coatings can be successfully 
utilised for regenerating the equipment operated in conditions 
of cavitation loads.

Fig. 11. Microscopic images before the cavitation erosion erosion test, SEM
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Fig. 12. Cavitation eroded surfaces of polyester coatings (M1, R1, M2, R2 and S2) and reference aluminium sample (marked as B)
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Fig. 12. Cavitation eroded surfaces of polyester coatings (M1, R1, M2, R2 and S2) and reference aluminium sample (marked as B), SEM
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4.	 CONCLUSIONS
This study aimed to assess the resistance to cavitation erosion 
(CE) of electrostatic spray polyester coatings with different 
surface finish. Also, the repainting effect on CE resistance was 
investigated. The following findings can be stated:
●	Polyester coatings present higher CE resistance than the ref-

erence aluminium alloy AW-6060. The cumulative erosion 
rate for the most resistant to cavitation coating M2 equals 
of 13.2 mm3/h while aluminium sample erosion rate equals 
of 84.2 mm3/h.

●	The highest resistance was noted for M2 (matt finish) and 
S1 (silk gloss finish) more than two times exceeding the CE 
resistance of severe cavitation damaged samples R1 and R2 
(structure matt finish).

●	The cavitation erosion mechanism of polyester coatings 
relies on the material brittle-ductile behaviour, cracks for-
mation, lateral net-cracking growth and removal of chunk 
coating material and formation of craters. Predominating 
brittle mechanism of R-type coatings decreased their ero-
sion resistance.

●	Low roughness surface finish beneficially affects CE resis-
tance of polyester coatings. Repainting, namely the appli-
cation of the second layer of polyester coating, reduces Rt 
roughness parameter and does not affect the coatings resis-
tance to CE. Therefore, it could be successfully utilised for 
regenerating the equipment operated in conditions of cavi-
tation loads.
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