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Abstract
One of difficulties of working with pulse mode detectors is dead time and its distorting effect on measuring
with the random process. Three different models for description of dead time effect are given, these are
paralizable, non-paralizable, and hybrid models. The first two models describe the behaviour of the detector
with one degree of freedom. But the third one which is a combination of the other two models, with two
degrees of freedom, proposes a more realistic description of the detector behaviour. Each model has its
specific observation probability. In this research, these models are simulated using the Monte Carlo method
and their individual observation probabilities are determined and compared with each other. The Monte
Carlo simulation, is first validated by analytical formulas of the models and then is utilized for calculation
of the observation probability. Using the results, the probability for observing pulses with different time
intervals in the output of the detector is determined. Therefore, it is possible by comparing the observation
probability of these models with the experimental result to determine the proper model and optimized
values of its parameters. The results presented in this paper can be applied to other pulse mode detection
and measuring systems of physical stochastic processes.
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© 2021 Polish Academy of Sciences. All rights reserved

1. Introduction

Responses of pulse mode nuclear detectors are discrete in time. Therefore, detection of
a radiation particle as an event engages the detector and its electronics for a period of time. The
detection events in nuclear measurements are random processes of two types, correlated events
like neutrons in a multiplying media, and uncorrelated events like neutrons originated from
a decaying neutron source in a non-multiplying media. Each process has its own randomness
nature. Measuring a stochastic process utilizing a pulse mode detection system with certain dead
time features, distorts the original process [1]. The distortion depends on the detection system
and its timing characteristics. In Fig. 1, the block diagram of a conventional detection system
is shown. It has two main parts, the nuclear detector and nuclear instrumentation modules. The
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input stochastic process, R(t), is measured by the system and the output stochastic process, C(t),
is the result. In an ideal case, both input and output processes are the same. But in a realistic one,
C(t) is a distorted stochastic process of R(t).

Fig. 1. Symbolic demonstration of a conventional nuclear detection system.

A detection system based on a Geiger–Muller detector is taken as an example, as illustrated in
Fig. 2. The detector itself has its own dead time feature. Therefore, after each event the detector
cannot register another event until a certain time which is named “G–M Tube Dead Time” in the
figure. With the passage of time, the internal detector electrical field is gradually recovered until
the time that the amplitude of secondary events can cross the “Discrimination Level” which is
determined by the nuclear instrumentation modules of the detection system. This time is defined
as “Counting System Dead Time” in Fig. 2. A full recovery of the electrical field of the detector
takes a longer time interval which is called “Recovery Time”.

Fig. 2. Timing of a detection event and its following recovery of the detector in a Geiger Muller detection system.

There are three different models proposed in the literature for the dead time of a detection
system [2–4], however, there are other methods of describing and correcting dead time losses
[5–7]. The first one is called the non-paralizable dead time model. In Fig. 3, the behaviour of this
model is shown in a symbolic way.

This figure shows four consecutive events (interaction of the radiation particles with the
detector material) of the measuring stochastic process, R(t). After the first event takes place,
the detector is not involved in the detection process for a while. This duration is named as non-
paralizable dead time, τn, as the detector is not responsible for further interactions in this time
interval. Any advance events do not affect the detector until the period of dead time is passed. As
the first event is the starting event for the dead time process in the detector, it is detected as a valid
event, but the two following events are not counted and are lost. After the dead period of time is
finished, the fourth event starts another dead time process as only valid events can start the dead
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Fig. 3. Non-paralizable dead time model.

time period. In the output of the detection system, C(t), only valid events are observed and events
during the dead time are lost. It has two different effects on the observed stochastic process, i. e.
reduction in the observed count of the detector (abbreviated as m) and distortion on the measuring
stochastic process. The true count of the events, n, is 4, while it is equal to 2 for the observed count.
There are three different time intervals between events, while just a time interval is recorded in
the detector output causing a distortion on the measuring stochastic process. The relation between
true and observed counting rates in non-paralizable dead time model is given as [2]:

n =
m

1 − mτn
. (1)

The second dead time model for pulse mode radiation detectors is the paralizable one. In
Fig. 4, this model is demonstrated representatively. Like the non-paralizable model, four random
events are assumed as the true counts of the measuring stochastic process. The first event engages
the detector for a period of time during which any secondary event is lost and the dead period
is restarted. The second and the third events are lost. As the time interval of the last event, ∆t3,
is greater than τp , this event is counted as a valid one and, consequently, the dead time of the
detection system is also started. The true count (parameter n) in this figure is equal to 4, but the
observation (parameter m which is equal to 2) is different. Paralizable dead time is abbreviated as
τp in Fig. 4. For the paralizable dead time model, the relation between true and observed counting
rates is known as [2]:

m = ne−nτp . (2)
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Fig. 4. Paralizable dead time model.

Based on the physical behaviour of the detection system, a combination of the two models
introduced above, is also considered. This model which is named the hybrid model [3] is shown
in Fig. 5 symbolically. The dead time of the detector is started with non-paralizable dead time
and is followed with a paralizable dead time period. Any event during non-paralizable dead time
is lost without any effect on the detector behaviour. At the same time, if an interaction is occurred
during the paralizable portion of the dead time, the whole dead time process is restarted. The case
shown in Fig. 5, consists of six events in total (as R(t), the measuring stochastic process, n = 6)
in which three of them are lost and the others are counted as valid events (m = 3). There are five
time intervals due to the occurrence of six interactions, but only two of them are recorded. Lee [3]
has investigated and reported the relation between true and observed counting rates in the hybrid
dead time model as below:

m =
ne−nτp

1 − nτn
. (3)

In this research, dead time models are assessed in terms of the distortion caused by their
limitations on short time interval pulses. The observation probability of the input pulses in the
output of the nuclear detection systems is simulated and evaluated using the Monte Carlo method
for different models mentioned above. Comparing the observation probability of the models, with
the experimental results, the most consistent model can be determined. The results presented in
this paper can be applied to other pulse mode detection and measuring systems based on physical
stochastic processes. In the following sections, first, validation of the Monte Carlo simulation is
explained. Then, observation probabilities for different models are compared and the effects of
counting rates are discussed. Finally, the conclusions are presented.
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Fig. 5. Hybrid dead time model [3].

2. Monte Carlo simulation and its verification

A useful technique for simulation of stochastic processes is the Monte Carlo method [8–12].
As the Poisson distribution is common in nuclear measurements, it is taken for random generation
of time intervals between events caused by nuclear particle interactions. The Poisson probability
distribution is given in [2, 13] as:

Pk =
(rt)ke−rt

k!
. (4)

In this equation, r is the number of events in unit of time t, and k is an integer value defining
the number of expected events, Pk . The observation probability of neighbouring random events
in the Poisson distribution is a function of time as below:

H1(t)d t = P0 · r d t, (5)

where H1(t)d t is the probability of the next event taking place in d t after the delay of t, r d t is the
probability of an event during dt and by equating k = 1 in equation (4), P0 is obtained as below:

P0 =
(rt)0e−rt

0!
= e−rt . (6)

By replacing equation (6) into (5), the definition for H1(t)dt is obtained as:

H1(t)d t = re−rt d t, (7)
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integrating H1(t)d t in the limits of time interval of two successive events, the result would be the
probability of the next event with the time interval of tEvent. The cumulative distribution function,
ξ is the result of integration as follows:

ξ =

∆tEvent∫
0

H1(t ′)d t ′ = 1 − e−rtEvent . (8)

Note that ∆tEvent is the time at which the next event is seen. Finally, the time interval between
successive events in the Poisson distribution probability is expressed by rearrangement of (8) as:

∆tEvent =

ln
(
1
ξ

)
r

. (9)

Parameter ξ is a uniform randomvariable between zero and unity easily generated inMATLAB
software engineering tool [14]. In Fig. 6, on the left hand side, the time intervals of 104 successive
events with the Poisson distribution generated by equation (9) are demonstrated. On the right
hand side, the time intervals between observed pulses in the output of a detection system are
illustrated. The paralizable dead time and the true counting rate are assumed to be 50 µs and 104

pulses per second respectively. Note that computer-based random number generators are called
pseudorandom number generators as they are grounded on the algorithms with finite random
number generation cycles.

Fig. 6. Pseudorandom Poisson time intervals simulated in the MATLAB software engineering tool [14]. On the left, the
generated distribution, on the right, the time intervals between observed pulses in the output of a detection system with

50 µs paralizable dead time are demonstrated. The true counting rate is assumed to be 104 pulses per second.
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In equations (1) to (3), the behaviour of the models is defined by analytical formulas. They just
show the relation between true and observed counting rates of dead time models. Thanks to using
the Monte Carlo simulation, a detailed description can be provided. To validate the Monte Carlo
code written in theMATLAB software, the three dead time models are also simulated analytically
and the results are compared in Figs. 7 and 8 (true counting rates versus the observed counting

Fig. 7. Analytical and statistical simulation results for dead time models. Parameters of the dead
time models are shown on the figure.

Fig. 8. Analytical and statistical simulation results for dead time models. Parameters of the dead
time models are shown on the figure. At high counting rates, the paralizable and hybrid models

have decreasing behaviours, while the non-paralizable model is generally increasing.
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rate). The behaviour of the three models increases at low counting rates (lower than 2×104 CPS of
the true counting rate). At the same time, it decreases for the paralizable and hybrid models at high
counting rates, as can be seen in Fig. 8 in which the results are demonstrated on logarithmic scales.
It should be noted here that parameters of the models assumed in the simulation are mentioned in
the figures. A good consistency of the Monte Carlo code with the analytical formulas is obvious.

3. Results and discussion

3.1. Observation probability of different dead time models

Two important dead time effects on ameasuring stochastic process, as it wasmentioned before,
are the losses of counts (as explained in Figs. 7 and 8), and the distortion of the time interval
distribution between events. In Fig. 9, the distributions estimated by the dead time models are
compared with the pseudorandom Poisson distribution. The shapes of all the dead time models
are the same in long time intervals. Yet, they are distorted for time intervals lower than 150 µs.
Please, note that values of the parameters are shown in the figure. There are three distortions of
the time interval distribution i.e.:

– In short time intervals between zero time and the dead time value of the models (for hybrid
model this is the summation of the two parameters), no time interval is recorded, as can be
seen in Fig. 9, with time intervals lower than 50 µs.

– In the short time interval region, between 50 µs and 150 µs in Fig. 9, distributions obtained
from paralizable and hybrid models are distorted severely and no information is gained
from this data. There are no distortions for the non-paralizable dead time model in this
region.

– In the long time interval region, the shape of the distribution remains the same as the original
one (the pseudorandom Poisson distribution). Please, note that at very high counting rates

Fig. 9. Comparison of the Poisson distribution (the pseudorandomgenerated data) of time intervals
between pulses with the distributions of different dead time models.
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of the detection system, this region is also distorted (the high counting rate is defined in
comparison with the system dead time). Curve fitting to the data in long time interval region
is a method that can be used here for estimating the true counting rate. Using the observed
counting rate and the estimated true counting rate of the system, the dead time of the system
is measured with the method called the time interval distribution (TID) method [1]. Note
that the equipment required for measurement of time interval between pulses is explained
elsewhere [15].

In Fig. 10, the experimental data and Monte Carlo simulation results for a BF3 detector are
illustrated. The true counting rate is estimated for time intervals longer than 20 µs using the TID
method introduced above and is equal to 48580 ± 35 counts per second. Using the paralizable
and non-paralizable models, the dead time parameters of these models are easily estimated as
2.4207 ± 0.018 [µs] and 2.2887 ± 0.013 [µs] respectively. More complementary information
is mentioned in the figure. Using these experimental data, the Monte Carlo simulation of the
detection system is performed and the results are shown on the right hand side of Fig. 10. For
hybrid model, it is assumed that paralizable and non-paralizable dead time parameters are the
same as 1.2 µs. A comparison of experimental and numerical results (Monte Carlo results) for
the varoius time interval distributions shows that:

– In the experiment, the distribution in short time intervals first increases and then decreases
after 5 µs. Yet, it is different for all Monte Carlo results.

– Except for the data in the region shorter than 5 µs, the distributions predicted by the dead
time models are consistent with the experimental data.

Fig. 10. Comparison of experimental and Monte Carlo results for time interval between pulses of a conventional BF3
neutron detection system.

In Fig. 11, observation probabilities of pulses with different time intervals for the dead time
models are demonstrated. For the all cases, below the dead time value of 50 µs, (in the hybrid
model this is the summation of both parameters) zero probability is seen. For both paralizable
and hybrid models, in the range of 50 µs to 250 µs, the observation probability is an increasing
function of the time interval between pulses. Whereas, for the non-paralizable model, all pulses
are observed with a hundred percent probability. In the long time interval region, responses of all
dead time models are the same and all events are observed as pulses in the output of the detection
system.
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Fig. 11. Observation probability of pulses with different time intervals.

3.2. Observation probability at different counting rates

Due to the dead time effect, particle detection systems have short time memory of previous
events occurred in the sensitive detector material. Therefore, behaviour of a detection system is
a function of the event rate. More interaction with the detector means more extensive dead time
effects on the time interval distribution of pulses. As a result, it is expected that at different event
rates, the observation probability might also be altered. In Fig. 12, the observation probability of

Fig. 12. Observation probability of the non-paralizable dead time model at different event rates.
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the non-paralizable model is depicted. The problem is simulated at two event rates (n = 1000 as
the low event rate and n = 15000 as high the event rate of the detector). It obvious that in this
model, the event rate parameter does not affect the observation probability of the pulses as the
dead time period is not refreshed by the neighbouring events. In Figs. 13 and 14, observation
probabilities of both paralizable and hybrid models at different event rates are shown respectively.
Similarly to the results explained in Fig. 11, for short time intervals lower than the dead time
(for hybrid model this is the summation of the two parameters), zero probability for observation

Fig. 13. Observation probability of the paralizable dead time model at different event rates.

Fig. 14. Observation probability of the hybrid dead time model at different event rates.
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of events is seen. Beyond this threshold, the observation probabilities grow with longer time
intervals between pulses. At very low event rates (the results for n = 100), the behaviour of the
two models is nearly the same as that of the non-paralizable model. At the sime time, for higher
event rates the results are different. A higher event rate means more extensive distortion of the
observation probability of pulses.

4. Conclusions

Dead time is a feature inherent to pulse mode radiation detection systems. It effect interferes
with the response of particle detection systems especially at high event rates. That is why the
observed counting rate is less than true counting rate of the detection system. Losses of events
affect the statistical features of themeasuring stochastic processwhich is distorted as neighbouring
events are lost. As pulses with short time intervals are not observed in the output of the detection
system, the time interval distribution of the observed stochastic process differs from the measured
one. There are three models proposed for description of dead time effect in the literature with
analytical formulas describing the relation between true and observed counting rates of a detection
system. To investigate the statistical distortions caused by the dead time in detail, a computer code
for simulation of dead time models was written based on the Monte Carlo method. It is validated
by the analytical formulas at different true counting rates. The following are the conclusive points
of this research.

– In applications where distortion of themeasuring stochastic process is themain concern, the
proper model to minimize the distortion can be determined by comparing the observation
probability of dead time models with the measuring results of the detection system.

– For paralizable and non-paralizable models, no observation probability of the time intervals
below paralizable and non-paralizable dead times respectively is seen. For hybrid model it
is equal to the summation of the parameters (paralizable and non-paralizable dead times).
Whereas in the experiment, the time interval distribution can start from nearly zero. It is
obvious that the theoretical models do not adequately describe the dead time distortion of
the time interval distribution in the short time interval region.

– It is obvious that the observed stochastic process differs from the measuring stochastic
process due to the dead time distortion. This effect is investigated in this research using the
Monte Carlo simulation. It is suggested that scientists should pay attention to the distor-
tion especially for measurements and analyses concerning statistical features of physical
processes.

– It is proved that all dead time models are not able to estimate the time interval distribution
in the short time interval regions. But, for long time interval region, their predictions are
consistent with the experimental data.

Due to the dead time effect, the distortion on the measuring stochastic process and observation
probability of events depend on the event rate itself for paralizable and hybrid models. In other
words, the distortion on the measuring stochastic process varies at different event rates in these
models.
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