The implicit numerical method for the one-dimensional anomalous subdiffusion equation with a nonlinear source term

M. Błasik

Institute of Mathematics, Czestochowa University of Technology, Armii Krajowej 21, 42-201 Czestochowa, Poland

Abstract. In the paper the numerical method of solving the one-dimensional subdiffusion equation with the source term is presented. In the approach used, the key role is played by the transformation of the partial differential equation into an equivalent integro-differential equation. As a result of the discretization of the integro-differential equation obtained an implicit numerical scheme which is the generalized Crank-Nicolson method. The intuitive numerical schemes based on the finite difference method, such as the Crank-Nicolson method or the Laasonen method, as a rule are unconditionally stable, which is their undoubted advantage. The discretization of the integro-differential equation is performed in two stages. First, the left-sided Riemann-Liouville integrals are approximated in such a way that the integrands are linear functions between successive grid nodes with respect to the time variable. This allows us to find the discrete values of the integral kernel of the left-sided Riemann-Liouville integral and assign them to the appropriate nodes. In the second step, the derivative of the second order with respect to the spatial variable is approximated by the difference quotient. I verify the obtained numerical scheme on three examples for which closed analytical solutions are known.

Key words: fractional derivatives and integrals, integro-differential equations, numerical methods, finite difference methods

1. INTRODUCTION

Diffusion is the process of spreading molecules of one substance into another. It occurs due to a phenomenon known as Brownian motion, i.e. the chaotic movement of molecules in liquids and gases, which is caused by the collision of solute molecules with the components of the fluid. It was first noticed by botanist Robert Brown while observing pollen suspended in liquids. In classical diffusion, the movement of molecules is governed by law:

\[\langle x^2(t) \rangle \sim Dt, \]

where \(\langle x^2(t) \rangle \) is a mean squared displacement of the diffusing molecule in the course of time \(t \), and \(D \) is the diffusion coefficient.

However, the relation (1) does not allow us to describe many transport processes that occur in nature. In the papers [1, 2] Kosztolowicz et al. experimentally proved that the transport of glucose and sucrose in a gel solvent is subdiffusive.

Another experimental example of anomalous diffusion is the experiment carried out by Weeks, Solomon and Swinney, the results of which are presented in the papers [3, 4], where the researchers studied the flow of fluid in a rotating ring-shaped vessel.

In the paper [5], Humphries et al. shows that some open-ocean predators may use Lévy flights to maximize the chances of finding prey in food-poor habitats. At the same time, this suggest that it is possible to change the foraging pattern to Brownian motion when the prey is abundant.

Differential operators of fractional order are also used in modeling problems related to thermal conduction [6].

The cited examples confirm that Brownian motion is only a special case of transport processes called anomalous diffusion, which is governed by the following law [7, 8]:

\[\langle x^2(t) \rangle \sim D_\alpha t^\alpha, \quad 0 < \alpha \leq 1, \]

where \(D_\alpha \) is the generalized diffusion coefficient.

In the paper the one-dimensional subdiffusion equation with the source term is considered. In problems related to heat transfer the source term is interpreted as an internal heat source, while in the processes related to mass transfer it is related to the reaction-diffusion equation. The aim of the article is to develop a numerical method for solving the above-mentioned equation. The problem I am considering is governed by subdiffusion equation with time derivative in the Caputo sense. It should be noted here that most of the problems of this type considered in the literature are formulated using the Riemann-Liouville derivative [9–11].

The paper is organized as follows. In the next section, the necessary definitions and properties used in the rest of the paper are introduced. I formulate the initial-boundary value problem (IBVP) in section three for which a numerical method is developed. The fourth section contains three examples comparing the numerical results obtained by the proposed method with the closed analytical solutions. The last section contains conclusions.

2. PRELIMINARIES

At the beginning, let us define two fractional operators [12]: the left-sided Riemann-Liouville integral and the left-sided Caputo derivative and property playing an important role in further considerations.

Definition 1 The left-sided Riemann-Liouville integral of order \(\alpha \), denoted as \(I^\alpha_{t_0} \), is given by the following formula for
\[\Re(\alpha) \in (0, 1]: \]
\[t_{0+}^\alpha f(t) := \frac{1}{\Gamma(\alpha)} \int_0^t \frac{f(\tau)d\tau}{(t-\tau)^{1-\alpha}}, \quad (3) \]
where \(\Gamma \) is the Euler gamma function.

Definition 2 Let \(\Re(\alpha) \in (0, 1] \). The left-sided Caputo derivative of order \(\alpha \) is given by the formula:
\[C_{0+}^\alpha f(t) = \begin{cases} \frac{1}{\Gamma(\alpha)} \int_0^t \frac{f(\tau)d\tau}{(t-\tau)^{1-\alpha}}, & 0 < \alpha < 1, \\ \frac{d}{dt}f(t), & \alpha = 1. \end{cases} \quad (4) \]

Property 1 Let function \(f \in C^1(0, T) \). Then, the composition rule for the left-sided Riemann-Liouville integral and the left-sided Caputo derivative is given as follows:
\[I_{0+}^\alpha C_{0+}^\beta f(t) = f(t) - f(0). \quad (5) \]

The next two definitions [13–16] contribute to the formation of the examples considered in section four.

Definition 3 The generalized hypergeometric function denoted as \(pFq(\beta_1, \ldots, \beta_p; \gamma_1, \ldots, \gamma_q; z) \) is defined by the following formula:
\[pFq(\beta_1, \ldots, \beta_p; \gamma_1, \ldots, \gamma_q; z) := \sum_{k=0}^\infty \frac{(\beta_1)_k \cdots (\beta_p)_k}{(\gamma_1)_k \cdots (\gamma_q)_k} \frac{z^k}{k!}, \quad (6) \]
where \((\cdot)_k\) denotes the rising factorial or Pochhammer symbol defined in terms of the Euler gamma function \(\Gamma \) for any real \(x \) except the non-positive integers by
\[(x)_k := \frac{\Gamma(x+k)}{\Gamma(x)} \quad (7) \]

Definition 4 The regularized generalized hypergeometric function denoted as \(\bar{p}Fq(\beta_1, \ldots, \beta_p; \gamma_1, \ldots, \gamma_q; z) \) is defined by the following formula:
\[\bar{p}Fq(\beta_1, \ldots, \beta_p; \gamma_1, \ldots, \gamma_q; z) := \frac{pFq(\beta_1, \ldots, \beta_p; \gamma_1, \ldots, \gamma_q; z)}{\Gamma(\gamma_1) \cdots \Gamma(\gamma_q)} \quad (8) \]

The numerical scheme proposed in the third section of the paper uses a mesh of nodes defined as follows:

Definition 5 Let \(\Pi = \{(x, t) : x \in [0, L]; t \in [0, T]\} \) be a continuous region of solutions for the partial differential equation. Then the set \(\bar{\Pi} = \{(x_i, t_j) \in \Pi : x_i = i\Delta x, i \in \{0, 1, \ldots, m\}, \Delta x = \frac{L}{m+1}; t_j = j\Delta t, j \in \{0, 1, \ldots, n\}; \Delta t = \frac{T}{n+1}\} \) we call the rectangular regular mesh described by the set of nodes.

3. MATHEMATICAL FORMULATION AND NUMERICAL SOLUTION OF THE PROBLEM

Consider the following subdiffusion equation with a nonlinear source term
\[C_{0+}^\alpha U(x, t) = D_\alpha \frac{\partial^2 U(x, t)}{\partial x^2} + Q_\alpha(x, t), \quad 0 \leq x \leq L, \quad 0 \leq t \leq T, \quad (9) \]
supplemented with the boundary conditions
\[U(0, t) = f(t), \quad U(L, t) = g(t), \quad 0 \leq t \leq T, \quad (10) \]
and initial condition
\[U(x, 0) = h(x), \quad 0 \leq x \leq L, \quad (11) \]
where the generalized diffusion coefficient \(D_\alpha \) is constant.

In the paper [17] the concept of the Crank-Nicolson method for the parabolic equation was extended to the case of the one-dimensional subdiffusion equation with the time derivative in the Caputo sense. A similar approach can be applied to the initial-boundary value problem defined by Eq. (9-11), where the source term is presented.

By applying the left-sided Riemann-Liouville integral of order \(\alpha \in (0, 1] \) to both sides of Eq. (9) and using property 1 we get the integro-differential equation in the following form:
\[U(x, t) = U(x, 0) + \frac{D_\alpha}{\Gamma(\alpha)} \int_0^t \frac{1}{(t-\tau)^{1-\alpha}} \frac{\partial^2 U(x, \tau)}{\partial x^2} d\tau + \frac{1}{\Gamma(\alpha)} \int_0^t Q_\alpha(x, \tau) d\tau \quad (12) \]
The discretization of Eq. (12) on the grid of nodes defined by definition 5 requires approximation of integral and differential operators. Let’s start with determining the discrete values of the integral kernel of the left-sided Riemann-Liouville integrals on the right-hand side of Eq. (12). For this purpose, the integrant \(U \) is approximated with a linear function \(\bar{U} \) between two subsequent grid nodes with respect to the time variable:
\[U(x, t) = U(x, t_j) \frac{t - t_{j+1}}{t_{j+1} - t_j} + U(x, t_{j+1}) \frac{t - t_{j}}{t_{j+1} - t_j}, \quad (13) \]
for \(t_j \leq t \leq t_{j+1}, j = 0, \ldots, n - 1 \). We act in the same way with the source term \(Q \):
\[Q_\alpha(x, t) = Q_\alpha(x, t_j) \frac{t - t_{j+1}}{t_{j+1} - t_j} + Q_\alpha(x, t_{j+1}) \frac{t - t_{j}}{t_{j+1} - t_j}, \quad (14) \]
for \(t_j \leq t \leq t_{j+1}, j = 0, \ldots, n - 1 \). It should be emphasized here that the above approximation in relation to partial differential equations of fractional order was used in [18, 19]. The author, a few years after the publication of the cited results, came to the conclusion that the discretization of the integro-differential equation in the node \((i\Delta x, k\Delta t) \) is more transparent. The previously used notation was directly inspired by the results obtained by Diethelm for the Adams-Bashforth-Moulton method in [20]. Thus, the first integral term of Eq. (12) on the interval \([0, t_k]\) can be approximated by the formula:
\[D_\alpha \frac{1}{\Gamma(\alpha)} \int_0^{t_k} \frac{1}{(t_k - \tau)^{1-\alpha}} \frac{\partial^2 U(x, \tau)}{\partial x^2} d\tau \approx \frac{D_\alpha}{\Gamma(\alpha)} \int_0^{t_k} \frac{1}{(t_k - \tau)^{1-\alpha}} \frac{\partial^2 \bar{U}(x, \tau)}{\partial x^2} d\tau \quad (15) \]
From the theorem on additivity of an integral with respect to the integration interval, we get:
\[\frac{D_\alpha}{\Gamma(\alpha)} \int_0^{t_k} \frac{1}{(t_k - \tau)^{1-\alpha}} \frac{\partial^2 \bar{U}(x, \tau)}{\partial x^2} d\tau = \frac{D_\alpha}{\Gamma(\alpha)} \int_0^{t_k} \frac{t}{(t_k - \tau)^{1-\alpha}} \times \left(\frac{\partial^2 \bar{U}(x, \tau)}{\partial x^2} \frac{\tau - t_{j+1}}{t_{j+1} - t_j} + \frac{\partial^2 \bar{U}(x, t_{j+1})}{\partial x^2} \right) d\tau = \]
The implicit numerical method for the one-dimensional anomalous subdiffusion equation with a nonlinear source term

\[\frac{D_\alpha}{\Gamma(\alpha)} \frac{d^2 U(x,t_0)}{dt^2} + \int_0^{t_0} \frac{1}{(t_k - t)^{1-a}} t_{t_0} \, dt \tau + \int_j^{t_1} \frac{1}{(t_j - \tau)^{1-a}} t_j \, d\tau + \sum_{j=1}^{k-1} \frac{1}{(t_j - \tau)^{1-a}} t_j \, d\tau \]

Repeating the above reasoning for the second integral term in Eq. (12), we get:

\[\frac{1}{\Gamma(\alpha)} \int_0^{t_0} \frac{1}{(t_k - \tau)^{1-a}} \, d\tau = \frac{1}{\Gamma(\alpha)} \int_0^{t_0} \frac{1}{(t_k - \tau)^{1-a}} \, d\tau \]

Using again the theorem on additivity of an integral with respect to the interval, we get:

\[\frac{1}{\Gamma(\alpha)} \int_0^{t_0} \frac{1}{(t_k - \tau)^{1-a}} \, d\tau = \frac{1}{\Gamma(\alpha)} \int_0^{t_0} \frac{1}{(t_k - \tau)^{1-a}} \, d\tau \]

Calculating the following integrals:

\[w_{0,k} = \frac{1}{\Gamma(\alpha)} \int_0^{t_0} \frac{1}{(t_k - \tau)^{1-a}} t_0 \, dt \tau = \frac{(\Delta)^\alpha}{\Gamma(2 + \alpha)} \frac{\Gamma(\alpha)}{\Gamma(2 + \alpha)} \frac{\Gamma(\alpha)}{(\alpha + k - 1)\alpha^{1+1}}, \]

\[w_{j,k} = \frac{1}{\Gamma(\alpha)} \int_0^{t_0} \frac{1}{(t_j - \tau)^{1-a}} t_j \, d\tau + \int_j^{t_1} \frac{1}{(t_j - \tau)^{1-a}} t_j \, d\tau = \frac{(\Delta)^\alpha}{\Gamma(2 + \alpha)} \frac{\Gamma(\alpha)}{(\alpha + j - 1)\alpha^{1+1}} + 2(k - j)\alpha^{1+1}, \]

\[w_{k,k} = \frac{1}{\Gamma(\alpha)} \int_0^{t_0} \frac{1}{(t_k - \tau)^{1-a}} t_k \, d\tau = \frac{(\Delta)^\alpha}{\Gamma(2 + \alpha)}, \]

we obtain certain values of the integral kernel of the left-sided Riemann-Liouville integral, determined for the appropriate grid nodes with respect to the time variable \(t \).

Thus, the integral kernel of the left-sided Riemann-Liouville integral can be expressed in the form of weights:

\[w_{j,k} := \frac{(\Delta)^\alpha}{\Gamma(2 + \alpha)} \left\{ \frac{\Gamma(\alpha + j - k)\alpha^{1+1} + (k - 1)\alpha^{1+1}}{(\alpha + j - 1)\alpha^{1+1}} \right\}^{j = 0} \]

Finally, Eq. (12) in discrete form can be written as:

\[U_{i+1} = U_{i+0} + D_\alpha \sum_{j=0}^{k} w_{j,k} U_{i+0} - U_{i+1} + O(\Delta^2). \]

where \(U_{i,j} \) and \(Q_{i,j} \) denote the approximate values of the functions \(U \) and \(Q \) at the mesh node \((\Delta x, j\Delta t)\), respectively.

After some standard mathematical transformations, we get an implicit numerical scheme:

\[-D_\alpha w_{k,k} \frac{\Delta x^2}{\Delta t^2} U_{i+1,0} + \left(1 + \frac{2D_\alpha w_{k,k}}{\Delta x^2}\right) U_{i+1} = \frac{D_\alpha w_{k,k}}{\Delta x^2} U_{i+0} + \sum_{j=0}^{k-1} D_\alpha w_{j,k} U_{i+0} + \sum_{j=0}^{k} w_{j,k} Q_{i,j}, \]

which can be written in matrix form

\[AU_k = B, \]

where matrices \(A \) and \(B \) are defined as

\[A = \begin{bmatrix} 1 + 2a & -a & 0 & 0 & \cdots & 0 & 0 & 0 \\ -a & 1 + 2a & -a & 0 & \cdots & 0 & 0 & 0 \\ 0 & -a & 1 + 2a & -a & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & -a & 1 + 2a & -a & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -a & 1 + 2a & -a \\ 0 & 0 & 0 & \cdots & 0 & -a & 1 + 2a \end{bmatrix}, \]

\[B = \begin{bmatrix} b_1 + a^2 \theta_{i,k} \\ b_2 \\ b_3 \\ \vdots \\ b_0 \\ \vdots \\ b_{n-1} \end{bmatrix}, \]

The elements of matrices \(A \) and \(B \) are defined by the formulas:

\[a := \frac{D_\alpha w_{k,k}}{(\Delta x)^2}. \]
\[b_j := U_{i,0} + \sum_{j=0}^{k-1} D_\alpha w_{j,k}(U_{i-1,j} - 2U_{i,j} + U_{i+1,j}) + \sum_{j=0}^{k} w_{j,k} Q_{a,i,j}. \]

4. NUMERICAL EXAMPLES

In order to validate the developed numerical method, three examples of initial-boundary value problems are presented for which closed analytical solutions are known. Sixty-four simulations were run for each of the examples. The following parameters values were adopted:

i) the generalized diffusion coefficient \(D_\alpha = 1 \),

ii) the order of the left-sided Caputo derivative \(\alpha \in \{0.25, 0.5, 0.75, 0.9999\} \),

iii) the mesh parameters: \(L = 1 \), \(T = 1 \), \((\Delta x, \Delta t) \in \{(\frac{1}{25}, \frac{1}{100}, \frac{1}{200}) \times (\frac{1}{25}, \frac{1}{100}, \frac{1}{200})\} \).

A. Example 1

Consider the first subdiffusion equation with a nonlinear source term

\[c D_{\alpha+1}^\alpha U(x,t) = \frac{\partial^2 U(x,t)}{\partial x^2} + \frac{1}{6} \left(\frac{(x+1)(2x-3)y^{2-\alpha}}{\Gamma(3-\alpha)} - 2r^2 + 8 \right), \tag{25} \]

supplemented with the boundary conditions

\[U(0,t) = -\frac{1}{4}(t-2)(t+2), \tag{26} \]
\[U(1,t) = -\frac{1}{6}(t-2)(t+2), \tag{27} \]

and initial condition

\[U(x,0) = -\frac{1}{3}(x+1)(2x-3). \tag{28} \]

The solution to the initial-boundary value problem (IBVP) given by Eq. (25-28) can be expressed by the function of two variables defined by the formula:

\[U(x,t) = \frac{1}{12} (t-2)(t+2)(x+1)(2x-3), \tag{29} \]

the approximation of which is shown in Fig. 1.

Fig. 2-5 show the absolute error generated by the proposed numerical method depending on the order of the Caputo derivative. All the presented figures have a common feature as they show the smallest error value close to the boundary conditions, i.e. for \(x = 0 \), \(x = 1 \) and its largest value near the initial condition, i.e. for \(t = 0 \).
The implicit numerical method for the one-dimensional anomalous subdiffusion equation with a nonlinear source term

\[cD_{0+}^\alpha U(x, t) = \frac{\partial^2 U(x, t)}{\partial x^2} + t^2 - 16e^{-(x-1)^4}(x - 1)^6 + 12e^{-(x-1)^4}(x - 1)^2, \]

supplemented with the boundary conditions

\[U(0, t) = \frac{2\sin(\pi\alpha)\Gamma(-\alpha - 2)t^{\alpha+2}}{\pi}, \]

\[U(1, t) = \frac{2\sin(\pi\alpha)\Gamma(-\alpha - 2)t^{\alpha+2}}{\pi}, \]

and initial condition

\[U(x, 0) = e^{-(x-1)^4}. \]

The solution to the initial-boundary value problem given by Eq. (30-33) can be expressed by the function of two variables defined by the formula:

\[U(x, t) = e^{-(x-1)^4} \frac{2\sin(\pi\alpha)\Gamma(-\alpha - 2)t^{\alpha+2}}{\pi}, \]

the approximation of which is shown in Fig. 6.

Tables 1-4 show the mean absolute errors generated by the numerical method in the \([0, 1] \times [0, 1]\) area for sixteen mesh variants and four values of the order of the Caputo derivative. Among all the results, those presented in Table 1 deserve special attention, as they indicate that the scheme works most accurately for \(\alpha = 0.9999\). Moreover, all four tables confirm a certain dependence such as a two-fold reduction of the mesh time step results in a nearly four-fold reduction in the mean absolute error.

The distribution of absolute errors presented in Fig. 7-10 clearly shows that its least values occur near the boundary conditions, i.e. for \(x = 0, x = 1\) and its largest value near the \(x = 0.3\).

The analysis of the results collected in Tables 5-8 shows that a simultaneous double reduction of the time and spatial steps (elements on the diagonal) increases the accuracy of the numerical scheme about four times.
M. Błasik

Table 5. The average absolute error generated by the numerical method for the second example, $\alpha = 0.9999$.

<table>
<thead>
<tr>
<th>m</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2.701e-4</td>
<td>8.313e-5</td>
<td>3.556e-5</td>
<td>2.36e-5</td>
</tr>
<tr>
<td>50</td>
<td>2.584e-4</td>
<td>6.942e-5</td>
<td>2.117e-5</td>
<td>9.011e-6</td>
</tr>
<tr>
<td>100</td>
<td>2.56e-4</td>
<td>6.612e-5</td>
<td>1.76e-5</td>
<td>5.341e-6</td>
</tr>
<tr>
<td>200</td>
<td>2.557e-4</td>
<td>6.537e-5</td>
<td>1.673e-5</td>
<td>4.432e-6</td>
</tr>
</tbody>
</table>

Table 6. The average absolute error generated by the numerical method for the second example, $\alpha = 0.75$.

<table>
<thead>
<tr>
<th>m</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2.67e-4</td>
<td>8.244e-5</td>
<td>3.521e-5</td>
<td>2.332e-5</td>
</tr>
<tr>
<td>50</td>
<td>2.562e-4</td>
<td>6.887e-5</td>
<td>2.102e-5</td>
<td>8.941e-6</td>
</tr>
<tr>
<td>100</td>
<td>2.538e-4</td>
<td>6.558e-5</td>
<td>1.747e-5</td>
<td>5.306e-6</td>
</tr>
<tr>
<td>200</td>
<td>2.535e-4</td>
<td>6.483e-5</td>
<td>1.659e-5</td>
<td>4.399e-6</td>
</tr>
</tbody>
</table>

Table 7. The average absolute error generated by the numerical method for the second example, $\alpha = 0.5$.

<table>
<thead>
<tr>
<th>m</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2.666e-4</td>
<td>8.155e-5</td>
<td>3.434e-5</td>
<td>2.245e-5</td>
</tr>
<tr>
<td>50</td>
<td>2.559e-4</td>
<td>6.868e-5</td>
<td>2.086e-5</td>
<td>8.787e-6</td>
</tr>
<tr>
<td>100</td>
<td>2.537e-4</td>
<td>6.535e-5</td>
<td>1.744e-5</td>
<td>5.281e-6</td>
</tr>
<tr>
<td>200</td>
<td>2.535e-4</td>
<td>6.481e-5</td>
<td>1.659e-5</td>
<td>4.394e-6</td>
</tr>
</tbody>
</table>

Table 8. The average absolute error generated by the numerical method for the second example, $\alpha = 0.25$.

<table>
<thead>
<tr>
<th>m</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2.63e-4</td>
<td>7.738e-5</td>
<td>3.055e-5</td>
<td>1.863e-5</td>
</tr>
<tr>
<td>50</td>
<td>2.558e-4</td>
<td>6.806e-5</td>
<td>2.006e-5</td>
<td>7.959e-6</td>
</tr>
<tr>
<td>100</td>
<td>2.546e-4</td>
<td>6.562e-5</td>
<td>1.733e-5</td>
<td>5.116e-6</td>
</tr>
<tr>
<td>200</td>
<td>2.546e-4</td>
<td>6.507e-5</td>
<td>1.662e-5</td>
<td>4.375e-6</td>
</tr>
</tbody>
</table>

C. Example 3

Consider the third subdiffusion equation with a nonlinear source term

$$
\begin{align*}
CD_{0+}^\alpha U(x, t) &= \frac{\partial^2 U(x, t)}{\partial x^2} + \\
\pi^{3/2} 2^{\alpha-4} (x + 1)(2x - 3)^2 \alpha - 2 \alpha + 2 \alpha \frac{1}{16} t^2, \\
F_1(3; 2 - \alpha, 2; - \alpha; - \frac{1}{16} \pi^2 t^2)
\end{align*}
$$

supplemented with the boundary conditions

$$
U(0, t) = \frac{3\cos(\frac{\pi t}{2})}{\pi},
$$

$$
U(1, t) = \frac{2\cos(\frac{\pi t}{2})}{\pi},
$$

and initial condition

$$
U(x, 0) = -\frac{(x + 1)(2x - 3)}{\pi}.
$$

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
The solution to the initial-boundary value problem given by Eq. (35-38) can be expressed by the function of two variables defined by the formula:

\[U(x, t) = -\frac{(x + 1)(2x - 3) \cos \left(\frac{x}{\pi} \right)}{\pi} . \] (39)

Fig. 11 shows the approximate solution of the IBVP from the third example obtained for \(\alpha = 0.9999, \Delta x = \frac{1}{200}, \Delta t = \frac{1}{200} \).

Fig. 12-15 show the very interesting behavior of the absolute error generated by the numerical method. In all cases, its lowest value is observed in the vicinity of the boundary conditions, i.e. for \(x = 0, x = 1 \). In the case of \(\alpha = 0.9999 \), its highest value is observed for a large \(t \). Decreasing the value of the order of the Caputo derivative results in the scheme beginning to generate the greatest errors for a small \(t \).

\[\alpha_0 = 0.9999. \]

Based on the results collected in Tables 9-12, we can draw similar conclusions as in the case of the first example like a two-fold reduction of the mesh time step results in a nearly four-fold reduction in the mean absolute error.

Table 9. The average absolute error generated by the numerical method for the third example, \(\alpha = 0.9999 \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(m = 25)</th>
<th>(m = 50)</th>
<th>(m = 100)</th>
<th>(m = 200)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>2.01e-5</td>
<td>2.09e-5</td>
<td>2.112e-5</td>
<td>2.122e-5</td>
</tr>
<tr>
<td>50</td>
<td>5.127e-6</td>
<td>5.234e-6</td>
<td>5.288e-6</td>
<td>5.315e-6</td>
</tr>
<tr>
<td>100</td>
<td>1.283e-6</td>
<td>1.311e-6</td>
<td>1.323e-6</td>
<td>1.33e-6</td>
</tr>
<tr>
<td>200</td>
<td>3.209e-7</td>
<td>3.276e-7</td>
<td>3.309e-7</td>
<td>3.326e-7</td>
</tr>
</tbody>
</table>
Anomalous subdiffusion is a physical process whose existence is confirmed by experimental research. They are solved analytically, but only in some specific cases. The computational examples presented in the fourth chapter were to confirm the correct operation of the proposed numerical method. Analytical solutions used for method validation were obtained by solving the initial-boundary value problems "from the end" - first a solution was established, and then the appropriate boundary conditions, initial condition and source term were adjusted. This procedure allows to obtain simple analytical solutions with the source term which can only be considered theoretically - it loses the physical aspect.

The proposed approach, however, has a certain limitation, it does not solve the problems with source term of the form $Q_\alpha(x,t,U(x,t))$, which is typical for the reaction-diffusion equation. The further work plan assumes the improvement of the proposed method of solving the subdiffusion equation with the source term dependent on the function U.

6. CONCLUSIONS

The method proposed in the paper is an extension of the generalized Crank-Nicolson method for the one-dimensional subdiffusion equation, where the source term is additionally taken into account. In the part of the method where the left-sided Riemann-Liouville integral was discretized, minor changes were made in the nodes numbering, which resulted in a more concise notation. The obtained numerical results are largely consistent with closed analytical solutions. The numerous simulations that were carried out for the three examples (192 in total) did not indicate that the method was unstable in any of them. On the basis of the obtained results, it can also be concluded that the method is convergent. Let us point out that the method can be extended to the multidimensional case.

7. NOMENCLATURE

x	space variable
t	time variable
L	fixed value of x
T	fixed value of t
Δx	space step size
Δt	time step size
Π	considered region
i, j, k, m, n	natural numbers
w	discrete form of the integral kernel of the left-sided Riemann-Liouville integral
A	matrix
B	vector
U_k	vector
U	concentration
Q_α	source term
\bar{p}_F	generalized hypergeometric function
\bar{p}_G	regularized generalized hypergeometric function
D	diffusion coefficient
μ_{l+}	generalized diffusion coefficient
\bar{C}^l_α	left-sided Caputo derivative
α	fractional order

REFERENCES

The implicit numerical method for the one-dimensional anomalous subdiffusion equation with a nonlinear source term

