
 
 

Review paper  

Evaluation of the unit weight of organic soils from a CPTM 
using an Artificial Neural Networks 

G. Straż1, A. Borowiec2 

Abstract: This paper discusses the use of mechanical cone penetration test CPTM for estimating the soil unit 
weight of selected organic soils in Rzeszow site, Poland. A search was made for direct relationships between the 
empirically determined the soil unit weight value and cone penetration test leading parameters (cone resistance 
qc, sleeve friction fs. The selected, existing models were also analysed in terms of suitability for estimating the 
soil unit weight and tests were performed to predict the value soil unit weight of local, different organic soils. 
Based on own the regression analysis, the relationships between empirically determined values of soil unit 
weight and leading parameters cone penetration test were determined. The results of research and analysis have 
shown that both existing models and new, determined regression analysis methods are poorly matched to the unit 
weight values determined in laboratory, the main reason may be the fact that organic soils are characterized by 
an extremely complicated, diverse and heterogeneous structure. This often results in a large divergence and lack 
of repeatability of results in a satisfactorily range. Therefore, in addition, to improve the predictive performances 
of the relationships, analysis using the artificial neural networks (ANN) was carried out. 
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1. Introduction 

The Podkarpackie Voivodeship is an area with an exceptionally varied and complex geological 

structure, where, especially in the geological profiles of river terraces, interlacing variety of organic 

soils is very common. Unfortunately, organic soils belong to soft soils characterized by low shear 

strength and extremely high compressibility, moreover, these layers may have varying thicknesses, 

from several centimeters to several meters, and very often these occur below the groundwater table, 

which causes the local conditions for foundation of building objects and engineering constructions 

are difficult or very difficult. The fact is that the areas they cover are often the only places available 

for construction in large urban agglomerations, which means that they are increasingly becoming 

the object of interest and investment of developers. The decision to set up facilities in low-bearing 

capacity areas brings incomparably higher costs than in the case of foundations on typical mineral 

soils, but often for logistical or strategic reasons it is necessary. The foundation of building 

construction in such adverse conditions is of course possible, but requires extremely sensitive and 

detailed subsoil identification, preferably using different types of penetrometers in situ. No less 

important are the methods of interpreting the results obtained directly from the research and, 

consequently, the values of the parameters derived later used at the design stage.  

Currently, the assessment of geotechnical parameters and coefficients in the European Union and 

related countries is mainly based on the EN 1997-1:2004 [1] and EN 1997-2:2007 [2] standards, 

and among the many methods of subsoil recognition, the Cone Penetration Test is becoming more 

and more popular. In parallel with the technological modernization of this penetrometer, work is 

constantly underway on methods of interpreting results obtained directly from research for design 

purposes. In parallel with the technological modernization of this penetrometer, work is constantly 

underway on methods of interpretation of results obtained directly from research for the purpose of 

foundation design and subsoil improvement. The methods of interpreting the results of these 

soundings generally work very well in the case of substrates with typical mineral soils, but for 

organic soils considered to be one of the weakest, the results are not conclusive. That is why new 

methods are constantly being sought and more and more perfect and safe computational models are 

being developed. 

This paper attempts to verify the suitability of existing models for estimating the soil unit weight of 

organic soils from a selected area of Podkarpacie (Poland). The direct correlations between values 

measured parameters during the mechanical cone penetration test (CPTM) and desired geotechnical 
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parameters were sought [3]. Were also proposed, and a new tool in the form of artificial neural 

networks, which is increasingly used to solve geotechnical problems, was used to improve fit 

quality on a global scale [4–10]. The Polish geotechnics are increasingly using this tool to solve 

local cases, and their effect is published in the papers [11–18], although at the moment it doesn’t 

concern much organic soils [19, 20]. In the recent past, the authors used the ANN to predict the 

value of soil unit weight of local organic soils based on their leading parameters: the contents of 

organic matter and water content [21]. The obtained test results were so promising that it was 

decided to continue the research using the ANN to determine the soil weight of the soil, but this 

time based on the results of CPTM tests. 

2. Methods and materials 

2.1. Characteristics of the study area at the Rzeszow site 

The Podkarpackie Voivodeship is located in the south-eastern part of Poland. From the south is 

borders with Slovakia and from the east with Ukraine. The region covers three separate 

physiographic lands, wery varied significantly in terms of geological structure and topography. In 

the northern part of the Sandomierz Basin is located in the middle of the Carpathian Foothills, 

Beskidy Mountains in the south, dividing the Bieszczady and Beskid Niski. In the north-eastern part 

there is a fragment of Roztocze [22]. The study area and data used in this paper come from the site, 

geologically speaking, is located in the south part of the Carpathian Foredeep, geographically 

located at the Foothills of Rzeszow, within the macro-region of the Sandomierz Basin and exactly 

on the area campus of the Theological and Pastoral University in Rzeszow. The site where the 

recognition was conducted, in terms of morphology, is located in the valley of the Młynówka River 

and reaches around 206.0 m above sea level [23]. 

2.2. The evaluation of the soil unit weight based on laboratory test  

The bulk density of the soil is the mass of soil per unit volume of the material, including any water 

or gas it contains. The term unit weight, γt, is often used and is calculated by multiplying the bulk 

density by the acceleration due to gravity [24].  
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2.3. The Cone Penetration Test procedure  

The first tests of the cone penetrometer were carried out in 1932. A gas pipe with an external diameter 

of 35 mm on an internal steel pusher of 15 mm and a cone tip with 10 cm2 projected area and 60° 

apex angle was applied. Over time, the design of the probe and equipment changed, which also 

increased its research capabilities. The Delf Soil Mechanics Laboratory used first cone penetration 

push machine in 1935. A few years later, in 1948, geometry of the original mechanical cone was 

improved the purpose to prevent soil from entering the gap between the casing and inner rods. The 

part of basic Dutch mechanical penetrometers with this conical mantle are still in use in some parts of 

the words. In 1953 Bergmann developed new type cone (CPTM) to include measurement of local 

sleeve friction and first-time friction ratio was used to classify of kind of soils. The first electric cone 

was developed by Furgo in 1965. In 1974 were introduced the most modern type of penetrometers 

that could measure pore pressure (piezocones) especially useful for soft clays. The most commonly 

used today is the standard cone, where the cross-sectional area of standard cones shall be 1 000 mm2 

which corresponds to a diameter of 35,7 mm, but depending on ground conditions, cones with an 

outer diameter between 25 mm (Ac = 500 mm2) and 80 mm (Ac = 5 027 mm2) are permitted [25].  

The mechanical cone penetration test (CPTM), which was used in this study, consists of pushing 

a cone penetrometer, by means of a series of push rods, into the soil at a constant rate of penetration. 

During penetration, measurements of cone penetration resistance, total penetration resistance and/or 

sleeve friction can be recorded [25]. The test results can be used for interpretation of stratification, 

classification of soil type and evaluation a wide spectrum of geotechnical parameters for example: soil 

unit weight (γt), liquidity index (IL), relative density (Dr), undrained shear strength (Su), effective 

friction angle (φ’), effective cohesion (c’), constrained modulus (M), deformation modulus (E), 

overconsolidation ratio (OCR), coefficient of earth pressure at rest (Ko) and many others [26].  

2.4. Evaluation of the soil unit weight for existing models from CPT  

The source materials on the determination of the soil unit weight of organic soils based on Cone 

Penetration Test (CPTM) are rare. Therefore, at the initial stage of the work, after analyzing the 

thematic materials available, an attempt was made to determine the suitability of selected, universally 

recognized and new calculation models for estimating the soil unit weight of local organic soils. 

These models were developed for various types of soils, most often for mineral ones, coming from 

different parts of the world, which gives the study a verification character. The concise characteristics 

of the models selected for analysis are presented later in the following part of the elaboration.  
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2.4.1. Mayne at al. relationships  

Mayne (2006) for saturated soils, based on large data of soils, including soft to stiff clays and silts, 

loose to dense sands and gravels and as well as mixed geomaterials, proposed correlation depends 

on both parameters: shear wave velocity and depth (2.1) (coefficient of determination, R2 = 0.808) 

as follows [27, 28]: 

 

(2.1) 𝛾௧ = 8.32 𝑙𝑜𝑔 𝑉௦ − 1.61 𝑙𝑜𝑔 𝑧  

 
where: 

γt – soil unit weight, Vs – shear wave velocity, z – depth. 

 

• Mayne (2007) used database contained date for cohesionless soils (loose to dense sands and 

gravels) and cohesion soils (soft to stiff clays and silts) and proposed relationship between the 

total unit weight and the sleeve friction from cone penetration test. The relationship was 

indirectly derived from correlations between the soil unit weight and the shear wave velocity, 

and between the shear wave velocity with the sleeve friction (2.2) [29]: 

 

(2.2) 𝛾௧ = 2.6 𝑙𝑜𝑔(𝑓௦) + 15𝐺௦ − 26.5  

 
where: 

fs – sleeve friction, Gs – specific gravity of soil solids. 

 

• Mayne et al. (2010) by the multivariable regression analysis were found correlation for the 

various type of soils (e.g. soft clay, clay till, calcareous clay, natural sand, boulder clay, mine 

tailing sand, fissured clay, mudstone, stratified soils, etc.) from different, global location such 

as USA, Japan, UK, Canada, Norway, Ireland, Sweden, Italy, Brazil and North Sea which was 

described by the formula (2.3) [30]: 

 

(2.3) 𝛾௧ = 11.46 + 0.33 𝑙𝑜𝑔(𝑧) + 3.11𝑜𝑔(𝑓௦) + 0.7 𝑙𝑜𝑔(𝑞)  

 
where: 

qc – cone resistance. 

 

EVALUATION OF THE UNIT WEIGHT OF ORGANIC SOILS FROM A CPTM USING... 263



Mayne (2016) for variety of soil types, mainly clays and sands, found relationship to the sleeve 

friction (R2 = 0.633). The peats and diatomaceous mudstone were also researched, but these results 

were not included in the regression analysis formula (2.4) [31]: 

 

(2.4) 𝛾௧ = ቂ1.22 + 0.15 𝑙𝑛 ቀ100 ೞೌ + 0.01ቁቃ 𝛾௪  

 
where: 

γw – unit weight of water, Pa – atmospheric pressure. 

2.4.2. Robertson & Cabal (2010) relationship  

Robertson & Cabal (2010) proposed a general relationship for soil unit weight based on parameter 

from cone penetration tests for clays and silts to sands and gravels based on DMT tests and shear 

wave velocity in the following form (2.5) [32]: 

 

(2.5) 𝛾௧ = ቈቂ0.27 𝑙𝑜𝑔 𝑅 + 0.36 𝑙𝑜𝑔 ቀೌ ቁ + 1.236ቃ ீೞଶ,ହ 𝛾௪  

 
where: 

Rf – friction ratio. 

2.4.3. Ozer et al. (2012) relationships  

Ozer et al. (2012) [33] proposed few models that were performed the method multiple linear 

regression generally for Lake Bonneville clays (USA). Two relationships with the highest degree of 

fit were selected by analysis, having: the cone resistance and the friction ratio R2 = 0.80 (2.6), and 

the sleeve friction and the friction ratio R2 = 0.790 (2.7). Additionally, included the atmospheric 

pressure and unit weight of water: 

 

(2.6) 𝛾௧ = 1.27(ೌ ).ଵସ଼(𝑅),ଵସସ𝛾௪ 

(2.7) 𝛾௧ = 2.495(ೞೌ ).ଵସ(𝑅)ି.ଵଷଶ𝛾௪   
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2.4.4. Ghanekar (2014) relationship 

Ghanekar (2014) [34] used data taken for 16 offshore platform locations from the coast of Mumbai 

region. Generally, the subsoil was represented calcareous fine-grained soils, often by very soft and 

soft clays. The single and multi-variable regression analyses were performed on the data using basic 

parameters. The best, selected results of regression analysis described formula (2.8) (R2 = 0.698): 

 

(2.8) 𝛾௧ = 4.08 − 0.521𝑜𝑔(𝑓௦) + 5.38 𝑙𝑜𝑔(𝑞) − 2.59 𝑙𝑜𝑔(𝑧) 
2.4.5. Kovacevic et al. (2018) relationship  

Kovacevic et al. (2018) [35] for highly overconsolidated soil come from five different sites in in 

Northern Croatia based on Mayne et al. [30] model presents new relationship (R2 = 0.850), claiming 

that effectively reduces the magnitude of the original relationship to more closely approximate 

reality (2.9): 

 

(2.9) 𝛾௧ = 11.85 + 0.11 𝑙𝑜𝑔(𝑧) + 2,591𝑜𝑔(𝑓௦) + 0.56 𝑙𝑜𝑔(𝑞) 
2.4.6. Straż (2016) relationship 

Straż (2016) [36] for local polish organic soils (Rzeszow city) proposed dependencies based on 

measured values sleeve friction fs from CPTM, compared with measured values from laboratory 

tests. The correlations were developed for full spectrum organic soils: from low- to high-organic, 

according to the actual occurrence in the subsoil. The selected, obtained formula (2.10) (R2 = 0.726) 

had the following form: 

 

(2.10) 265.0812.4 st f=γ   

 

2.5. Artificial Neural Network 

One of the most widely used tools for describing dependencies in geotechnics is standard 

regression. Presently, non-standard methods, including an artificial neural network and a fuzzy 

logic regression, have also been increasingly used as approximation tools. Moreover, the most 
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In our numerical research all neural network computation was performed using the Neural Network 

Toolbox for Matlab [43]. In all the considered examples, a multilayer feedforward network with one 

hidden layer was applied. In inputs of nets, we consider two parameters, or one of them: the cone 

resistance qc and/or the sleeve friction fs. The output of nets was soil unit weight of organic soils γt. 

In the calculations, five to eight neurons were used in the hidden layers. The Levenberg–Marquardt 

method was used in the training process. A log-sigmoid transfer function in the hidden layer and 

a linear function in the output layer were used. 

3. Results 

Based on the analysis of the exploratory research carried out in study area, research program was 

adopted, which assumed the search for relationships between the basic values measured from the 

CPTM test (cone resistance, sleeve friction) and the soil unit weight values of organic soils. The 

values of soil unit weight were verified by testing on undisturbed samples and predicted with 

existed models. Own solutions based on the results of multi regression and predictions using 

artificial intelligence were also proposed.  

The diagram in Figure 2 presents the interpretation of cone penetration test for selected local soil 

conditions. The GEO5 program was used to interpret the construction of the subsoil [44]. 

 

 
Fig. 2. The examples of results of organic and mineral soils probing with use of cone penetration test CPTM 

carried out in the selected subsoil of the Rzeszow site  
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regression models of one variable were used: the two-parameter linear model (3.1), three-parameter 

polynomial model (3.2), two-parameter power model (3.3) and four-parameter power model (3.4): 

 

(3.1) 𝐹1(𝑥) = 𝑝ଵ + 𝑝ଶ𝑥 

(3.2) 𝐹2(𝑥) = 𝑝ଵ + 𝑝ଶ𝑥 + 𝑝ଷ𝑥ଶ 

(3.3) 𝐹3(𝑥) = 𝑝ଵeమ௫ 

(3.4) 𝐹4(𝑥) = 𝑝ଵeమ௫ + 𝑝ଷeర௫  
 

where: 

F(x) = γt and x = qc or fs 

 

Additionally, the next four regression models of the two variables were used: the three-parameter 

surface model (3.5), five-parameter surface model (3.6, 3.7) and eight-parameter surface model 

(3.8): 

 

(3.5) 𝐹5(𝑥, 𝑦) = 𝑝ଵ + 𝑝ଶ𝑥 + 𝑝ଷ𝑦 

(3.6) 𝐹6(𝑥, 𝑦) = 𝑝ଵ + 𝑝ଶ𝑥 + 𝑝ଷ𝑦 + 𝑝ସ𝑥ଶ + 𝑝ହ𝑥ଶ𝑦 

(3.7) 𝐹7(𝑥, 𝑦) = 𝑝ଵ + 𝑝ଶ𝑥 + 𝑝ଷ𝑦 + 𝑝ସ𝑦ଶ + 𝑝ହ𝑥𝑦ଶ 

(3.8) 𝐹8(𝑥, 𝑦) = 𝑝ଵ + 𝑝ଶ𝑥 + 𝑝ଷ𝑦 + 𝑝ସ𝑥ଶ + 𝑝ହ𝑦ଶ + 𝑝𝑥ଶ𝑦 + 𝑝𝑥𝑦ଶ + 𝑝଼𝑥ଶ𝑦ଶ  
 

where: 

F(x) = γt and x = qc and y = fs. 

 

A total of 3000 models were included in the calculations. The goodness of fit was checked using the 

coefficient of determination (3.9), mean relative error (3.10) and mean squared error (3.11): 

 

(3.9) 𝑅ଶ = 1 − ∑ ൫ௗି௬൯మసభ∑ ൫ௗିௗ൯మసభ = ∑ ൫௬ିௗ൯మసభ∑ ൫ௗିௗ൯మసభ  

(3.10) 𝑀𝑅𝐸 = ଵ∑ ฬௗି௬ௗ ฬୀଵ 100% 

(3.11) 𝑀𝑆𝐸 = ଵ∑ ൫𝑦 − 𝑑൯ଶୀଵ   
 

where: 

n – number of cases, dp – measured values, yp – fitted values (predicted), �̅� – mean of the measured values 

and p = 1,2, ..., n. 
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The comparison of the median of the goodness of fit obtained for the regression of the one variable 

model is presented in Table 2. The median is most important for reliable statistics because it is an 

outlier-resistant statistic. In our analyses, we do not use minimum error values because outliers may 

be caused by over-fitting of tested models. The best model obtained in the analyses was the 

polynomial model F2, using cone resistance. It has 13.75% of the median of mean relative error for 

testing the models. However, it has been shown that there is a very weak relationship between the 

variables included, as evidenced by the low value of the coefficient of determination (R2). The 

relationship between the soil unit weight and cone resistance describes the coefficient value 0.167 

and for dependence between the soil unit weight and sleeve friction the coefficient is similar an 

equal to 0.127. 

 
Table 2. The median of the goodness of fit for regression of the one variable models 

Soil parameter F1 F2 F3 F4 
base test base test base test base test 

γt (qc) 
R2 0.001 0.009 0.182 0.167 0.002 0.009 0.181 0.161 

MRE [%] 15.57 15.90 13.43 13.75 15.57 15.90 13.51 13.87 
MSE 6.673 6.816 5.441 5.737 6.672 6.843 5.447 5.764 

γt (fs) 
R2 0.096 0.133 0.098 0.121 0.095 0.132 0.119 0.127 

MRE [%] 15.63 15.53 15.64 15.64 15.63 15.50 15.32 15.39 
MSE 6.054 5.946 6.046 6.034 6.056 5.963 5.868 5.958 

 

The comparison of the MRE models, included in Table 2 for laboratory data, is presented using 

box-and-whisker diagrams in Figure 9. On each box, the central mark is the median, the edges of 

the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points, 

which are not considered outliers, and outliers are plotted individually. 

 

  
 a) b) 

Fig. 9. Comparison of the MRE tested models (F1–F4): a) qc and b) fs 
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Generally, better results using cone resistance were obtained. Table 3 presents a comparison of the 

median of the goodness of fit obtained for the two variables regression models (F5–F8). The best 

result was obtained for the F7 regression model. The multiple regression analysis developed in this 

study has proven that the models (F1–F4) and model (F5–F8) gave very similar value but didn’t 

provide sufficiently accurate predictions of the soil unit weight value in relation to the results of 

laboratory tests for organic soils. 

 
Table 3. The median of the goodness of fit for the regression of the two variables models 

Soil parameter 
F5 F6 F7 F8 

base test base test base test base test 

γt (qc, fs) 
R2 0.263 0.254 0.353 0.302 0.395 0.351 0.400 0.337 

MRE [%] 13.28 13.56 12.25 12.99 11.97 12.53 11.91 12.60 
MSE 4.908 5.223 4.334 4.807 4.047 4.393 4.017 4.514 

 

The comparison of the test results from the MRE of models are included in Table 3 for two 

laboratory parameters (qc, fs) are presented in Figure 10. The Figure 10a compares the results for the 

base data used to compute the regression fit parameters. Obtained medians of mean relative errors 

of base data were in the range of 11.91–13.28%. Respectively, the medians of MRE of test data 

were in the range of 12.53–13.56%. The Figure 10b shows the comparison statistical results of 

predictions of the soil unit weight. The model F6 had the least outliers. 

 

 

  
a) b) 

Fig. 10. Comparison of the MRE tested models (F5–F8): a) base γt (qc, fs) and b) tested γt (qc, fs) 
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Figure 11 shows detailed results from the F7 model with two variables (qc, fs). The left-hand plot 

(Figure 11a), with the blue line, is related to the base data, and the right-hand plot (Figure 11b), 

with the green line, is related to the test data. The best prediction of standard regression had 

coefficients of determination equal 0.696. 

 

  
a) b) 

Fig. 11. Regression of the F6 model of soil unit weight (qc, fs): a) base data and b) test data 

 

The evoked results excluded direct relationship between the measured and expected values and 

can’t be used to estimate the desired of geotechnical parameter for foundation buildings or 

structures. Other alternative estimation methods should be tested to improve the match and 

reliability of results. 

3.3. Artificial Neural Networks analysis 

Next, a neural regression model was applied. In all the examples, standard multi-layer perception 

with one hidden layer was applied. In this case, the nets have only one element in the output vector 

(soil unit weight). The number of hidden neurons is obtained from a cross-correlation procedure. In 

the calculations, five to eight neurons were used in the hidden layers. The same pattern divided as 

that for the standard regression was used to learn and test the networks. The comparison of the 

median of the goodness of fit, obtained for a few architectures, is presented in Table 4. 
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Table 4. The median of the goodness of fit of the ANN models with one input 

Soil parameter 
[1-5-1] [1-6-1] [1-7-1] [1-8-1] 

learn test learn test learn test learn test 

γt (qc) 
R2 0.343 0.232 0.360 0.227 0.368 0.203 0.375 0.188 

MRE [%] 10.82 12.11 10.65 12.21 10.52 12.39 10.42 12.61 
MSE 2.092 2.319 2.066 2.344 2.053 2.372 2.038 2.413 

γt (fs) 
R2 0.262 0.140 0.283 0.120 0.299 0.121 0.311 0.104 

MRE [%] 13.38 14.92 12.92 15.15 12.73 15.11 12.51 15.42 
MSE 2.214 2.441 2.177 2.495 2.156 2.518 2.138 2.565 

 

The presented results include the median obtained parameters for one element in the input vector. 

During the calculation of the values, 20 repetitions of the network training were considered for each 

of the 250 pattern divisions. In this way, 1000 nets learning results were performed for each ANN 

model. Better prediction was obtained, like that in the standard regression for cone resistance, in the 

input vector. A comparison of the MRE of the tested nets, included in Table 4, is presented in 

Figure 12.  

 

  

a) b) 

Fig. 12. Comparison of the MRE of the tested nets with one element in the input vector: a) qc and b) fs  

 

In this case, the network architecture does not affect the accuracy of approximation. Obtained 

medians of mean relative errors of testing using cone resistance were in the range of 12.11–12.61%. 

Respectively, the medians of MRE of testing using natural sleeve friction were in the range of 

14.92–15.42% and had more outliers. In Table 5, the comparison of the median result, obtained for 

the nets with two elements in the input vector, is presented. In that approach, a better result was also 

obtained, like that in the standard regression with two independent variables. The medians of mean 

relative errors of testing using two parameters were in the range of 8.84–9.01%. 
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Table 5. The median of the goodness of fit of the ANN models with two input 

Soil parameter 
[2-5-1] [2-6-1] [2-7-1] [2-8-1] 

learn test learn test learn test learn test 

γt (qc, fs) 

R2 0.705 0.564 0.739 0.550 0.767 0.541 0.783 0.532 
MRE [%] 6.92 8.97 6.37 8.84 6.04 8.94 5.70 9.01 

MSE 1.409 1.756 1.314 1.776 1.250 1.795 1.195 1.834 

 

The comparison test results from the MRE of models, included in Table 5 for two laboratory 

parameters γt (qc, fs), are presented in Figure 13. The left one (Figure 13a) compares the results for 

the learning nets. There is a visible improvement in the quality of learning for bigger networks in 

the range of 6.92–5.70%. The right one (Figure 13b) shows the results for the testing. There is no 

clear difference in the results. The obtained results for the two inputs are a little better, which is the 

opposite case for the nets with one input. The smallest median of mean relative error test of the 

ANN was equal to 8.84%.  

 

  
a) b) 

Fig. 13. Comparison of the MRE of the nets with two elements in the input vector: a) learned γt (qc, fs) and 

b) tested γt (qc, fs) 

 

Figure 14 shows detailed results for the ANN’s prediction of the soil unit weight using two 

variables (qc, fs) in the input vector for one of the best predictions. Figure 14a shows learning data 

and Figure 14b shows the testing data. The coefficients of determination of testing was quite high 

0.824 and the mean relative error of testing was 5.90% in this case. 
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a) b) 

Fig. 14. Regression of the ANN prediction of soil unit weight γt (qc, fs): a) learn data and b) test data 

 

Generally, the use of neural networks has allowed the soil unit weight values to be predicted based 

on laboratory tests with poor accuracy. The ANN regression models are better than in the 

considered regression models. There were no clear difference results in respect the architecture of 

nets used. The best prediction neural networks were determined based on the lowest medians of 

mean relative error. 

4. Conclusions 

The results of prediction of values of the soil unit weight based on basic parameters of the 

mechanical cone penetration test (CPTM) carried out on existing models in the literature and 

standard regression models developed for the purposes of this study for Polish, local organic soils 

from the vicinity of Rzeszów were unsatisfactory and showed their low usefulness. Therefore, the 

use of standard neural networks was verified. Comparison of standard regression and neural 

networks to predict soil unit weight from the results of the cone penetration test indicates the neural 

networks are more accurate. The maximum median values of the coefficient of determination 

obtained were equal, respectively, to 0.353 and 0.564. The result of using neural networks is not 

satisfactory but very promising. The levels of predictive errors in geotechnics obtained in the 

analyses ware not such big, especially for very different organic soils. However, all methods of 
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studying the geotechnical parameters of organic soils are burdened with large measurement 

uncertainties. 
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Wyznacznie ciężaru objętościowego gruntu organicznego na podstawie badań CPTM 
z zastosowaniem sztucznych sieci neuronowych 

Słowa kluczowe: ciężar objętościowy gruntu, sztuczne sieci neuronowe, grunty organiczne, sonda stożkowa statyczna 
CPTM 

Streszczenie: 

W artykule zaprezentowano możliwości zastosowania wyników badań terenowych uzyskanych za pomocą stożkowej 
sondy statycznej CPTM (ze stożkiem mechanicznym) do wyznaczania ciężaru objętościowego wybranych gruntów 
organicznych zlokalizowanych na terenie Rzeszowa. Głównym celem prowadzonych badań było poszukiwanie 
bezpośrednich zależności pomiędzy między wyznaczonymi w warunkach laboratoryjnych wartościami ciężaru 
objętościowego gruntu γt a parametrami wiodącymi dla badania sondą statyczną CPTM, którymi są: opór gruntu 
podczas zagłębiania stożka qc oraz opór tarcia na tulei ciernej fs. Testy laboratoryjne wykonano na próbkach 
o nienaruszonej strukturze, pobranych z otworów kontrolnych umiejscowionych w bezpośrednim sąsiedztwie punktów 
sondowania, co pozwoliło na pozyskanie reprezentatywnych próbek gruntów o szerokim spectrum zawartości części 
organicznych od 5,02 do 84,93%.  
Wykorzystując metodę standardowej analizy regresji określono zależności między empirycznie wyznaczonymi 
wartościami ciężaru objętościowego badanych gruntów organicznych, a parametrami wyznaczonymi za pomocą sondy 
statycznej w warunkach in situ. Wykorzystano również szereg modeli literaturowych, opracowanych przez 
prezentujących je badaczy dla różnych ośrodków gruntowych i parametrów wiodących. Niestety, analiza regresji 
wykazała, że zarówno istniejące modele, jak i nowe są słabo dopasowane do wartości ciężaru objętościowego 
wyznaczonych w laboratorium. Głównym powodem może być fakt, że grunty organiczne charakteryzują się niezwykle 
skomplikowaną budową, różnorodną i niejednorodną strukturą, a przede wszystkim bardzo zróżnicowaną zawartością 
części organicznych, które mogą lokalnie różnić się genezą czy składem chemicznym. Czynniki te mają wpływ na 
wyjątkowo dużą rozbieżność i brak powtarzalności uzyskiwanych wyników w zadowalającym zakresie. Dlatego, 
dodatkowo, aby poprawić predykcyjne działanie zależności, przeprowadzono analizę z wykorzystaniem sztucznych 
sieci neuronowych (SSN). 
Porównanie wyników zastosowania standardowej regresji i sieci neuronowych w celu prognozowania ciężaru 
objętościowego wybranych gruntów organicznych na podstawie wyników sondowania statycznego wykazało, że sieci 
neuronowe są dokładniejsze. Maksymalne wartości median uzyskanych w analizach statystycznych współczynników 
determinacji (R2) testowanych modeli wynosiły odpowiednio 0,353 i 0,564. Wynik wykorzystania sieci neuronowych 
nie jest zadowalający, ale bardzo obiecujący. W związku z tym, planowana jest kontynuacja prac z wykorzystaniem 
analizy za pomocą sztucznych sieci neuronowych, lecz z zastosowaniem różnych kryteriów kategoryzowania lokalnych 
gruntów organicznych. 
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