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The problem of control of rod heating process
with nonseparated conditions at intermediate

moments of time

Vanya R. BARSEGHYAN

The problem of control of rod heating process by changing the temperature along the rod
whose ends are thermally insulated is considered. It is assumed that, along with the classical
boundary conditions, nonseparated multipoint intermediate conditions are also given. Using the
method of separation of variables and methods of the theory of control of finite-dimensional
systems with multipoint intermediate conditions, a constructive approach is proposed to build
the sought function of temperature control action. A necessary and sufficient condition is
obtained, which the function of the distribution of the rod temperature must satisfy, so that under
any feasible initial, nonseparated intermediate, and final conditions, the problem is completely
controllable. As an application of the proposed approach, control action with given nonseparated
conditions on the values of the rod temperature distribution function at the two intermediate
moments of time is constructed.

Key words: heating control, temperature, intermediate moments of time, nonseparated
multipoint conditions, complete controllability

1. Introduction

When studying controlled thermal processes, mathematical problems of con-
trol of processes arise, which are described by differential equations with partial
derivatives [1–6]. In many applications, the problems of control of the process of
rod heating whose ends are thermally insulated occur. Issues of the development
of regimes to control the heating of the rod are relevant. Theoretical investi-
gations, as well as various statements of the problems of control and optimal
control of processes described by parabolic equations, are given, in particular,
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in [1–17]. In the works [12–15] the problems of control and optimal control of
heat (parabolic) equation with the help of distributed control are considered, in
particular, allowing to take into account the constraints on the structure of the
solution and control [12], the presence of integral constraint on the state [13],
constraints on the control and states [14] and with point constraints of the con-
trol [15]. Control problems often arise, in which desired temperature state must
be generated, satisfying multipoint intermediate conditions. A characteristic fea-
ture of multipoint boundary problems of control is the presence of nonseparated
(non-local) multipoint intermediate conditions, along with the classical bound-
ary (initial and final) conditions. Nonseparated multipoint boundary problems on
the one hand arise as mathematical models of real processes, and on the other
hand, for many processes, it is impossible to provide a correct setting of local
boundary problems. In particular, the nonseparation of multipoint conditions may
also be due to the impossibility in practice to instantly perform measurements
of the measured parameters of the state of an object at its individual points. The
problems of control of the process of heating the rod with given nonseparated
multipoint conditions at intermediate moments of time have not been investi-
gated yet.

The objective of this article is to develop a constructive approach to build the
control function of the temperature state of the homogeneous rod to control the
heating process with given initial, final conditions and nonseparated (nonlocal)
values of the temperature of the rod points at intermediate moments of time. The
article is related to the research in [18, 19].

2. Problem statement

Consider the controlled process of heating a homogenous rod with a length l,
whose ends are fixed. Let the temperature distribution in the rod be described by
the function Z (x, t), 0 ¬ x ¬ l, 0 < t < T , which satisfies the equation

∂Z
∂t
= a2 ∂

2Z
∂x2 + u(x, t), 0 < x < l, t > 0 (1)

with initial condition

Z (x, 0) = ϕ0(x), 0 ¬ x ¬ l, (2)

and homogenous boundary conditions

Z (0, t) = 0, Z (l, t) = 0, 0 ¬ t ¬ T . (3)
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In Eq. (1) a2 =
k

cρ
– coefficient of thermal diffusivity of the rod material,

ρ – material density, c – specific mass heat capacity, k – coefficient of thermal
conductivity of the rod.

The function u(x, t) is the control action. It is assumed that the control of
the thermal process is performed as follows: allocate heat sources along the rod,
for example, stretch a wire with a powerful current, then the temperature of the
rod can be changed by changing over time the current strength. Mathematically,
that is characterized by the fact that the control function u(x, t) in Eq. (1) can
be represented as the product of two functions, one of which determines the
distribution of the heat source, and the other – the change in their power. Each of
these functions can be considered as control.

Let at some intermediate moments of time 0 = t0 < t1 < . . . < tm < tm+1 = T
on the values of the temperature function of the rod nonseparated (nonlocal)
conditions are given in the form

m∑
k=1

f k Z (x, tk ) = α(x), (4)

where f k – given values (k = 1, . . . ,m), α(x) – given function.
The condition (4) may also be due to the impossibility of instantaneous

measurement of the temperature state in the rod at its individual points.
The problem of control of the heating process of a rodwith given nonseparated

(nonlocal) values of the temperature function at intermediate moments of time
tk (k = 1, . . . ,m) can be formulated as follows: among the possible feasible
controls u(x, t), 0 ¬ x ¬ l, 0 ¬ t ¬ T , it is required to find such a control that
the corresponding solution Z (x, t) to Eq. (1) with conditions (2) and (3) ensures
the fulfillment of the nonseparated multipoint intermediate conditions (4) and
satisfies the given final condition

Z (x,T ) = ϕT (x) = ϕm+1(x), 0 ¬ x ¬ l . (5)

If Ω denotes the set Ω = {(x, t) : x ∈ [0, l], t ∈ [0,T]}, then the function u(x, t) ∈
L2(Ω) is called a feasible control. By the solution of the stated problem, it is
meant such a function of feasible control u(x, t) ∈ L2(Ω) that the corresponding
solution Z (x, t) ∈ L2(Ω) to Eq. (1) with conditions (2) and (3) satisfies conditions
(4) and (5).

It is assumed that the system (1) under the constraints (2)–(5) over the time
interval [0, T] is completely controllable [5, 20]. This means that over the time
interval [0, T] it is possible to choose control u(x, t), under the influence of which
the temperature function of the rod Z (x, t) satisfies the equation (1) and the given
conditions (2)–(5).
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3. Solution of the problem

To construct solution of the stated problem, the solution of Eq. (1) with
boundary conditions (3) is sought in the form

Z (x, t) =
∞∑

n=1
Zn(t) sin

πn
l

x. (6)

u(x, t) and α(x) functions are represented in the form of Fourier series

u(x, t) =
∞∑

n=1
un(t) sin

πn
l

x, α(x) =
∞∑

n=1
αn sin

πn
l

x. (7)

Substituting the expansions (6), (7) in the relations (1)–(5) and due to the or-
thogonality of the system of eigenfunctions, it follows that the Fourier coefficients
Zn(t) satisfy a countable number of systems of ordinary differential equations

Żn(t) + λ2
n Zn(t) = un(t), λ2

n =

(aπn
l

)2
n = 1, 2, . . . (8)

and the following initial, nonseparated multipoint intermediate and final condi-
tions:

Zn(0) = ϕ(0)
n , (9)

m∑
k=1

f k Zn(tk ) = αn , (10)

Zn(T ) = ϕ(T )
n , (11)

where ϕ(0)
n , ϕ(T )

n denote Fourier coefficients corresponding to the functions ϕ0(x),
ϕT (x).

The general solution of Eq. (8) with initial condition (9) has the form

Zn(t) = ϕ(0)
n e−λnt +

t∫
0

un(τ)e−λn (t−τ) dτ. (12)

Now, taking into account intermediate nonseparated (10) and final (11) con-
ditions, using the approaches given in [20, 21] from the equation (12), we find
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that the functions un(τ) for each n must satisfy the following system of equalities:

T∫
0

un(τ)e−λn (T−τ) dτ = Cn(T ),

m∑
k=1

f k

tk∫
0

un(τ)e−λn (tk−τ) dτ = C (m)
n (t1, . . . , tm),

n = 1, 2, . . . ,

(13)

where

Cn(T ) = ϕ(T )
n − ϕ(0)

n e−λnT,

C (m)
n (T ) = C (m)

n (t1, . . . , tm) = αn −

m∑
k=1

f kϕ
(0)
n e−λntk .

(14)

Introducing the following functions

hn(τ) = e−λn (T−τ), 0 ¬ τ ¬ T,

h(m)
n (τ) =

m∑
k=1

f k h(k)
n (τ),

h(k)
n (τ) =

{
e−λn (tk−τ), 0 ¬ τ ¬ tk ,

0, tk < τ ¬ tm+1 = T,

(15)

the integral relations (13), using functions (15), will be written as follows

T∫
0

un(τ)hn(τ)dτ = Cn(T ),

T∫
0

un(τ)h(m)
n (τ)dτ = C (m)

n (T ), n = 1, 2, . . .

(16)

Thus, the sought functions un(τ), τ ∈ [0, T] for each n must satisfy the integral
relations (16).

Introducing the following notations

Hn(τ) = *.
,

hn(τ)

h(m)
n (τ)

+/
-
, ηn =

*.
,

Cn(T )

C (m)
n (T )

+/
-

(17)
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integral relations (16) are written as follows

T∫
0

Hn(t)un(t)dt = ηn . (18)

From the relation (18) (or (16)) it follows that for each n the process described
by Eq. (8) with conditions (9)–(11) is completely controllable if and only if for
any given vector ηn (17) the control un(t), t ∈ [0, T] can be found, satisfying
condition (18) (or (16)).

Following [20, 21], for each n = 1, 2, . . . the function un(t), t ∈ [0, T],
satisfying the integral relation (18) can be represented as

un(t) = (Hn(t))′ S−1
n ηn + νn(t). (19)

where

Sn =

T∫
0

Hn(t) (Hn(t))′ dt = *.
,

s(n)
11 s(n)

12

s(n)
21 s(n)

22

+/
-
, (20)

and νn(t) – some function such that

T∫
0

Hn(t)νn(t)dt = 0. (21)

Hereinafter, the superscript ′ denotes the transpose operation.
The elements of the matrix Sn, according to (20) and the notations (15), (17),

have the following forms

s(n)
11 =

T∫
0

(hn(τ))2 dτ =
T∫

0

e−2λn (T−τ) dτ =
1

2λn

(
1 − e−2λnT

)
,

s(n)
12 = s(n)

21 =

T∫
0

hn(τ)h(m)
n (τ)dτ =

m∑
k=1

f k
1

2λn

(
e−λn (T−tk ) − e−λn (T+tk )

)
,

s(n)
22 =

T∫
0

(
h(m)

n (τ)
)2

dτ =
T∫

0

*
,

m∑
k=1

f k h(k)
n (τ)+

-

2

dτ.

(22)
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Note that according to the notation (15) we have

h(m)
n (t) =




m∑
k=1

f k e−λn (tk−t), 0 ¬ t ¬ t1 ,

m∑
k=2

f k e−λn (tk−t), t1 < t ¬ t2 ,

. . . ,
m∑

k=m−1
f k e−λn (tk−t), tm−2 < t ¬ tm−1 ,

fme−λn (tm−t), tm−1 < t ¬ tm ,

0, tm < t ¬ tm+1 = T .

Therefore, given the notation (15), (17), the control action un(t), t ∈ [0, T],
according to (19), is presented in the following form:

un(t)=




(
e−λn (T−τ)

m∑
k=1

f k e−λn (tk−t)
)
S−1

n ηn + νn(t), 0 ¬ t ¬ t1 ,(
e−λn (T−τ)

m∑
k=2

f k e−λn (tk−t)
)
S−1

n ηn + νn(t), t1 < t ¬ t2 ,

. . .(
e−λn (T−τ) fme−λn (tm−t)

)
S−1

n ηn + νn(t), tm−1 < t ¬ tm ,(
e−λn (T−τ) 0

)
S−1

n ηn + νn(t), tm < t ¬ tm+1=T .

(23)

Thus, for the control u(x, t), from the formula (7) we have

u(x, t)=




∞∑
n=1

[(
e−λn (T−τ)

m∑
k=1

f k e−λn (tk−t)
)
S−1

n ηn+νn(t)
]
sin πn

l x, 0 ¬ t ¬ t1 ,

∞∑
n=1

[(
e−λn (T−τ)

m∑
k=2

f k e−λn (tk−t)
)
S−1

n ηn+νn(t)
]
sin πn

l x, t1 ¬ t ¬ t2 ,

. . .
∞∑

n=1

[(
e−λn (T−τ) fme−λn (tm−t)

)
S−1

n ηn + νn(t)
]
sin πn

l x,tm−1< t ¬ tm ,

∞∑
n=1

[(
e−λn (T−τ) 0

)
S−1

n ηn + νn(t)
]
sin πn

l x, tm< t ¬ tm+1 = T .

Substituting (23) into (12), Zn(t) on the time interval t ∈ [0, T] is obtained,
and from the formula (6) the temperature function Z (x, t) can be found. Note that
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the functions u(x, t) and Z (x, t) are the solutions of the stated problem since the
series constructed for them converges uniformly in Ω .

4. Example

Suppose that m = 2 (i.e. 0 < t1 < t2 < t3 = T ), then for νn(t) = 0 from (23)
the following holds

un(t) =




(
e−λn (T−τ) f1e−λn (t1−t)

)
S−1

n ηn, 0 ¬ t ¬ t1 ,(
e−λn (T−τ) f2e−λn (t2−t)

)
S−1

n ηn, t1 < t ¬ t2 ,(
e−λn (T−τ)0

)
S−1

n ηn, t2 < t ¬ t3 = T .

(24)

From the formula (22) we have

s(n)
11 =

1 − e−2λnT

2λn
,

s(n)
12 = s(n)

21 =
1

2λn

[
f1e−λn (T+t1)

(
e2λnt1 − 1

)
+ f2e−λn (T+t2)

(
e2λnt2 − 1

)]
,

s(n)
22 =

1
2λn

[
f 2
1

(
1 − e−2λnt1

)
+ f 2

2

(
1 − e−2λnt2

)
+ 2 f1 f2e−λn (t1+t2)

(
e2λnt1 − 1

)]
.

Hence, we have that

det Sn = −
1

4λ2
n

e−2λn (T+t1+t2)
[

f 2
1

(
e2λn (T+t2) + e2λn (2t1+t2)

)
+ f 2

2

(
e2λn (T+t1) + e2λn (t1+2t2)

)
+ 2 f1 f2

(
e3λn (t1+t2) + eλn (2T+t1+t2) − eλn (2T+3t1+t2) − eλn (t1+3t2)

)
−( f 2

1 + f 2
2 )

(
e2λn (t1+t2) + e2λn (T+t1+t2)

)]
.

Note that for f1 , 0 and f2 , 0 it follows that det Sn , 0.
Now assuming that t1 = 1, t2 = 2, T = 3 and f1 = f2 = 1, we have

det Sn =
2e−3λn (1 + 2 cosh λn) sinh λ2

n

λ2
n

,

and from the above expressions, for the inverse matrix, the ollowing is obtained

S−1
n =

*
,

s−(n)
11 s−(n)

12

s−(n)
21 s−(n)

22

+
-
,
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where

s−(n)
11 =

λneλn (2 + 3 cosh λn + sinh λn)
2 (sinh λn + sinh λn)

,

s−(n)
12 = s−(n)

21 = −
λn

2
cschλn ,

s−(n)
22 = λn coth λn −

λn

2
cschλn .

From (17), taking into account (14), the following is obtained

ηn = *
,

η (n)
1

η (n)
2

+
-
= *
,

ϕ(T )
n − ϕ(0)

n e−3λn

αn − ϕ
(0)
n

(
e−λn + e−2λn

) +
-
,

S−1
n ηn = *

,

s−(n)
11 η (n)

1 + s−(n)
12 η (n)

2

s−(n)
12 η (n)

1 + s−(n)
22 η (n)

2

+
-
.

Substituting the value of the vector S−1
n ηn in (24), it is obtained that

un(t) =




e−λn (3−t)
(
s−(n)

11 η (n)
1 + s−(n)

12 η (n)
2

)
+

(
e−λn (1−t) + e−λn (2−t)

) (
s−(n)

12 η (n)
1 + s−(n)

22 η (n)
2

)
, 0 ¬ t ¬ 1,

e−λn (3−t)
(
s−(n)

11 η (n)
1 + s−(n)

12 η (n)
2

)
+ e−λn (2−t)

(
s−(n)

12 η (n)
1 + s−(n)

22 η (n)
2

)
, 1 < t ¬ 2,

e−λn (3−t)
(
s−(n)

11 η (n)
1 + s−(n)

12 η (n)
2

)
, 2 < t ¬ 3

and from (7) explicit expressions for the control function u(x, t) are obtained in
the form
for 0 ¬ t ¬ 1

u(x, t) =
∞∑

n=1

[
e−λn (3−t)

(
s−(n)

11 η (n)
1 + s−(n)

12 η (n)
2

)
+

(
e−λn (1−t) + e−λn (2−t)

) (
s−(n)

12 η (n)
1 + s−(n)

22 η (n)
2

)]
sin

πn
l

x;

for 1 < t ¬ 2

u(x, t) =
∞∑

n=1

[
e−λn (3−t)

(
s−(n)

11 η (n)
1 + s−(n)

12 η (n)
2

)
+e−λn (2−t)

(
s−(n)

12 η (n)
1 + s−(n)

22 η (n)
2

)]
sin

πn
l

x;
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for 2 < t ¬ 3

u(x, t) =
∞∑

n=1

[
e−λn (3−t)

(
s−(n)

11 η (n)
1 + s−(n)

12 η (n)
2

)]
sin

πn
l

x.

Substituting the expressions of the function un(t) in (12), explicit expressions
for the function Zn(t) are obtained in the form
for 0 ¬ t ¬ 1

Zn(t) = ϕ(0)
n e−λnt +

An

2λn
e−λn (3+t)

(
e6λn − 1

)
+

Bn

2λn

[
e−λn (2+t)

(
e4λn − 1

)
+ e−λn (1+t)

(
e2λn − 1

)]
;

for 1 < t ¬ 2

Zn(t) = ϕ(0)
n e−λnt +

An

2λn
e−λn (3+t)

(
e6λn − 1

)
+

Bn

2λn
e−λn (2+t)

(
e4λn − 1

)
;

for 2 < t ¬ 3

Zn(t) = ϕ(0)
n e−λnt +

An

2λn
e−λn (3+t)

(
e6λn − 1

)
,

where

An = s−(n)
11 η (n)

1 + s−(n)
12 η (n)

2 , Bn = s−(n)
12 η (n)

1 + s−(n)
22 η (n)

2 .

From (6), explicit expressions for the function of the rod temperature Z (x, t)
are obtained in the form
for 0 ¬ t ¬ 1

Z (x, t) =
∞∑

n=1

{
ϕ(0)

n e−λnt +
An

2λn
e−λn (3+t)

(
e6λn − 1

)
+

Bn

2λn

[
e−λn (2+t)

(
e4λn − 1

)
+ e−λn (1+t)

(
e2λn − 1

)]}
sin

πn
l

x;

for 1 < t ¬ 2

Z (x, t) =
∞∑

n=1

[
ϕ(0)

n e−λnt +
An

2λn
e−λn (3+t)

(
e6λn − 1

)
+

Bn

2λn
e−λn (2+t)

(
e4λn − 1

)]
sin

πn
l

x;
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for 2 < t ¬ 3

Z (x, t) =
∞∑

n=1

[
ϕ(0)

n e−λnt +
An

2λn
e−λn (3+t)

(
e6λn − 1

)]
sin

πn
l

x.

Thus, using the proposed approach, for m = 2 explicit expressions of the
control function that solve the stated problem and an explicit expression of the
corresponding function of the distribution of the rod temperature are obtained.

5. Conclusion

The problem of control of the rod heating process differs from the well-known
statements of the problems in that along with the classical boundary conditions,
nonseparated multipoint intermediate conditions are also given. The proposed
constructive method can be used in the construction of control of temperature
regime for other not one-dimensional heating processes. This determines the
scientific novelty and practical significance of the obtained results.
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