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Dynamics, control, stability, diffusion
and synchronization of modified chaotic

colpitts oscillator

SURESH RASAPPAN and K.A. NIRANJAN KUMAR

The purpose of this paper is to introduce a new chaotic oscillator. Although different chaotic
systems have been formulated by earlier researchers, only a few chaotic systems exhibit chaotic
behaviour. In this work, a new chaotic system with chaotic attractor is introduced. It is worth
noting that this striking phenomenon rarely occurs in respect of chaotic systems. The system
proposed in this paper has been realized with numerical simulation. The results emanating from
the numerical simulation indicate the feasibility of the proposed chaotic system. More over,
chaos control, stability, diffusion and synchronization of such a system have been dealt with.

Key words: chaos, Colpitts oscillator, Lyapunov exponent, diffusion, stability, synchro-
nization

1. Introduction

The study of chaotic dynamical systems is drawing the attention of the re-
searchers in the recent times. Research on a chaotic system with chaotic attractor
is posing several challenges thereby making the study quite interesting.

A non-linear dynamical system exhibiting complex and unpredictable behav-
ior is called chaotic system [1]. The parameter values are varying with range and
the sensitivity depends on initial conditions. These are the remarkable proper-
ties [2] of chaotic systems. Sometimes, the chaotic systems are deterministic [3,4]
and they have long-term unpredictable behavior [5, 6].
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While chaotic systems are highly sensitive, their sensitivity depends on their
initial conditions. The chaotic nature is one of the qualitative [7, 8] properties of
a dynamical system [9, 10].

The controlling of the chaotic systemsmay be accomplished in threeways such
as stabilization [11,12] of unstable periodic motion “contained” in the chaotic set,
suppression of chaotic behavior by external forcing like periodic noise, periodic
parametric perturbation and algorithm of various automatic control like feedback
[13, 14], backstepping [15–17], sample feedback, time delay feedback, etc.

There exist two ways for the application of controls in a chaotic system. The
first one is the change of attractor of the system. The second one is the change in
the point position of the phase space for the system which is a constant value in
its parameter.

A continuous, repeated and alternating wave production without any input is
an oscillator. Converting power supply to an alternating current signal is one of
the primary properties of oscillators. The signal of feedback containing a pair of
coils and an inductive divider in the server is called Colpitts oscillator [18, 19].
Due to some parametric change and the variation of input, the chaotic nature may
occur in Colpitts oscillators.

In this paper, a new chaotic Colpitts oscillator is proposed. It is a modified
formof the earlier version of Colpitts oscillators. In section 2, themodified formof
Colpitts oscillator [20,21] is presented with the formulation of the mathematical
model. In addition, invariant property, equilibrium point and Lyapunov exponents
[22–25] are investigated. In section 3, adaptive backstepping technique [26,27] is
explained for the proposed system. In section 4, a non linear feedback system is
established. The control strategy of backstepping is employed to analyze the non
linear feedback system in section 5. Finally, the numerical simulation [28–31] is
upheld for the hypothetical outcomes.

2. The mathematical model of chaotic Colpitts oscillator

The depiction of simplified illustrative diagram formodifiedColpitts oscillator
is undertaken in Fig. 1. In addition to Electronic devices, communication systems
also have wide usage of the Colpitts oscillator [32]. It is a single-transistor
implementation of a sinusoidal oscillator.

The following are the hypotheses for simplifying the extensive simulation of
the complete circuit model.

• The base-emitter (B-E) driving point (V-I) characteristic of the RE with
logarithmic function is

IE = f (VBE ) = IS

[
log

(
VBE

VT

)
− 1

]
,

where IS is the emitter current (inverse saturation current) of the B-E
junction.
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• The state space is schematically represented in Fig. 1.

RCC1
dVC1

dt
= V0 − VC1 − VC2 + RC IL − RC f (VBE ) ,

RCC2
dVC2

dt
= V0 − VC1 − VC2 − RC I0 + RC IL,

C3
dVC3

dt
= IL − (1 − α) f (VBE ) ,

L
dIL

dt
= −RbIL − VC1 − VC2 − VC3 .

Figure 1: The circuit diagram

The following is the proposed new system with Colpitts oscillator:

ẋ1 = σ1(−x1 − x2) + x4 − γφ(x1, x3),
ẋ2 = ε1σ1(−x1 − x2) + ε1x4 ,

ẋ3 = ε2(x4 − (1 − α)γφ(x1, x3)),
ẋ4 = −x1 − x2 − x3 − σ2x4 ,

(1)

where φ(x1, x3) = log(x1 + x3) − 1.
In system (1), the state variables are assumed as x1, x2, x3 and x4 along

with six positive parameters, σ1, γ, ε1, ε2, σ2 and α. The system ((1)) is an
autonomous system to which a logarithmic expression is associated.

With the modification of coordinates provided by the scheme
(x1, x2, x3, x4) 7→ (−x1, −x2, −x3, −x4), the system (1) is found to be
invariant.

The mathematical system of the Colpitts oscillator mathematical systemwhen
equated to zero gives the equilibrium points of the system as specified below:

σ1(−x1 − x2) + x4 − γφ(x1, x3) = 0,
ε1σ1(−x1 − x2) + ε1x4 = 0,

ε2(x4 − (1 − α)γφ(x1, x3)) = 0,
−x1 − x2 − x3 − σ2x4 = 0.

(2)
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Solving the system (2), it is seen that the new chaotic system (2) has a unique
equilibrium at the origin.

The Jocobian matrix of the system (1) at the equilibrium point E is given by

JE =



−σ1 −
γ

x1 + x3
−σ1 −

γ

x1 + x3
1

−ε1σ1 −ε1σ1 0 ε1

−ε2(1 − α)
γ

x1 + x3
0 −ε2(1 − α)

γ

x1 + x3
ε2

−1 −1 −1 −σ2



. (3)

The corresponding characteristic equation of Colpitts oscillator system (1) with
respect to E is given by the relation

∆1λ
4 + ∆2λ

3 + ∆3λ
2 + ∆4λ + ∆5 = 0, (4)

where

∆1 = 1,

∆2 =

[
−αε2γ + ε1σ1x1 + ε1σ1x3 + ε2γ + γ + σ1x1 + σ1x3 + σ2x1 + σ2x3

]

x1 + x3
,

∆3 =



−αε1ε2γσ1 − αε2γσ1 − αε2γσ2 + ε1ε2γσ1 + ε1γσ1 + ε1σ1σ2x1
+ε1σ1σ2x3 + ε1x1 + ε1x3 + ε2γσ1 + ε2γσ2 + ε2x1
+ε2x3 + γσ2 + σ1σ2x1 + σ1σ2x3 + x1 + x3


x1 + x3

,

∆4 =



−αε1ε2γσ1σ2 − αε1ε2γ − αε2γσ1σ2 + ε1ε2γσ1σ2 + ε1ε2γ
+ε1ε2σ1x1 + ε1ε2σ1x3 + ε1γσ1σ2 + ε1γ + ε2γσ1σ2
+ε2σ1x1 + ε2σ1x3


x1 + x3

,

∆5 =

[
ε1ε2γσ1

]

x1 + x3
.

Applying Routh-Hurwitz stability criterion [33] to the characteristic equation,
we conclude that the system is unstable for all values of the parameters at the
equilibrium position E.

From the Jacobian matrix (3), among the states x1, x2, x3 and x4, if x1 and x3
are both positive or negative or of opposite signs, it implies “Hopf bifurcation”.
This phenomenon is also known as “Poincaré–Andronov–Hopf bifurcation”. This
bifurcation leads a local birth of “chaos” nature inmodified Colpitts oscillator (1).

Interestingly, the system (1) is chaotic for the parameters

ε1 = 1, ε2 = 20, σ1 = 1.49, σ2 = 0.872, γ = 25.80,
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α =
255
256

or α =
255

256.5
.

Lyapunov exponents may be considered as one of the keys to differentiate
between chaotic, hyperchaotic, stable and periodic nature of the systems.

Table 1 gives the details of the chaotic and hyperchaotic nature [34] of the
system. For this calculation, the observation time (T ) is considered as 100 and
the sampling time (∆t) is taken as 0.5. For various initial conditions, the system
(1) exhibits chaotic and hyperchaotic nature.

By applying Wolf algorithm [35], the Lyapunov exponents corresponding to
the new chaotic system (1) are obtained as follows:

FromTable 1, the Lyapunov exponential dimension is calculated. The attractor
of the new system is observed to be a strange attractor with fractal dimensions.

Through numerical simulation, the chaotic attractor of the system (1) is ob-
tained as shown in Fig. 3.

Figure 2 depicts the Lyapunov exponents of the modified Colpitts oscillator
and Fig. 3 shows the chaotic nature of the modified Colpitts oscillator.

The study of qualitative properties is one of the utilities of this paradigm. The
stability control, limit cycle, periodicity and chaos are some notable qualitative
properties. The following theorems bring out the local stability properties of the
modified Colpitts oscillator.

Theorem 1 The interior equilibrium point E is locally asymptotically stable in
the positive octant.

Proof. By divergence criterion theorem, assume

θ(x1, x2, x3, x4) =
1

x1x2x3x4
, (5)

where θ(xi, i = 1, 2, 3, 4) > 0 if xi > 0, i = 1, 2, 3, 4.
Now consider

p1 = σ1(−x1 − x2) + x4 − γφ(x1, x3),

p2 = ε1σ1(−x1 − x2) + ε1x4 ,

p3 = ε2
(
x4 − (1 − α)γφ(x1, x3)

)
,

p4 = −x1 − x2 − x3 − σ2x4 ,

(6)

where φ(x1, x3) = log(x1 + x3) − 1.
Define

∇ =
∂

∂x1
(p1θ) +

∂

∂x2
(p2θ) +

∂

∂x3
(p3θ) +

∂

∂x4
(p4θ). (7)
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(a) The Lyapunov exponent for Modified Colpitts os-
cillator with ε1 = 1, ε2 = 20, σ1 = 1.49, σ2 =
0.872, α = 255/256, γ = 25.80 with initial condition
(x1, x2, x3, x4) = (2.6758, 0.7834, 8.2345, 1.4387)
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(b) The Lyapunov exponent for Modified Colpitts os-
cillator with ε1 = 1, ε2 = 20, σ1 = 1.49, σ2 =
0.872, α = 255/256, γ = 25.80 with initial condition
(x1, x2, x3, x4) = (1, 1, 1, 1)
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(c) The Lyapunov exponent for Modified Colpitts os-
cillator with ε1 = 1, ε2 = 20, σ1 = 1.49, σ2 =
0.872, α = 255/256, γ = 25.80 with initial condition
(x1, x2, x3, x4) = (0.001, 0.001, 0.001, 0.001)
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(d) The Lyapunov exponent for Modified Colpitts os-
cillator with ε1 = 1, ε2 = 20, σ1 = 1.49, σ2 =
0.872, α = 255/256, γ = 25.80 with initial condition
(x1, x2, x3, x4) = (0.0001, 0.0001, 0.0001, 0.0001)
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(e) The Lyapunov exponent for Modified Col-
pitts oscillator with ε1 = 1, ε2 = 20,
σ1 = 1.49, σ2 = 0.872, α = 255/256,
γ = 25.80 with initial condition (x1, x2, x3, x4) =
(0.00001, 0.00001, 0.00001, 0.00001)
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(f) The Lyapunov exponent for Modified Colpitts oscil-
lator with ε1 = 1, ε2 = 20, σ1 = 1.49, σ2 = 0.872,
α = 255/256.5, γ = 25.80 with initial condition
(x1, x2, x3, x4) = (0.0001, 0.0001, 0.0001, 0.0001)

Figure 2: Lyapunov exponents of the Modified Colpitts oscillator
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(a) Chaotic nature between x1 and x2 (b) Chaotic nature between x1 and x3

(c) Chaotic nature between x1 and x4 (d) Chaotic nature between x2 and x3

(e) Chaotic nature between x2 and x4 (f) Chaotic nature between x3 and x4
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(g) Chaotic nature between x1, x2 and x3 (h) Chaotic nature between x1, x2 and x4

(i) Chaotic nature between x1, x3 and x4 (j) Chaotic nature between x2, x3 and x4

Figure 3: Portrait of Colpitts

We have to determine ∇ given by Eq. (7) along with the trajectories provided
by Eq. (5) and Eq. (6). We obtain

∇ = −

[
σ1 + γ/(x1 + x3)

]
x1x2x3x4 +

[
σ1(−x1 − x2) + x4 − γφ(x1, x3)

]
x2x3x4

x2
1x2

2x2
3x2

4

−
ε1σ1x1x2x3x4 +

[
ε1σ1(−x1 − x2) + ε1x4

]
x1x3x4

x2
1x2

2x2
3x2

4

−

[
ε2(1 − α)γ/(x1 + x3)

]
x1x2x3x4 + ε2

[
x4 − (1 − α)γφ(x1 + x3)

]
x1x2x4

x2
1x2

2x2
3x2

4

−
σ2x1x2x3x4 + (−x1 − x2 − x3 − σ2x4)x1x2x3

x2
1x2

2x2
3x2

4

which is less than zero.
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FromBenedixon-Dulac criterion, it it clear that the first octant does not contain
any limit cycle.

Consequently, the equilibrium provided by E is found to be locally asymptot-
ically stable.

The relation between the limit cycle and closed trajectories exhibits the local
asymptotic stability. The following theorem is concerned with the stability under
closed trajectory using Bendixson’s criteria theorem.

Theorem 2 There is no closed trajectory for the interior equilibrium point.

Proof. Define
Ψ(xi, i = 1, 2, 3, 4) =

∂p1

∂x1
+ · · · +

∂p4

∂x4
. (8)

Find Ψ along with the trajectories associated with Eq. (8). It follows that

Ψ = −σ1 − γ/(x1 + x3) − ε1σ1 − ε2(1 − α)γ/(x1 + x3) − σ2 , 0. (9)

Hence, by applying Bendixson’s criteria theorem to Eq. (9), it is seen that
there is no closed trajectory surrounding the point E.

Hence, limit cycle does not exist emcompassing E.
Therefore, the point E is found to be locally asymptotically stable.
Such of those oscillators exhibiting stable periodic orbits correspond to a spe-

cial type of solution for the oscillators. The following theorem focuses attention
on the nontrivial periodic solution.

Theorem 3 The modified Colpitts oscillator given by Equation (1) has a non-
trivial periodic solution.

Proof. Define

Φ =
d
dt

*
,

x2
1 + x2

2 + x2
3 + x2

4
2

+
-

= x1
dx1

dt
+ x2

dx2

dt
+ x3

dx3

dt
+ x4

dx4

dt
= x1 ẋ1 + x2 ẋ2 + x3 ẋ3 + x4 ẋ4

=

4∑
i=1

xi
dxi

dt
. (10)

Find Φ from Eq. (10) along the trajectories Eq. (1). We see that

Φ = x1[σ1(−x1 − x2) + x4 − γφ(x1, x3)] + x2[ε1σ1(−x1 − x2) + ε1x4]
+ x3[ε2(x4 − (1 − α)γφ(x1, x3))] + x4[−x1 − x2 − x3 − σ2x4]



DYNAMICS, CONTROL, STABILITY, DIFFUSION AND SYNCHRONIZATION
OF MODIFIED CHAOTIC COLPITTS OSCILLATOR 741

Φ = −σ1x2
1 − σ1x1x2 + x1x4 − γx1φ(x1, x3) − ε1σ1x1x2 − ε1σ1x2

2 + ε1x2x4

+ ε2x3x4 − ε2(1 − α)x3γφ(x1, x3) − x1x4 − x2x4 − x3x4 − σ2x2
4

= −(σ1x2
1 + σ1x2

2 + σ2x2
4) − σ1x1x2(1 + ε1) − (1 − ε1)x2x4

− (1 − ε2)x3x4 − γφ(x1, x3)[x1 + ε2(1 − α)x3]
= −(∇1 + ∇2), (11)

where
∇1 = σ1x2

1 + ε1σ1x2
2 + σ2x2

4 ,

∇2 = σ1(1 + ε1)x1x2 + (1 − ε1)x2x4 + (1 − ε2)x3x4

+ γφ(x1, x3)(x1 + ε2(1 − α)x3).

It is observed that ∇1 + ∇2 is positive for x2
1 + x2

2 + x2
3 + x2

4 < a and negative for
x2

1 + x2
2 + x2

3 + x2
4 > b, where a, b are positive constants.

This implies that any solution xi (t) of (1) will be in the annulus a <
4∑

i=1
x2

i < b.

Hence, by Poincaré-Bendixson theorem, there exists atleast one periodic so-
lution xi (t), i = 1, 2, 3, 4 of Eq. (1) lying in this annulus.

Hence, the modified Colpitts oscillator Equation (1) has a nontrivial periodic
solution.

The study of control refers to the process of influencing the behaviour of an
oscillator to achieve a desired goal, primarily through the use of feedback control.
The following section describes the backstepping control when the parameter
values are unknown.

3. Adaptive backstepping control of the modified Colpitts oscillator
with unknown parameters

3.1. Proposed system

The modified Colpitts oscillator system is given by the dynamics with con-
trollers

ẋ1 = σ1(−x1 − x2) + x4 − γφ(x1, x3) + u1 ,

ẋ2 = ε1σ1(−x1 − x2) + ε1x4 + u2 ,

ẋ3 = ε2
(
x4 − (1 − α)γφ(x1, x3)

)
+ u3 ,

ẋ4 = −x1 − x2 − x3 − σ2x4 + u4 ,

(12)

where φ(x1, x3) = log(x1 + x3) − 1.
In system (12), x1, x2, x3 and x4 are state variables and u1, u2, u3 and u4 are

adaptive controllers.
The synchronization error is defined as ei = yi − xi, i = 1, 2, 3, 4.
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The unknown parameters are updated by

eσ1 = σ1 − σ̂1(t), eσ2 = σ2 − σ̂2(t),
eε1 = ε1 − ε̂1(t), eε2 = ε2 − ε̂2(t),
eα = α − α̂(t), eγ = γ − γ̂(t).

(13)

By differentiating (13) with respect to ‘t’, one obtains

ėσ1 = −
˙̂σ1(t), ėσ2 = −

˙̂σ2(t),

ėε1 = −
˙̂ε1(t), ėε2 = −

˙̂ε2(t),

ėα = − ˙̂α(t), ėγ = − ˙̂γ(t).

At this stage, the state of the system is considered as

ẋ1 = σ1(−x1 − x2) + x4 − γφ(x1, x3) + u1 , (14)

where x2 is regarded as virtual controller.
In order to stabilize the system, the suitable Lyapunov function is defined as

V1(x1) =
1
2

x2
1 +

1
2

e2
σ1
+

1
2

e2
γ .

By differentiating V1 with respect to t,

V̇1 = x1 ẋ1 + eσ1 ėσ1 + eγ ėγ

= x1
[
σ1(−x1 − x2) + x4 − γφ(x1, x3) + u1

]
+ eσ1

(
− ˙̂σ1

)
+ eγ

(
− ˙̂γ

)
, (15)

where x2 is regarded as virtual controller and is defined as

x2 = β1(x1) and β1(x1) = 0.

The controller u1 is assumed as

u1 = −x1 + σ̂1x1 − x4 + γ̂φ(x1, x3) (16)

and the unknown parameters σ̂1 and γ̂ are updated by

˙̂σ1 = −x2
1 + eσ1 ,

˙̂γ = −x1φ(x1, x3) + eγ .
(17)

On substitution of (16) and (17) into (15), we get

V̇1 = −x2
1 − e2

σ1
− e2

γ

which is found to be a negative definite function.
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Hence by Lyapunov stability theory, the system is globally asymptotically
stable.

Now define the relation between β1 and x2 by

ω2 = x2 − β1 .

Consider the subsystem (x1, ω2). We have

ẋ1 = −eσ1 x1 − σ1ω2 − eγφ(x1, x3) − x1 ,

ω̇2 = −ε1σ1x1 − ε1σ1ω2 + ε1x4 + u2 .

Define V2 by the Lyapunov function as

V2 = V1 +
1
2
ω2

2 +
1
2

e2
ε1
.

On differentiating V2 with respect to t, we get

V̇2 = x1 ẋ1 + eσ1

(
− ˙̂σ1

)
+ eγ

(
− ˙̂γ

)
+ eε1

(
− ˙̂ε1

)
+ ω2ω̇2 . (18)

The controller u2 is assumed as

u2 = σ1x1 + ε̂1 (σ1x1 + σ1ω2 − x4) + x3 − ω2 . (19)

Let x3 be the virtual controller. It is defined as x3 = β2(x1, ω2) with the assump-
tion that β2(x1, ω2) = 0.

The parameter ε1 is estimated as ˙̂ε1 = −ω2 (σ1x1 + σ1ω2 − x4) + eε1 . (20)

Substituting (19) and (20) into (18), we get

V̇2 = −x2
1 − e2

σ1
− e2

γ − w2
2 − e2

ε1

which is a negative definite function.
Hence by Lyapunov stability theory, the system is globally asymptotically

stable.
The relation between x3 and β2 is defined by

ω3 = x3 − β2 .

Consider the subsystem (x1, ω2, ω3). We have

ẋ1 = −eσ1 x1 − σ1ω2 − eγφ (x1, x3) − x1 ,

ω̇2 = −eε1 (σ1x1 + σ1ω2 − x4) − ω2 + σ1x1 + ω3 ,

ω̇3 = ε2
(
x4 − (1 − α)γφ (x1, x3)

)
+ u3 .
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Now consider the Lyapunov function

V3 = V2 +
1
2
ω2

3 +
1
2

e2
ε2
+

1
2

e2
α

The derivative of V3 with respect to t is obtained as

V̇3 = V̇2 + ω3ω̇3 + eε2 ėε2 + eα ėα , (21)

where
u3 = −ω2 − ω3 + ε̂2γφ(x1, x3) − ε2α̂γφ(x1, x3). (22)

Let us denote the virtual controller by x4. It is defined as x4 = β3(x1, ω2, ω3)
and we assume that β3(x1, ω2, ω3) = 0.

The parameters are estimated as

˙̂ε2 = −ω3γφ(x1, x3) + eε2 ,

˙̂α = ω3ε2γφ(x1, x3) + eα .
(23)

Substitute (22) and (23) into (21). Then we get

V̇3 = −x2
1 − e2

σ1
− e2

γ − w2
2 − e2

ε1
− w2

3 − e2
ε2
− e2

α

which is a negative definite function.
Hence by the theory of Lyapunov, it follows that the system provided by

Eq. (12) is stable.
Now the relation between x4 and β3 is defined by

ω4 = x4 − β3 .

Consider the subsystem (x1, ω2, ω3, ω4) provided by

ẋ1 = −eσ1 x1 − σ1ω2 − eγφ(x1, x3) − x1 ,

ω̇2 = −eε1 (σ1x1 + σ1ω2 − x4) − ω2 + ω3 + σ1x1 ,

ω̇3 = ε2ω4 − eε2γφ(x1, x3) + eαε2γφ(x1, x3) − ω2 − ω3 ,

ω̇4 = −x1 − x2 − x3 − σ2ω4 + u4 .

Now consider the Lyapunov function

V4 = V3 +
1
2
ω2

4 +
1
2

e2
σ2
.

The derivative of V4 with respect to t is obtained as

V̇4 = V̇3 + ω4ω̇4 + eσ2 ėσ2 , (24)
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where
u4 = −ε2ω3 + x1 + x2 + x3 + σ̂2ω4 − ω4 . (25)

By working backward, the parameter is estimated as
˙̂σ2 = eσ2 − w2

4 . (26)

Substitute (25) and (26) into (24). Then we are led to

V̇4 = −x2
1 − e2

σ1
− e2

γ − w2
2 − e2

ε1
− w2

3 − e2
ε2
− e2

α − w2
4 − e2

σ2

which is a negative definite function.
By the stability theory due to Lyapunov, it is seen that the Colpitts oscillator

provided by Equation (1) is asymptotically stable.

3.2. Numerical simulation

For the numerical simulation, the initial conditions of the parameters are
taken as

σ̂1(0) = 10.9546, σ̂2(0) = 5.9353,
α̂(0) = 3.8765, γ̂(0) = 2.1654,
ε̂1(0) = 7.8762, ε̂2(0) = 9.9876

with the initial conditions for the modified Colpitts oscillator x1(0) = 1.9124,
x2(0) = 1.3942, x3(0) = 1.3125 and x4(0) = 1.9873.

Figure 4 depicts the parameter estimation of the modified Colpitts oscillator.
Figure 5 depicts the stability of the modified Colpitts oscillator.
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Figure 4: The parameter estimation of the modified Colpitts oscillator
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Figure 5: The stability of the modified Colpitts oscillator

4. Synchronization of modified chaotic Colpitts oscillator

The synchronization of a chaotic system is another way of explaining the
sensitivity based on the initial conditions. One has to design master-slave or
drive-response coupling between the two chaotic systems such that the time
evolution becomes ideal.

In general, the two dynamic systems involved in the synchronization are called
the master and slave systems, respectively. A well-designed controller will make
the trajectory of the slave system track and trajectory of the master system, that
is, the two systems will be synchronous.

The following sub-section contains the detailed explanation of the synchro-
nization process for the modified Colpitts oscillator using non-linear control.

4.1. Synchronization of modified chaotic Colpitts oscillator
using non-linear feedback method

The synchronization of modified Colpitts oscillator is now taken up. The
drive-response formalism is utilized. The identical synchronization is elaborated
between the modified Colpitts oscillators.

The chaos synchronization basically requires the global asymptotic stability
of the error dynamics, i.e.,

lim
t→∞
‖e(t)‖ = 0.
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The modified Colpitts oscillator is taken as drive system, which is described by

ẋ1 = σ1(−x1 − x2) + x4 − γφ(x1, x3),

ẋ2 = −ε1σ1x1 − ε1σ1x2 + ε1x4 ,

ẋ3 = ε2x4 − ε2 (1 − α) γφ(x1, x3),

ẋ4 = −x1 − x2 − x3 − σ2x4 ,

(27)

where x1, x2, x3 and x4 are state variables, σ1, σ2, ε1, ε2, γ, α are positive
parameters and φ(x1, x3) = log(x1, x3) − 1.

The modified Colpitts oscillator is also taken as the response system which is
described by

ẏ1 = σ1
(
−y1 − y2

)
+ y4 − γφ

(
y1, y3

)
+ u1 ,

ẏ2 = −ε1σ1y1 − ε1σ1y2 + ε1y4 + u2 ,

ẏ3 = ε2y4 − ε2(1 − α)γφ
(
y1, y3

)
+ u3 ,

ẏ4 = −y1 − y2 − y3 − σ2y4 + u4 ,

(28)

where φ
(
y1, y3

)
= log

(
y1, y3

)
− 1.

The synchronization error occurring in the system is defined by

ei = yi − xi, i = 1, 2, 3, 4. (29)

The resulting error dynamics of the system is governed by the set of equations

ė1 = −σ1e1 − σ1e2 + e4 − γφ
(
y1, y3

)
+ γφ(x1, x3) + u1 ,

ė2 = −ε1σ1e1 − ε1σ1e2 + ε1e4 + u2 ,

ė3 = ε2e4 − ε2(1 − α)γ
(
φ

(
y1, y3

)
− φ(x1, x3)

)
+ u3 ,

ė4 = −e1 − e2 − e3 − σ2e4 + u4 ,

(30)

where u = (u1, u2, u3, u4)T is the non-linear controller to be designed so as to
synchronize the states of identically modified Colpitts oscillator.

Now the objective is to find the control law ui, i = 1, 2, 3, 4 for stabilizing the
error variable of the system (30) at the origin.

Let the energy source function Lyapunov be chosen as

V =
1
2

4∑
i=1

e2
i . (31)

The derivative of (31) with respect to t is provided by

V̇ =
4∑

i=1
ei ėi . (32)
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Substituting (29) and (30) into (32) we are led to the relation

V̇ = e1
(
−σ1e1 − σ1e2 + e4 − γφ

(
y1, y3

)
+ γφ(x1, x3) + u1

)
+ e2 (−ε1σ1e1 − ε1σ1e2 + ε1e4 + u2)
+ e3

(
ε2e4 − ε2(1 − α)γ

(
φ

(
y1, y3

)
− φ(x1, x3)

)
+ u3

)
+ e4 (−e1 − e2 − e3 − σ2e4 + u4) .

The controllers are defined by

u1 = σ1e2 − e4 + γ
(
φ

(
y1, y3

)
− φ(x1, x3)

)
,

u2 = ε1σ1e1 − ε1e4 ,

u3 = ε2(1 − α)γ
(
φ

(
y1, y3

)
− φ(x1, x3)

)
− ε2e4 − e3 ,

u4 = e1 + e2 + e3 ,

Therefore the relation (32) becomes

V̇ = −σ1e2
1 − ε1σ1e2

2 − e2
3 − σ2e2

4

which is a negative definite function.
Thus, by Lyapunov stability theory, the error dynamics provided by (30) is

found to be globally asymptotically stable for all initial conditions e(0) ∈ R4.
Thus, the states of the drive and response system synchronize globally and

asymptotically.

4.2. Numerical simulation

For numerical simulation, the initial conditions of the drive system are chosen
as 0.09124, 0.3942, 0.0125, 0.9823 and the initial conditions for the response
system are taken as 0.9546, 0.9353, 0.8765, 0.1654.

(a) Synchronization between x1 and y1 (b) Synchronization between x2 and y2
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(c) Synchronization between x3 and y3 (d) Synchronization between x4 and y4

Figure 6: Synchronization of the Modified Colpitts oscillator

Figure 7: Error Dynamics of Chaotic Colspitts oscillator

5. The synchronization of Colpitts oscillator via backstepping control

The backstepping technique is a cyclic procedure through a suitable Lyapunov
function along with a feedback controller. It leads to the global stability synchro-
nization of the strict feedback chaotic systems. In this section, the backward
backstepping method is employed for the proposed system.
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5.1. Analysis of the error dynamics

The error dynamics system is taken as

ė4 = −e1 − e2 − e3 − σ2e4 + u1 ,

ė3 = ε2e4 − ε2(1 − α)γ
(
φ

(
y1, y3

)
− φ(x1, x3)

)
+ u2 ,

ė2 = −ε1σ1e1 − ε1σ1e2 + ε1e4 + u3 ,

ė1 = −σ1e1 − σ1e2 + e4 − γ
(
φ

(
y1, y3

)
− φ(x1, x3)

)
+ u4 .

(33)

Now the objective is to find the control laws ui (i = 1, 2, 3, 4) for stabilizing the
error variables of the system (33) at the origin.

First consider the stability of the system

ė4 = −e1 − e2 − e3 − σ2e4 + u1 , (34)

where e3 is considered as virtual controller provided by

e3 = β1 (e4) and β1 (e4) = 0.

The Lyapunov function is defined as

V1 =
1
2

e2
4 . (35)

The derivative of V1 with respect to t is obtained as

V̇1 = e4ė4 . (36)

If β1 = 0 and u1 = e1 + e2, then we obtain

V̇1 = −σ2e2
4 (37)

which is a negative definite function.
Hence the system (34) is globally asymptotically stable.
The function β1 (e4) is an estimatorwhen e3 is considered as virtual controller.
The relation between e3 and β1 is defined by

ω2 = e3 − β1 = e3 .

Consider the subsystem (e4, ω2) given by

dote4 = −ω2 − σ2e4 ,

ω̇2 = ε2e4 − ε2(1 − α)γ
(
φ

(
y1, y3

)
− φ(x1, x3)

)
+ u2 .

(38)

Let e2 be a virtual controller in system (38).
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Assume that when e2 = β2 (e4, ω2), the system (38) is rendered globally
asymptotically stable.

Consider the Lyapunov function defined by

V2 = V1 +
1
2
ω2

2 .

The derivative of V2 with respect to t is

V̇2 = e4ė4 + ω2ω̇2 .

If β2 = 0 and u2 = −(ε2 − 1)e4 + ε2(1 − α)γ
(
φ

(
y1, y3

)
− φ(x1, x3)

)
+ e2 −ω2,

then we obtain
V̇2 = −σ2e2

4 − ω
2
2

which is a negative definite function.
Hence by Lyapunov stability theory, the system is stable.
Let us consider the relation between e2 and β2 defined by

ω3 = e2 − β2 = e2 .

Now the subsystem (e4, ω2, ω3) is considered as

ė4 = −ω2 − σ2e4 ,

ω̇2 = e4 + ω3 − ω2 ,

ω̇3 = −ε1σ1e1 − ε1σ1ω3 + ε1e4 + u3 .

(39)

Consider the function V3 due to Lyapunov function defined by

V3 = V2 +
1
2
ω2

3 .

On differentiating V3 with respect to t, we get

V̇3 = e4ė4 + ω2ω̇2 + ω3ω̇3 .

If β3 = 0 and u3 = −ω2 − ε1e4, then we obtain

V̇3 = −σ2e2
4 − ω

2
2 − ε1σ1ω

2
3

which is a negative definite function.
Now the relation between e1 and β3 is defined as

ω4 = e1 − β3 = e1 .
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Let us consider the subsystem (e4, ω2, ω3, ω4) provided by

ė4 = −ω2 − σ2e4 ,

ω̇2 = e4 + ω3 − ω2 ,

ω̇3 = −ε1σ1ω4 − ε1σ1ω3 − ω2 ,

ω̇4 = −σ1ω4 − σ1ω3 + e4 − γ
(
φ

(
y1, y3

)
− φ(x1, x3)

)
+ u4 .

(40)

Consider the Lyapunov function

V4 = V3 +
1
2
ω2

4 .

The derivative of V4 with respect to t is

V̇4 = e4ė4 + ω2ω̇2 + ω3ω̇3 + ω4ω̇4 .

If β4 = 0 and u4 = ε1σ1ω3 + σ1ω3 − e4 + γ
(
φ

(
y1, y3

)
− φ(x1, x3)

)
, then we

obtain
V̇4 = −σ2e2

4 − ω
2
2 − ε1σ1ω

2
3 − σ1ω

2
4

which is a negative definite function.
Hence by Lyapunov stability theory, the system is stable.

5.2. Numerical simulation

For solving the system of differential equations (33) with the backstepping
controls u1, u2, u3 and u4, the fourth-order Runge–Kutta method is used and
numerical simulation is carried out. We have

u1 = e1 + e2 ,

u2 = −(ε2 − 1)e4 + ε2(1 − α)γ
(
φ(y1, y3) − φ(x1, x3)

)
+ e2 − ω2 ,

u3 = −ω2 − ε1e4 , and
u4 = ε1σ1ω3 + σ1ω3 − e4 + γ

(
φ(y1, y3) − φ(x1, x3)

)
.

The initial values of the drive system (27) are chosen as x1(0) = 0.09124,
x2(0) = 0.3942, x3(0) = 0.0125, x4(0) = 0.9873. The initial values of the
response system (28) are taken as y1(0) = 0.9546, y2(0) = 0.9353, y3(0) =
0.8765, y4(0) = 0.1654.

Figure 8 portrays the chaos synchronization of identical drive and response
systems provided by Eqs. (27) and (28), respectively.
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(a) Synchronization between x1 and y1 (b) Synchronization between x2 and y2

(c) Synchronization between x3 and y3 (d) Synchronization between x4 and y4

(e) Error Dynamics of modified Colpitts oscillator

Figure 8: Synchronization of identical modified Colpitts oscillator, error plot for identical
modified Colpitts oscillator
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6. Circuit implementation

In order to verify the dynamical properties of the modified Colpitts oscillator,
an operational amplifier circuit is designed in accordance with the equation (1).
The circuit is designed by linear resistance and linear capacitors. The allowable
voltage range of operational amplifiers leads to the appropriate variables propor-
tional compression transformation to the state variables of the system. According
to the circuit diagrams, the corresponding oscillation circuit equation is described
as follows

ẋ1 = σ1(−x1 − x2) + x4 − γφ(x1, x3),
ẋ2 = ε1σ1(−x1 − x2) + ε1x4 ,

ẋ3 = ε2
(
x4 − (1 − α)γφ(x1, x3)

)
,

ẋ4 = −x1 − x2 − x3 − σ2x4 ,

where φ(x1, x3) = log(x1 + x3) − 1 and the parameter values are

σ1 =
R2 (R5 + R8)

R5R1C1R3 (R6 + R7)
=

R36 (R31 + R32)
R37R31 (R34 + R35)

,

σ2 =
R64R76R78

R63C4R65R75R77
, γ =

R2R20

R1C1R3R17
=

R58

R55
,

ε1 =
R28R37

R27C2R29R36
, ε2 =

R42R46

R41C3R43R45
, α =

R46 − R45

R46
.

Figure 9: Op Amp Circuit diagram of chaotic variable x1
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Figure 10: Op Amp Circuit diagram of chaotic variable x2

Figure 11: Op Amp Circuit diagram of chaotic variable x3

Figure 12: Op Amp Circuit diagram of chaotic variable x4
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7. Conclusion

In this paper, the Colpitts oscillatorwith logarithmic non-linearity in analyzed.
The qualitative properties of the modified Colpitts oscillator is analyzed in this
study. It exhibits the hyperchaotic nature for some specified initial condition of
the parameter. ByWolf method, the Lyapunov exponent’s is calculated. For some
initial conditions, it exhibits the dissipative nature. The adaptive backstepping
control technique is used to control the system. Synchronization, the non-linear
and backstepping control are utilized. Numerical simulations support the results.
MATLAB is used for numerical simulation.
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