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Abstract

Nowadays, the main challenge in maintenance is to establish a dynamic maintenance strategy
to significantly track and improve the performance measures of multi-state systems in terms
of production, quality, security and even the environment. This paper presents a quantitative
approach based on Dynamic Bayesian Network (DBN) to model and evaluate the maintenance
of multi-state system and their functional dependencies. According to transition relationships
between the system states modeled by the Markov process, a DBN model is established. The
objective is to evaluate the reliability and the availability of the system with taking into
account the impact of maintenance strategies (perfect repair and imperfect repair). Using
the proposed approach, the dynamic probabilities of system states can be determined and
the subsystems contributing to system failure can also be identified. A practical application
is demonstrated by a case study of a blower system. Through the result of the diagnostic
inference, to improve the performances of the blower, the critical components C, F, W, and
P should be given more attention. The results indicate also that the perfect repair strategy
can improve significantly the performances of the blower, while the imperfect repair strategy
cannot degrade the performances in comparison to the perfect repair strategy. These results
show the effectiveness of this approach in the context of a predictive evaluation process and in
providing the opportunity to evaluate the impact of the choices made on the future measure-
ment of systems performances. Finally, through diagnostic analysis, intervention management
and maintenance planning are managed efficiently and optimally.

Keywords
multi-state system, dynamic Bayesian network, reliability, availability, maintenance optimiza-
tion.

Introduction ing systems whose condition degrades over time and
this degradation can lead to a decrease in their per-

formance and efficiency (Yuan and Xu, 2012). When

Traditional analysis methods, such as failure modes
and effects analysis (FMEA), failure tree analysis
(FTA) are used to assess systems reliability. When
applying these methods, it is assumed that the sys-
tem operates in two states, namely, perfect operat-
ing state and total failure state; also referred to as
a binary state system. However, in addition to per-
fect functionality and complete failure, a system can
have several intermediate states (Li and Peng, 2014;
Sheu et al., 2015). Degraded systems are function-
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defining a maintenance strategy, the main problem is
to establish a dynamic strategy that is adapted to
the evolution of the systems states. Maintenance has
a major impact on the evolution of system perfor-
mance measures, including dynamic parameters such
as reliability and availability.

In the literature, several models for multi-state sys-
tems are used to assess these parameters and control
its evolution. (Soro et al., 2010) proposed a model
for assessing reliability indices and production rate
of a degradable multi-state system subject to mini-
mal and imperfect repairs. To predict the reliability
of a power-generating unit in a short time-periods,
a multi-state Markov model is presented by (Lisnian-
ski et al., 2012). Liu and Huang (2010) proposed an
optimal replacement policy based on the combination
between the Markov model and the Universal Gen-
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erating Function (UGF), they used a quasi-renewal
process to evaluate the probability of system states
and describe the behavior of the system after imper-
fect maintenance.

Today, Bayesian Network (BN) represents another
area of research. It is widely used in many applications
for system performance evaluation, risk analysis, diag-
nosis and prediction analysis, and maintenance (We-
ber et al., 2012; Chang et al.,2019). Reasoning from
probabilistic graphical models facilitates dealing with
both diagnosis and prediction problems. In addition,
the graphical models which were developed by vari-
ous tools, participate and facilitate the construction
and model representation for many problems (Lake-
hal et al., 2019). Moreover, a methodology for apply-
ing BN to assess the reliability of structural systems
was developed by (Mahadevan et al., 2001). Neil and
Marquez (2012) presented a hybrid Bayesian network
(HBN) framework to model the availability of renew-
able systems.

The Dynamic Bayesian Network (DBN) is an ex-
tension of BN which allows modelling the dynamic be-
haviour of systems. Also in DBN, a new type of nodes
called ‘temporal nodes’ which allows the modeling of
random variables over time. The description of cause
and effect relationships is permitted by probability
distributions (Iung et al., 2005; Weber and Jouffe,
2006). In several studies, DBN represents an appro-
priate solution for predictive and diagnostic analysis,
as well as for expressing uncertain causal relationships
(Wilson and Huzurbazar, 2007).

By translating the Failure Tree (FT) into DBN,
(Cai, et al., 2013) proposed a model based on DBN
to analyze and evaluate reliability and availability for
a subsea BOP system. In another study, (Wang, et
al., 2017) established a stochastic deterioration model
for multi-element systems under a conditional mainte-
nance strategy (CBM). A quantitative risk assessment
approach based on DBN that dynamically predicts
the risk of riser recoil control failure during produc-
tion test of marine natural gas hydrate was presented
by (Chang et al., 2019).

A combination of the Markov process and a DBN
is proposed by (Li et al., 2018) to model and analyze
the reliability of a multi-state system. Different types
of maintenance were taking into account including,
perfect repair, imperfect repair, and condition-based
maintenance. (Adjerid et al., 2012) evaluated the per-
formance of an industrial system and studied the ef-
fect of different maintenance strategies on reliability
performance.

This paper aims to model a multi-state industrial
system based on the Markov process and the DBN.

By using the proposed approach, the reliability and
availability with respect to perfect repair and imper-
fect repair are evaluated. This paper is structured as
follows: Section 2 presents a Bayesian approach for
modelling multi-state systems. Section 3 analyzes the
blower as study case, results and discussions are pre-
sented in Section 4 and Section 5 summarizes this

paper.

Bayesian approach for modelling
a multi-state system

Dynamic Bayesian network

A Bayesian Network is a probabilistic causal net-
work that allows to graphically represent variables
and their probabilistic dependencies. The BN is com-
posed of nodes that are connected by direct arcs, the
arcs indicate a causal relationship or dependency be-
tween the linked nodes, and conditional probability
tables (CPTs) that determine how the linked nodes
depend on each other. It can describe a multi-state
element with a single node, cause and effect relation-
ships can be designated by conditional probability dis-
tributions. Using static or dynamic logical gates, the
(CPTs) can be obtained (Li et al., 2018). A DBN is
an extension parallel to the ordinary BN, it allows
to explicitly model the temporal evolution of vari-
ables over time (Weber and Jouffe, 2006). Each step
of time is called a time slice, the probability of tran-
sition between two successive slices P(Xt| Xt — 1) is
expressed by

N
P(Xi|Xi1) = HP (Xilpa(X7)) (1)

where X represents the i-th node at time ¢, and
pa(X}) represents its parent nodes.

1. A Dynamic Bayesian network expanded from time
slice 0 to 1

Figure 1 represents an expanded DBN, the intra-
slice arcs represent the relationships between nodes
(variables A and B) and the relationships between
nodes at successive time intervals t0—t1 are repre-
sented by arcs between slices. By unrolling the time
slices, the probability of joint distribution can be ob-
tained by the following expression:
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Fig. 1. A Dynamic Bayesian network expanded from time
slice 0 to 1

Imperfect repair modeling

In DBN modelling, it is assumed that each parent
node is a degraded multi-state system, four assump-
tions are made (Soro et al., 2010):

1. The system might fail randomly from any opera-
tional state.

2. The component may have many levels of degrada-
tion corresponding to discrete performance rates,
which vary from perfect function to complete fail-
ure.

3. All transition rates are constant and exponentially
distributed.

4. The current degradation state is observable
through some system parameters and the time
needed for inspection is negligible.

In DBN, each parent node has four states: per-
fect state (Perfect), degraded statel (DS1), degraded
state2 (DS2), and fault state (Fault). The perfect
state refers to perfect operation and the fault state
represents a total failure. The DS1 and DS2 repre-
sents the first and second degraded states, respec-
tively. At first, each parent node of DBN is in per-
fect condition, as time passes, the DBN either passes
to the DS1 or DS2 states or proceed directly to the
fault state. When a failure occurs, a repair is needed:
the DBN can either return to perfect condition, which
is considered a perfect repair or return to the first or
second degraded state, which is considered as an im-
perfect repair. The state transition diagram for the
four-state component is shown in (Figure 2).

By consulting maintenance engineers of Pepsi Com-
pany and their opinions, which is mainly based on
the historical data and their feedback experience, the
assumptions for the failure rates between states, for
each component (parent node), can be classified into
two classes: minor failures class (A3, A and \6) and
major failures class (A1, A2 and A5). Two classes are
distinguished also for repair rates between states: Im-
perfect repair (1 and p2) and Perfect repair (u3).
The following equations show how failure and repair
rates are calculated:
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Fig. 2. Transition state diagram for four-state component

AL+ M+ A5 = s, (3)
M= \6= A3, (4)
A2 = A5, (5)
AL:M:A5=1:4:5, (6)
pul + p2 4 p3 = ps, (7)
ul:p2:u3=1:3:6. (8)

Suppose that at any time ¢, the interval between
two consecutive time slices is At. Then, the transition
relationships between nodes of the network without
repair, with perfect repair, and imperfect repair are
present in Tables 1-3, respectively, (Kohda and Cui,
2007).

Conditional dependencies between variables will be
assigned to conditional probability tables (CPTs). In
a DBN having n parents and m states, to determine
the CPT for each parent node, it is necessary to define
n" independent parameters. When n is large, tradi-
tional models of OR-gate and AND-gate are used to
quantify relationships in series and parallel systems.
Suppose that for node A, there are n parent nodes X1,
X2, Xn, and the degradation probability of node 7 is
P;. The unreliability of an AND-gate can therefore
be calculated by the expression as follows (Cai et al.,
2013):

P(AIXy, Xy,....X1) = [] P (9)

1<i<n

In the case where the parent nodes are in parallel,
the unreliability of an OR-gate can be calculated by
the expression as follows (Cai et al., 2013):

P(A X1, Xq,.., X)) =1— H (1-P1).

1<i<n

(10)
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Table 1

Transition relations between states without repair

t+ At
t Perfect DS1 DS2 Fault
A\ « A5 « Al o
Perfect o~ (AL+A+A5) At AL+ M+ A5 AL+ M+ M5 AL+ M+ A5
1— e—(x1+>\4+,\5)m) (1 _ 6—()\1+>\4+>\5)A1) (1 . 6—()\1+)\4+>\5)A1)
A6 o A2 y
DS1 0 e~ (A2+26)At A2+ X6 A2+ A6
(1 . e—(A2+/\6)At) (1 . 67(A2+>\6)At)
DS2 0 0 o~ A3AL 1 — o234t
Fault 0 0 0 1
Table 2
Transition relations between states with perfect repair
t+ At
t Perfect DS1 DS2 Fault
M « A5 « Al o
Perfect e~ (AL+X4+A5) At AL+ M+ M5 AL+ M+ M5 AL+ M+ A5
1— e—()\1+>\4+)\5)At) 1— e—()\1+)\4+>\5)At) 1— e—(A1+)\4+)\5)At)
6 o A2 «
DS1 0 e~ (A2+A6) At A2+ N6 A2 4+ X6
(1 . ef(/\2+A6)At) (1 . 67(A2+/\6)At)
DS2 0 0 e~ A3AL 1 — e A3AL
Fault (1 _ e*(#1+u2+u3>ﬁt) 0 0 e~ (Bl+n2+u3)At
Table 3
Transition relations between states with imperfect repair
t+ At
t Perfect DS1 DS2 Fault
A y A y Al y
Perfect e~ (AL+X4+A5) At AL+ M+ A5 AL+ M+ A5 AL+ M+ A5
1- 6—()\1+)\4+)\5)At) 1- 6—(A1+)\4+>\5)At) 1_ e—(A1+A4+)\5)At)
A6 « A2 y
DS1 0 e~ (A2+A6) At A2+ M6 A2 4 X6
(1 . 67(>\2+>\6)At) (1 . 67(A2+>\6)At)
DS2 0 0 o= A3AL 1 _ =34t
w3 y H2 y pl y
Fault pl +p2 4 p3 pl+p2 4 p3 pl +p2 4 p3 o~ (H1+n2+u3) At

(1 _ 6—(/L1+/L2+#3)At)

(1 _ 6—(u1+u2+us)At>

1— 6—(M1+/—L2+ll3)At)
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Industrial application

System description

Figure 3 illustrates the production line of soft drinks
of Atlas Bottling Corporation (Pepsi) company in Al-
geria. The production process begins with the dump-
ing of preforms into a large bin that will put them
one by one on an air conveyor and then transferred
to the blower machine. This latter, through a feeding
system, will blow the predisposed preforms in differ-
ent molds to give them bottle shape. The new bot-
tles go to the filling machine for rinsing, filling the
finished product (soft drinks) and capping. The soft
drinks preparation is done at the pre-mixer level. To
check the poorly filled bottles, at the exit of the fill-
ing machine, we found a light checking system. Af-
ter capping and checking the production, the bottles
through a belt conveyor will be transferred to the la-
beller, then to the dater, the packing machine followed
by the palletizer to be labelled, dated, packaged, put
on the pallets and finally stocked.

Warter, CO;, Syrup
5
FPrgfam
| .
Botties -
(oo 3 (o)

Date
l

!

Palletizmz

]

| Palkts sam to the godk |

Fig. 3. Production process of soft drink manufacturing
(Adjerid et al., 2012)
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In this work, we are interested in the blower which
is a complex system, it is mainly composed of different
subsystems with functional dependencies as shown in
(Figure 4). This machine requires precise conditions
to provide a quality product. Changing a single pa-
rameter can cause a high discard rate and delay the
production rate of the entire line.

Wheel Blowing
Wheel
Furnace Cooling
System
Compressed Air
Circuit Chucks
PLC

Fig. 4. Decomposition of the blower

In many research areas, DBN receive considerably
increased attention in the reliability assessment and
analysis field. The results obtained by applying this
method show its effectiveness and its use in the con-
text of a performance evaluation, forward, and back-
ward analysis (Cai et al., 2013; Li et al., 2018; Adjerid
et al., 2012). Compared with conventional methods,
DBN reduces the calculations and provides more im-
pressive results (Li et al., 2018). Referring to (Ad-
jerid et al., 2012), a DBN approach was used to eval-
uate the reliability of the blower and studied the ef-
fect of different maintenance strategies. Usually, the
behaviour of any degraded system is related to the
multistate of their subsystems and any degradation
can lead to a decrease in system performances. In
this work, to study and analysis more accurately the
blower performances, a quantitative method based on
DBN is proposed. The objective is to model and eval-
uate the reliability and the availability of a blower sys-
tem as a multistate system, identify the subsystems
most contributing to the blower’s failure and measure
the impact of different maintenance strategies during
future missions.

Each subsystem has four states: a perfect operating
state, two degraded operating states (DS1, DS2) and
a failure state. In this study, two modes of repair are
taken into account: perfect and imperfect reparations.
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Table 4

Parameters of the Blower subsystems (per hour)

Subsystems Failure rate Repair rate Degraded state 1 Degraded state 2
A (/) (/) (%) (%)
Furnace (F) 0.0135 0.070 5 8
Blowing Wheel (BW) 0.0012 0.015 2.1 7.6
Chucks (C) 0.0068 0.011 4 7.5
Wheel (W) 0.0028 0.012 2.5 3
Cooling System (CS) 0.0011 0.023 6
Compressed Air Circuit (CA) 0.0016 0.010 4 6
PLC (P) 0.0018 0.009 2.5 4

By exploiting the blower data obtained from the
historical failure/maintenance database in the period
of (2018-2020) and using the experience feedback of
maintenance engineers, the failure rates, repair rates,
and the degradation probabilities (%) of blower sub-
systems are presented in Table 4. For each subsystem,
the failure and repair rates are calculated using the
following equations:

1
~ MTBF’ (11)

1
k= UTTR’ (12)

where the MTBF and MTTR are the mean time be-
tween failure and mean time to repair, respectively.
The selection of values of the degradation states 1
and 2 of the system is estimated by using the histori-
cal results of the fault diagnostic, and analysis as well
as the experience feedback.

The degradation state DS1 = 5% for the compo-
nent furnace means that when the furnace is at the
degraded statel, the failure probability of the depen-
dent subsystems (which is the chucks subsystem) be-
cause of furnace failure is 0.05.

The architecture of Figure 6 represents the evolu-
tion of each subsystem with time, the black arc repre-
sents the temporal evolution, whereas the functional
dependence is represented by an orange arc. The evo-
lution of the degradation model of the blowing wheel
subsystem is conditioned by the degradation function
of their functional dependencies which are the Cooling
System (CS) and the Compression Air System (CA).

The architecture of the equivalent DBN model was
developed using the GeNle graphical interface soft-
ware, taking into account the different states of each
node and their functional dependence as illustrated in
(Figure 7).

Reliability and availability

Over time, failures can occur at any time either mi-
nor or major. Take the example of the chucks element
(Figure 5), failure rates and repair rates between the
states of each node can be calculated using equations
(3)—(8). Subsequently, the transition relationships be-
tween consecutive nodes in all three cases can be cal-
culated using tables 1-3. The reliability and availabil-
ity of the chucks subsystem node are determined, as
shown in (Figure 8).

[ Chucks ] Furnace
Perfect - Perfect L
D31 D51

Ds2 D32

Fault Fault

() Chucks su bsystem

Nurmal

Fault

[

Fig. 5. DBN of the chucks subsystem

By using the equation (11) and (12), the CPT for
series and parallel system can be calculated. From Ta-
ble 4, the degradation probability of the Furnace and
the Chucks are:

P(chucks subsystem = fault|Chucks = DS1) = 4%,
P(chucks subsystem = fault|Chucks = DS2) = 7.5%,
P(chucks subsystem = fault|Furnace = DS1) = 5%,

P(chucks subsystem = fault|Furnace = DS2) = 8%.

Volume 12 ¢ Number 3 e September 2021



Management and Production Engineering Review

Blowing
Wheel
subsystem

Cooling
system

Wheels
subsystem

Fig. 6. Proposed model of the global system with functional dependencies from ¢ to ¢t + At

Blowing Wheel

Compressed
Air Circuit

Cooling System
=subsystem

Chucks
subsystem

PLC
subsystem

Blowing Wheel
subsystem

Wheels
subsystem

Compressed
air circuit
subsystem

Fig. 7. DBN of global system
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Fig. 8. The Reliability and Availability of the “chucks” subsystem
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One of chucks and furnace can cause the failure of
chucks subsystem, which means that there are n = 2
nodes and each node has m = 4 states, therefor, the
CPT have m™ = 16 nodes.

For example, using equation (10), the degradation
probability

P <chucks subsystem = fault

Chucks = DS1,
Furnace = DS1

= 0.088.

The CPT of this subsystem is shown in Table 5.

As Figure 8 indicates, it is obvious that as time pro-
gresses, the dynamic reliability decreases to almost 0
in about 550 hours. With repair, the availability of
chucks decreases, in the case of a perfect repair, it
reaches a value of about 71.13% in 450 hours. When
imperfect repair is considered, it reaches a value of
70% in about 450 hours. It can be seen that perfect
and imperfect repair can improve the performances of
the Chucks subsystem, but the imperfect repair does
not significantly affect availability compared to per-
fect repair.

Results and discussion

DBN for the global system

In the same way, we can build the overall system
network, study the influence of subsystems on the
blower’s state and measure the impact of both repair
strategies on overall performances. Figure 9 shows the
global DBN extended over time without repair. Each
node initially is in a perfect functioning state (perfect
= 100%), over time, the degradation begins. Accord-
ing to the failure rate, repair rate, and functional de-
pendencies, the probabilities of each subsystem evolve
differently from the other. For the blower, two modal-
ities are chosen, namely, Normal and Fault.

The performance evaluation of the blower is ex-
amined using DBN, the evolution of reliability and
availability with respect to a perfect and imperfect re-
pair are represented in Figure 10. As mentioned, over
time, reliability and availability decrease. The reliabil-
ity drops to about 0 in 400 hours and the availability
reaches the values of 0.42 and 0.37 in 650h with per-

Table 5
CPT of chucks

Chucks Furnace Chucks subsystem

Perfect DS1 DS2 Fault Perfect DS1 DS2 Fault Normal Fault

1 0 0 0 1 0 0 0 1 0

1 0 0 0 1 0 0 0.95 0.05

1 0 0 0 0 0 1 0 0.92 0.08

1 0 0 0 0 0 0 1 0 1

0 1 0 0 1 0 0 0 0.96 0.04

0 1 0 0 0 1 0 0 0.912 0.088

0 1 0 0 0 0 1 0 0.8832 0.1168

0 1 0 0 0 0 0 1 0 1

0 0 1 0 1 0 0 0 0.925 0.075

0 0 1 0 0 1 0 0 0.8788 0.1212

0 0 1 0 0 0 1 0 0.851 0.149

0 0 1 0 0 0 0 1 0 1

0 0 0 1 1 0 0 0 0 1

0 0 0 1 0 1 0 0 0 1

0 0 0 1 0 0 1 0 0 1

0 0 0 1 0 0 0 1 0 1

10
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Fig. 10. Reliability and Availability of Blower

fect repair and imperfect repair, respectively. Clearly,
the availability with perfect and imperfect repairs is
evolving almost identically. Based on these results, it
has been noted that perfect and imperfect repairs can
significantly improve the Blower performances, while
imperfect repair compared to perfect repair does not
degrade performance significantly.

Diagnostic inference

The application of the diagnostic inference method
(backward analysis) is used to determine the causes
that have a significant impact on the failure of the
top event (Kohda and Cui, 2007). By adopting this

Volume 12 e Number 3 e September 2021

method in the inference of the DBN model. The new
belief over the entire network will be reflected, as a re-
sult, critical subsystems are quickly identified and the
posterior probabilities of each event at different time
slices can be calculated. So, it can provide a useful
information about the necessary preventive measures
that could be taken to prevent the risk of blower fail-
ure.

The prior and posterior probabilities of the basic
events at 7' = 100 h are determined, as shown in Fig-
ure 11. It is noted that the subsystems: “Chucks (C)”,
“Furnace (F)”, “Blowing Wheel (B)” and “PLC” are
the most influential factors leading to blower failure
because they have the highest increasing probabili-

11
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ties and significant posterior probabilities. Therefore,
based on diagnosis results, more attention should be
paid to these subsystems to further reduce the risk of
failure.

0.35

W Prior
0.3 probability
M Posterior
0.25 probability
=
= 0.2
o)
3
00.15
o
0.1
0.05 I I I
0 [ | - II
o ) 2 < > he
‘\ze, & ,\o(’ QY %@5(‘ gé,}’z C
¢ ©
QO Qo
¢

Input basic events

Fig. 11. Comparison between posterior and prior proba-
bilities for basic events at T'= 100 h

Sensitivity analysis

In this study, a sensitivity analysis must be carried
out to ensure its robustness and to prove that this
model is a reasonable representation. If the obtained
result sensitive i.e. it will not show abrupt variations
in case of a minor change in input parameters, then
the model is robust (Li et al., 2019), (Cai et al., 2013).
It is assumed that the failure rates of critical subsys-
tems are subject to a variation of +10%. The effects
of these variations on the probability of system failure
are shown in (Figure 12).

In this figure, when the failure rate of the Chucks
subsystem is increased to 110%, the probability of
blower failure increased from 42.36% to 43.55%.

When increasing the failure rate of both subsys-
tems Chucks and Furnace to 110%, the probability
of blower failure increased from 43.55% to 44.06%.
When the failure rates of critical subsystems Chucks,
Furnace and Wheels were increased to 110%, the
probability of blower failure increased from 44.06%
to 44.39%. In addition, by increasing the failure rate
of subsystems Chucks, Furnace, Wheels, and PLC to
110%, the probability of blower failure increased from
44.39% to 44.65%.

Reducing failure rates of critical subsystems will re-
duce the failure probability of the top event in the

12

W 90% Failure Rate
M 100% Failure Rate

B 110% Failure Rate

C CF

C,F,W C,F,W,PLC
Influence sub-systems

45% T

44% +

43% +

42% -

T

I
T

41%

40% -+

T

39% -

T

Failure probability of system

38%

I
T

37%

I
T

36% -

Fig. 12. The effect of changes in failure rate of critical
subsystem on the probability of blower failure

same way. As expected, in this case, a slight modi-
fication in the failure rate for critical subsystems in-
duces the probability of blower failure logically and
reasonably, thus giving a validation of this model.

Conclusion

In this article, unlike previous studies in mainte-
nance evaluation and optimization field, a method-
ology based on DBN was proposed to model and
evaluate the performance measurements (reliability
and availability) of a multi-state system, different re-
pair strategies are taken into account. A real case of
a blower is analyzed to show how this approach can
be effectively manipulated to resolve several problems
concerning: the identification of influencing factors
(diagnosis), the analysis of the relationship between
system components, predictive evaluation of the dy-
namic failure probabilities, and measuring the effect
of maintenance strategies on system reliability and
availability. The main conclusions of this study can
be summarized as follows:

e Dynamic analysis indicates that the repair im-
proves the performance of the blower, while an im-
perfect repair does not significantly degrade per-
formance compared to the perfect repair.
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e Diagnostic inference of blower’s critical subsys-
tems including Chucks, Furnace, Wheels, and PLC
are identified as contributors leading to blower fail-
ure. Based on diagnosis, we should pay more at-
tention to these subsystems to further reduce the
risk of system failure.

e In order to improve the performance of the sys-
tem, preventive measures are necessary to re-
duce as much as possible the failure rate of crit-
ical events. As a recommendation, some mea-
sures could be taken, which are; a systematic
overhaul for the chucks accessories and the load-
ing/unloading wheels is necessary, develop a de-
tailed maintenance plan for the Furnace subsys-
tem to maintain the correct temperature.

e The analysis results obtained in this study can be
provided as a decision support tool and a very
useful information base. Moreover, this model can
serve engineers to plan maintenance interventions
optimally.

e Sensitivity analysis allows us to validate and show
that the model is correct and rational.
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