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Abstract. Squeeze film dampers (SFDs) are commonly used in turbomachinery in order to introduce external damping, thereby reducing 
rotor vibrations and acoustic emissions. Since SFDs are of similar geometry as hydrodynamic bearings, the REYNOLDS equation of lubri-
cation can be utilised to predict their dynamic behaviour. However, under certain operating conditions, SFDs can experience significant fluid 
inertia effects, which are neglected in the usual REYNOLDS analysis. An algorithm for the prediction of these effects on the pressure build 
up inside a finite-length SFD is therefore presented. For this purpose, the REYNOLDS equation is extended with a first-order perturbation in 
the fluid velocities to account for the local and convective inertia terms of the NAVIER-STOKES equations. Cavitation is taken into account 
by means of a mass conserving two-phase model. The resulting equation is then discretized using the finite volume method and solved with 
an LU factorization. The developed algorithm is capable of calculating the pressure field, and thereby the damping force, inside an SFD for 
arbitrary operating points in a time-efficient manner. It is therefore suited for integration into transient simulations of turbo machinery with-
out the need for bearing force coefficient maps, which are usually restricted to circular centralized orbits. The capabilities of the method are 
demonstrated on a transient run-up simulation of a turbocharger rotor with two semi-floating bearings. It can be shown that the consideration 
of fluid inertia effects introduces a significant shift of the pressure field inside the SFDs, and therefore the resulting damper force vector, at 
high oil temperatures and high rotational speeds. The effect of fluid inertia on the kinematic behaviour of the whole system on the other hand 
is rather limited for the examined rotor.
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1. INTRODUCTION
Squeeze film dampers (SFDs) are widely used in turbomachin-
ery to introduce external damping and to reduce rotor vibra-
tions, wear and noise. Due to their simple geometry, their man-
ufacturing costs are relatively low. SFDs can be used in combi-
nation with roller bearings or hydrodynamic fluid film bearings.
Latter combination is called a semi-floating bearing (see Fig. 1).
The SFD consists of a thin lubricant film between a casing and
a bushing, whose rotational degree of freedom is locked by ap-
propriate design measures, e.g. axial or radial pins. As can be
seen in Fig. 1, the geometric properties of SFDs are quite sim-
ilar to those of hydrodynamic fluid film bearings. However, as
the rotation of the bushing is locked through radial or axial pins,
no COUETTE flow can occur inside the lubrication gap. There-
fore, only POISSEUILLE flow and squeeze flow are present and
the SFD does not show any static stiffness, unless centering
springs are installed. A dynamic stiffness can arise due to cross-
coupled or anisotropic damping. Although SFDs are simple in
geometry, their dynamic properties show strong nonlinearities
and are very sensitive to the damper geometry, lubricant viscos-
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ity (and therefore lubricant temperature), the current kinematics
of the bearing partners and also the current cavitational state in-
side the lubrication gap. Their behaviour is further influenced
by the presence of oil supply grooves and axial seals. The liter-
ature regarding SFDs and fluid inertia effects is quite extensive
[1–5]. Most literature however is concerned with the determi-
nation of force coefficients for circular centered orbits, which is
often not sufficient to predict the force response of SFDs for all
possible occurring operating conditions in a transient simula-
tion, especially for non centered constructions, since SFDs will
often assume highly eccentric elliptical or even chaotic orbits.
The goal of this work is therefore to implement a suitable fluid
inertia routine into a transient multi-body dynamics simulation
without the use of predetermined damper coefficients. The un-
derlying pressure equation will be solved in every time step of
the simulation, using accurate and current kinematic quantities
and lubricant content of the lubrication gaps, which adds signif-
icant computational complexity to the simulation. But the sim-
ulation scheme also ensures an accurate prediction of the pres-
sure field and therefore forces response of the simulated SFD
at every possible operating point of the SFD. To simulate the
pressure distribution inside SFDs, the REYNOLDS equation of
lubrication can be solved. However, since the bearing clearance
of SFDs is usually quite large, fluid inertia effects can signifi-
cantly influence their dynamical properties at higher rotational
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Fig. 1. Structure of a semi-floating-bearing. The upper squeeze film is axially sealed by means of an axial sealing gap

speeds. These effects are neglected in the classical REYNOLDS
equation. To estimate the significance of fluid inertia, the mod-
ified REYNOLDS number

Re∗ =
ρ ω c2

η
(1)

can be evaluated, where ρ and η are density and viscosity of
the lubricant, ω is the circular excitation frequency and c is the
bearing clearance. Fluid inertia can be neglected for Re∗ < 1 ac-
cording to SZERI [6]. The modified REYNOLDS number must
not be confused with the REYNOLDS number Re, which is
used to determine the influence of turbulence. The highest ex-
citation frequency in a rotordynamic system is usually the ro-
tational frequency of the shaft. If subsynchronous excitations
are dominating, ω can drop to much lower values. However,
it is usually not known a-priori whether subsynchronous ex-
citations are dominant in the system. It is therefore possible
that fluid inertia shows no effect on the rotordynamic perfor-
mance, even though the value of Re∗ suggests the presence of
significant fluid inertia effects. To introduce fluid inertia ef-
fects into the simulation of SFDs, different approaches have
been used in the literature. One possibility is the application of
commercial three-dimensional CFD software [7,8]. These soft-
ware packages solve the complete NAVIER-STOKES equations
numerically with suitable iteration schemes. The 3D NAVIER-
STOKES equations are made up of four coupled partial differen-
tial equations, which require computationally expensive itera-
tion schemes to solve. These are too time-consuming to achieve
a reasonable fast time integration. Furthermore, unfavorable ge-
ometric proportions of the lubrication gap impede meshing and
require very small control volumes to avoid a distorted mesh.
A similar approach is the so called “Bulk – Flow – Model”
(also called “Method of Averaged Inertia”) [9,10]. This method
assumes block-shaped velocity profiles in direction of the lu-
brication gap height and can therefore reduce the 3D – prob-
lem to a 2D one, which cuts computational time significantly.
However, the usual time-consuming CFD iteration schemes still
need to be applied. The assumption of block-shaped velocity
profiles is also controversially discussed in the literature [11].
Multiple authors attempted to include fluid inertia effects in
a REYNOLDS-like computational scheme, called the extended
REYNOLDS equation [1, 2]. These schemes usually compute a

pressure distribution p0 with the regular REYNOLDS equation
and use this pressure distribution to compute velocity fields.
These can then be inserted explicitly or implicitly into the cor-
responding inertia terms to calculate an approximation of the
inertial pressure field p1. Because of its high computational ef-
ficiency, an extended REYNOLDS equation will be utilised in
this work.

2. TWO-PHASE CAVITATION MODEL
Cavitation can influence the dynamic properties of SFDs and
hydrodynamic bearings significantly, since the viscosity of a
mixture of lubricant and air differs drastically from pure lubri-
cant. Consequently, a multitude of algorithms for the predic-
tion of cavitation can be found in the literature. In this work,
the so-called Two Phase Cavitation Model (TPM) was chosen,
which was first proposed by PEEKEN [12]. Its main advantage
is the calculation of a physical pressure inside the cavitated
area, which ensures the existence of higher-order spatial pres-
sure derivatives. These derivatives are necessary for the calcula-
tion of fluid inertia effects. The TPM assumes that the supplied
lubricant is saturated with air at a reference pressure Pref. When
the lubricant is exposed to a pressure lower than the reference
pressure, the solubility of the dissolved gas declines according
to HENRY’s law and air is forced out of the solution. Cavitation
bubbles are formed, which are rapidly dissolved as soon as the
lubricant is exposed to rising pressure. The BOYLE-MARIOTTE
law is used to also include the gas expansion inside the bubbles
at lower pressure. Solution and dissolution processes, as well as
the bubble expansion and collapse, are assumed to happen in-
stantaneously, transient bubble dynamic effects are not consid-
ered. The detailed derivation can be found in references [12,13],
the resulting formula to calculate the lubricant mass fraction
from the pressure in each control volume is as follows

F =
p(

rsup +α
)

pref ϑm +(1−α)p
. (2)

The reference pressure pref should be set to the ambient pres-
sure of 101.3 kPa in most cases, since the lubricant will usually
settle at ambient pressure for some time before being pumped
into the SFD and dissolve air accordingly. The BUNSEN coeffi-
cient α defines the solubility of gas in the lubricant and amounts
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to 0.08 for most common mineral oils. rsup describes the frac-
tion of bubbles in the supplied lubricant while ϑm is the relative
oil temperature

ϑm =
Toil

T0
, (3)

where T0 is the ambient temperature in K. Air solubility in oil
is generally decreased at higher temperatures, which results in
earlier onset of cavitation and a smaller lubricant mass fraction
as can be seen in Fig. 2. Equation (2) permits lubricant mass
fractions F > 1 which are not physically feasible. Therefore,
mass fractions larger than one are manually set to be one. To
complete the cavitation model, a relation between the lubricant
mass fraction F and effective fluid density ρ and viscosity η
must be defined. It is assumed, that density and viscosity vary
linearly with F according to reference [12]

ρ = Fρoil , (4)
η = Fηoil . (5)

Fig. 2. Relation between lubricant mass fraction F and fluid film pres-
sure p for two different lubricant temperatures

3. FLUID INERTIA CALCULATION SCHEME
The extended RENYOLDS equation is derived from the
NAVIER-STOKES equation

ρ v̇ = ρ
(

∂v
∂ t

+(v ·∇)v
)

(6)

and the continuity equation

∂ρ
∂ t

+
∂ (ρu)

∂x
+

∂ (ρv)
∂y

+
∂ (ρw)

∂ z
= 0. (7)

The NAVIER-STOKES equation (6) can be simplified by intro-
ducing the following assumptions based on the geometry and
kinematics of squeeze film dampers:
• The pressure is constant over the gap height z.
• All gradients of the velocity in direction of the gap height z

are negligible.

• The velocity gradients of the circumferential velocity u and
axial velocity v in circumferential and axial direction x, y
are negligible compared to the gradients in z-direction.

• The gap height is small compared to the damper radius and
its width.

• The bearing surfaces are smooth and the no-slip-condition
is satisfied.

• The bearing partners show small curvature in relation to
each other. The lubrication gap can therefore be unrolled
and analyzed in cartesian coordinates.

The component wise simplified NAVIER-STOKES equations
then result in

ρ
(

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

+w
∂u
∂ z

)

=−∂ ph

∂x
+

∂
∂ z

(
η

∂u
∂ z

)
, (8)

ρ
(

∂v
∂ t︸︷︷︸

Local
inertia

+u
∂v
∂x

+ v
∂v
∂y

+w
∂v
∂ z︸ ︷︷ ︸

Convective inertia

)

=−∂ ph

∂y
+

∂
∂ z

(
η

∂v
∂ z

)
. (9)

On the left-hand side, the fluid inertia components, which are
eliminated in the derivation of the regular REYNOLDS equation,
are retained. The boundary conditions for the velocity profiles
u and v are determined using the no-slip-condition and are as
follows

u(z = 0) = 0,

u(z = h) = 0,

v(z = 0) = 0,

v(z = h) = 0.

(10)

These boundary conditions differ from those in plain bearings,
since the domain boundaries of SFDs are stationary in terms of
x. It is assumed, that the velocity profiles in circumferential and
width direction u, v are dominated by the pressure and viscous
term on the right hand sides of equations (8) and (9). Velocity
approximations u0, v0 can therefore be derived by setting the
left-hand sides of equations (8) and (9) to zero, integrating the
right-hand sides twice over z and eliminating the integration
constants with the boundary conditions (10)

u0 =
1

2η
∂ p0

∂x

(
z2 −hz

)
, (11)

v0 =
1

2η
∂ p0

∂y

(
z2 −hz

)
. (12)

Inserting the inertialess velocity profiles (equationss (11 and
12)) into the continuity equation (cf. equation (7)) and integrat-
ing over z, the regular REYNOLDS equation is obtained

∂
∂x

(
ρh3

12η
∂ p0

∂x

)
+

∂
∂y

(
ρh3

12η
∂ p0

∂y

)
=

(ρh)
∂ t

, (13)
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u and v are determined using the no-slip-condition and are as
follows

u(z = 0) = 0,

u(z = h) = 0,

v(z = 0) = 0,

v(z = h) = 0.

(10)

These boundary conditions differ from those in plain bearings,
since the domain boundaries of SFDs are stationary in terms of
x. It is assumed, that the velocity profiles in circumferential and
width direction u, v are dominated by the pressure and viscous
term on the right hand sides of equations (8) and (9). Velocity
approximations u0, v0 can therefore be derived by setting the
left-hand sides of equations (8) and (9) to zero, integrating the
right-hand sides twice over z and eliminating the integration
constants with the boundary conditions (10)

u0 =
1

2η
∂ p0

∂x

(
z2 −hz

)
, (11)

v0 =
1

2η
∂ p0

∂y

(
z2 −hz

)
. (12)

Inserting the inertialess velocity profiles (equationss (11 and
12)) into the continuity equation (cf. equation (7)) and integrat-
ing over z, the regular REYNOLDS equation is obtained
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, (13)
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to 0.08 for most common mineral oils. rsup describes the frac-
tion of bubbles in the supplied lubricant while ϑm is the relative
oil temperature

ϑm =
Toil

T0
, (3)

where T0 is the ambient temperature in K. Air solubility in oil
is generally decreased at higher temperatures, which results in
earlier onset of cavitation and a smaller lubricant mass fraction
as can be seen in Fig. 2. Equation (2) permits lubricant mass
fractions F > 1 which are not physically feasible. Therefore,
mass fractions larger than one are manually set to be one. To
complete the cavitation model, a relation between the lubricant
mass fraction F and effective fluid density ρ and viscosity η
must be defined. It is assumed, that density and viscosity vary
linearly with F according to reference [12]

ρ = Fρoil , (4)
η = Fηoil . (5)

Fig. 2. Relation between lubricant mass fraction F and fluid film pres-
sure p for two different lubricant temperatures
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On the left-hand side, the fluid inertia components, which are
eliminated in the derivation of the regular REYNOLDS equation,
are retained. The boundary conditions for the velocity profiles
u and v are determined using the no-slip-condition and are as
follows

u(z = 0) = 0,

u(z = h) = 0,

v(z = 0) = 0,

v(z = h) = 0.

(10)

These boundary conditions differ from those in plain bearings,
since the domain boundaries of SFDs are stationary in terms of
x. It is assumed, that the velocity profiles in circumferential and
width direction u, v are dominated by the pressure and viscous
term on the right hand sides of equations (8) and (9). Velocity
approximations u0, v0 can therefore be derived by setting the
left-hand sides of equations (8) and (9) to zero, integrating the
right-hand sides twice over z and eliminating the integration
constants with the boundary conditions (10)
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12)) into the continuity equation (cf. equation (7)) and integrat-
ing over z, the regular REYNOLDS equation is obtained
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which can be used to explicitly calculate the inertialess pressure
approximation p0. With a known pressure distribution, the now
implicitly known inertialess velocity profiles u0,v0,w0 can be
substituted into the left-hand side of equations (8) and (9). The
fluid velocities u, v and pressure p on the right-hand side are
replaced with the inertially corrected unknowns u1, v1 and p1

ρ
(

∂u0

∂ t
+u0

∂u0

∂x
+ v0

∂u0

∂y
+w0

∂u0

∂ z

)

=−∂ p1

∂x
+

∂
∂ z

(
η

∂u1

∂ z

)
, (14)

ρ
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∂v0

∂ t
+u0

∂v0
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+ v0

∂v0

∂y
+w0

∂v0

∂ z

)

=−∂ p1

∂y
+

∂
∂ z

(
η

∂v1

∂ z

)
. (15)

The aforementioned steps that led from equation (8) to
equation (13) can now be repeated to derive the extended
REYNOLDS equation. By integrating twice over z and solving
equations (14) and (15) for u1, v1 by taking into account the ve-
locity boundary conditions (10), corrected velocity profiles are
obtained as a function of p0 and p1

u1 =

(
z6ρ

240η3 − zh5ρ
480η3 − z5hρ

80η3 +
z4h2ρ
96η3

)

· ∂
∂x

[(
∂ p0

∂x

)2

+

(
∂ p0

∂y

)2
]

+

(
zh5ρ

240η4 − z6ρ
120η4 +

z5hρ
40η4 − z4h2ρ

48η4
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(
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12η2h

)
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∂x
∂h
∂ t

+

(
z2

2η
− zh

2η

)
∂ p1

∂x
, (16)

a similar formulation for v1 can be found by swapping the
derivatives after x and y in equation (16). These corrected veloc-
ity profiles are then substituted into the continuity equation (cf.
equation (7)) and integrated over z. Introducing suitable nondi-
mensional quantities

H =
h

∆rI
, X =

x
rI
, Y =

Y
rI
,

P =
pc2

rI η∗ u∗
, Re∗ =

ρ c2 ω
η

, T=
t u∗

rI

(17)

yields an extended REYNOLDS equation, including a fluid iner-
tia correction
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. (18)

By isolating the first two summands with the unknowns P1 on
the left-hand side, it can immediately be seen that the left-
hand sides of the REYNOLDS equation (13) and the extended
REYNOLDS equation (18) are indeed identical. This circum-
stance can be used later to accelerate the numerical solution
of the extended REYNOLDS equation by saving and reusing the
factorized system matrix. The right-hand side of equation (18)
contains only known values, the derivatives of pressure and lu-
bricant mass fraction can be calculated with finite difference
schemes. The nondimensionalization is carried out to improve
the condition of the resulting system matrix, it also reveals the
linear dependence of the inertial correction on the extended
REYNOLDS number Re∗. The calculated pressure field P1 can
then be integrated over the solution domain to obtain the forces
and moments exerted by the SFD.

4. SOLUTION STRATEGY
4.1. Time integration
The goal is the simulation of a transient run-up of a rotor with
a semi-floating bearing configuration. It is therefore not suffi-
cient to only calculate the forces of the SFD, but a whole multi
body simulation including the elasticity of the rotor, gyroscopic
effects and kinematics of the SFD bushings is necessary. The
developed algorithm was therefore implemented into the multi
body dynamics software EMD. The general calculation scheme
is depicted in Fig. 3. The differential kinematics equation

M (y) · ÿ+hω(ẏ)+hel(y, ẏ) = he(t,y, ẏ) (19)
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which can be used to explicitly calculate the inertialess pressure
approximation p0. With a known pressure distribution, the now
implicitly known inertialess velocity profiles u0,v0,w0 can be
substituted into the left-hand side of equations (8) and (9). The
fluid velocities u, v and pressure p on the right-hand side are
replaced with the inertially corrected unknowns u1, v1 and p1
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The aforementioned steps that led from equation (8) to
equation (13) can now be repeated to derive the extended
REYNOLDS equation. By integrating twice over z and solving
equations (14) and (15) for u1, v1 by taking into account the ve-
locity boundary conditions (10), corrected velocity profiles are
obtained as a function of p0 and p1
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a similar formulation for v1 can be found by swapping the
derivatives after x and y in equation (16). These corrected veloc-
ity profiles are then substituted into the continuity equation (cf.
equation (7)) and integrated over z. Introducing suitable nondi-
mensional quantities
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yields an extended REYNOLDS equation, including a fluid iner-
tia correction
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By isolating the first two summands with the unknowns P1 on
the left-hand side, it can immediately be seen that the left-
hand sides of the REYNOLDS equation (13) and the extended
REYNOLDS equation (18) are indeed identical. This circum-
stance can be used later to accelerate the numerical solution
of the extended REYNOLDS equation by saving and reusing the
factorized system matrix. The right-hand side of equation (18)
contains only known values, the derivatives of pressure and lu-
bricant mass fraction can be calculated with finite difference
schemes. The nondimensionalization is carried out to improve
the condition of the resulting system matrix, it also reveals the
linear dependence of the inertial correction on the extended
REYNOLDS number Re∗. The calculated pressure field P1 can
then be integrated over the solution domain to obtain the forces
and moments exerted by the SFD.

4. SOLUTION STRATEGY
4.1. Time integration
The goal is the simulation of a transient run-up of a rotor with
a semi-floating bearing configuration. It is therefore not suffi-
cient to only calculate the forces of the SFD, but a whole multi
body simulation including the elasticity of the rotor, gyroscopic
effects and kinematics of the SFD bushings is necessary. The
developed algorithm was therefore implemented into the multi
body dynamics software EMD. The general calculation scheme
is depicted in Fig. 3. The differential kinematics equation

M (y) · ÿ+hω(ẏ)+hel(y, ẏ) = he(t,y, ẏ) (19)
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which can be used to explicitly calculate the inertialess pressure
approximation p0. With a known pressure distribution, the now
implicitly known inertialess velocity profiles u0,v0,w0 can be
substituted into the left-hand side of equations (8) and (9). The
fluid velocities u, v and pressure p on the right-hand side are
replaced with the inertially corrected unknowns u1, v1 and p1
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The aforementioned steps that led from equation (8) to
equation (13) can now be repeated to derive the extended
REYNOLDS equation. By integrating twice over z and solving
equations (14) and (15) for u1, v1 by taking into account the ve-
locity boundary conditions (10), corrected velocity profiles are
obtained as a function of p0 and p1
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a similar formulation for v1 can be found by swapping the
derivatives after x and y in equation (16). These corrected veloc-
ity profiles are then substituted into the continuity equation (cf.
equation (7)) and integrated over z. Introducing suitable nondi-
mensional quantities

H =
h

∆rI
, X =

x
rI
, Y =

Y
rI
,

P =
pc2

rI η∗ u∗
, Re∗ =

ρ c2 ω
η

, T=
t u∗

rI

(17)

yields an extended REYNOLDS equation, including a fluid iner-
tia correction

0 =− ∂
∂X

(
H3

12
∂P1

∂X

)
− ∂

∂Y

(
H3

12
∂P1

∂Y

)
+

∂ (FH)

∂T

+Re∗
∂

∂X

{
H7

1120F2
∂P0

∂X

(
∂F
∂X

∂P0

∂X
+

∂F
∂Y

∂P0

∂Y

)

− H7

1120F
∂

∂X

[(
∂P0

∂X

)2

+

(
∂P0

∂Y

)2
]

− H6

480F
∂P0

∂X

[
∂H
∂X

∂P0

∂X
+

∂H
∂Y

∂P0

∂Y

]
+

H5

120
∂ 2P0

∂X∂T

− H5

120F
∂F
∂T

∂P0

∂X
+

H4

60
∂P0

∂X
∂H
∂T

}

+Re∗
∂

∂Y

{
H7

1120F2
∂P0

∂Y

(
∂F
∂Y

∂P0

∂Y
+

∂F
∂X

∂P0

∂X

)

− H7

1120F
∂

∂Y

[(
∂P0

∂Y

)2

+

(
∂P0

∂X

)2
]

− H6

480F
∂P0

∂Y

[
∂H
∂Y

∂P0

∂Y
+

∂H
∂X

∂P0

∂X

]
+

H5

120
∂ 2P0

∂Y ∂T

− H5

120F
∂F
∂T

∂P0

∂Y
+

H4

60
∂P0

∂Y
∂H
∂T

}
. (18)

By isolating the first two summands with the unknowns P1 on
the left-hand side, it can immediately be seen that the left-
hand sides of the REYNOLDS equation (13) and the extended
REYNOLDS equation (18) are indeed identical. This circum-
stance can be used later to accelerate the numerical solution
of the extended REYNOLDS equation by saving and reusing the
factorized system matrix. The right-hand side of equation (18)
contains only known values, the derivatives of pressure and lu-
bricant mass fraction can be calculated with finite difference
schemes. The nondimensionalization is carried out to improve
the condition of the resulting system matrix, it also reveals the
linear dependence of the inertial correction on the extended
REYNOLDS number Re∗. The calculated pressure field P1 can
then be integrated over the solution domain to obtain the forces
and moments exerted by the SFD.

4. SOLUTION STRATEGY
4.1. Time integration
The goal is the simulation of a transient run-up of a rotor with
a semi-floating bearing configuration. It is therefore not suffi-
cient to only calculate the forces of the SFD, but a whole multi
body simulation including the elasticity of the rotor, gyroscopic
effects and kinematics of the SFD bushings is necessary. The
developed algorithm was therefore implemented into the multi
body dynamics software EMD. The general calculation scheme
is depicted in Fig. 3. The differential kinematics equation

M (y) · ÿ+hω(ẏ)+hel(y, ẏ) = he(t,y, ẏ) (19)
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Fig. 3. General workflow of time integration in EMD [14]

is solved for the state vector y with a suitable time integration
scheme. M is defined as the mass matrix of the whole system
while hω , hel , he contain the gyroscopic forces, elastic forces
and external forces respectively. After each update of the state
vector, the new positions and velocities of the bearing partners
can be used to obtain an updated fluid film gap function h and

its temporal derivative
∂h
∂ t

, which in turn are used as input for
the hydrodynamics routine to calculate fluid film pressures and
fluid film reaction forces. These forces are then fed back as ex-
ternal forces in he for the next time step of the multi-body dy-
namics routine. Depending on the properties of the system and
the simulated time frame, the whole integration procedure can
take millions of time steps. By far the most expensive task in
terms of calculations is the repeated solution of the REYNOLDS
equation inside the hydrodynamics routine. It is therefore of ut-
most importance to keep the hydrodynamics solution as time
efficient as possible.

4.2. Solution of the REYNOLDS equation
The preferred numerical method for most fluid dynamics com-
putations is the finite volume method since its balancing of fluid
flow over the control volumes inherently guarantees mass con-
servation [15]. The fluid films are unwrapped and discretized
with equidistant rectangular finite volumes. The REYNOLDS
equation is then numerically integrated over all finite volumes.
The discretization for the POISSEUILLE and squeeze term can
be taken from the literature [14] as is demonstrated on the POIS-
SEUILLE term in circumferential direction

∆X∫

0

∆Y∫

0

(
H3

12
∂P0

∂X

)
dX dY =

(
H3

12
∂P0

∂X

)e

∆Y

−
(

H3

12
∂P0

∂X

)w

∆Y, (20)

where the lower case indices e and w denote the control volume
borders as depicted in Fig. 4. Since dimensionless pressure P0
and fluid gap height H are only known at the nodes denoted
with capital letters in Fig. 4, they need to be linearly interpo-
lated and derivatives are formulated using a central finite differ-
ence scheme

He =
HC +HE

2
, (21)

∂Pe,w
0

∂X
=

PE,C
0 −PC,W

0
∆X

. (22)

The procedure is repeated for the extended REYNOLDS equa-
tion (18) which is again demonstrated using the circumferen-
tial term, where the term inside the curly bracket is abbreviated
with Ix

∆X∫

0

∆Y∫

0

Re∗
∂

∂X
{Ix} dX dY = (Ie

x − Iw
x )∆Y . (23)

Since Ix contains higher-order derivatives and mixed derivatives
of P0, some more elaborate finite difference schemes are neces-
sary

∂ 2Pe
0

∂X2 =
PEE

0 −2PC
0 +PW

2∆X2 , (24)

∂ 2Pe
0

∂X∂Y
=

PNE
0 −PSE

0 −PN
0 +PS

0
2∆X∆Y

. (25)

For temporal derivatives, backwards differences with pressure
values from the last time step are used. In the areas of oil sup-
ply grooves, the pressure is set to the oil supply pressure while
at the axial boundaries of the inner film, the pressure is set to
the ambient pressure pamb. To simulate the sealing effect of the
axial gap, a volumetric flow balance for the gap is formulated
as a boundary condition

∂ p
∂x

=
h3

d
h3

pamb − p
ld

, (26)

where hd and ld are the height and length of the axial gap.

Fig. 4. Indexing of control volumes in the lubrication gap
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values from the last time step are used. In the areas of oil sup-
ply grooves, the pressure is set to the oil supply pressure while
at the axial boundaries of the inner film, the pressure is set to
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5. VALIDATION AGAINST EXPERIMENTAL
TURBOCHARGER RUN-UP

The simulation algorithm was validated against an experimen-
tal turbocharger run-up. The experimental data was provided by
MAN Energy Solutions SE. The rotor has two radial hydrody-
namic bearings fitted with non-centralized SFDs, both SFDs
are axially sealed by means of an axial sealing gap and are sup-
plied via circumferential feeding grooves. Multiple communi-
cation bores inside the groove supply the inner lubrication films
with oil. For confidentiality reasons, detailed rotor measure-
ments are not provided. All experimental and simulation data is
given in dimensionless quantities. Rotor vibrations were mea-
sured in two planes adjacent to the compressor and turbine side
bearing, marked with CS and TS in Fig. 5. Temperatures were
also measured inside the floating rings, which made tempera-
ture assumptions – and therefore viscosity assumptions – for
both fluid films possible. The SFDs show modified REYNOLDS
numbers Re∗ ≈ 2 at their maximum rotational speed, which ac-
cording to literature should have a noticeable effect on the SFDs
performance. Overall, three simulations with varying model
complexity were carried out to determine the calculational cost
and added value of the TPM and the fluid inertia model. The
rotor vibrations next to the turbine side bearings were then ren-
dered as spectrograms by means of the Superlet Transformation

[16], which improves time and frequency resolution compared
to the often used FOURIER transformation and does not produce
amplitude errors, even for highly transient signals. At first, a
simple calculation with the GÜMBEL (or half-SOMMERFELD)
cavitation model was carried out, where subatmospheric pres-
sures are simply set to the atmospheric pressure and no pressure
iteration occurs. The comparison with the experimental result
can be seen in Fig. 6 and is summarized in Table 1. Simulation
and experiment are in good agreement. Two subsynchronous
excitations – a distinct one and a rather weakly pronounced one
– were predicted correctly in starting frequency and amplitude.
However, their amplitudes subside rather quickly in the simula-
tion but stay persistent in the experiment. The synchronous ex-
citation was underpredicted by a factor of 0.5. With the addition
of the TPM (Fig. 7) the persistence of the subsynchronous exci-
tation was predicted correctly. However, its amplitude was now
too high by a factor of 1.7, since the TPM lowers the fluid con-
tent and therefore the damping capacity of the simulated fluid
films. The synchronous amplitude is raised marginally, but is
still underpredicted. Underprediction of synchronous excitation
and simultaneous overprediction of subsynchronous excitation
can be caused by faulty load assumptions. If the unbalance is
significantly higher than anticipated or if turbine and compres-
sor unbalance are out of phase, the synchronous amplitude is

Fig. 5. Topology of a turbocharger rotor with two semi-floating bearings and axially sealed SFDs

Fig. 6. Spectrogram of the shaft vibrations in the TS plane. Left: experimental results, Right: simulation result with GÜMBEL cavitation model.
Note that the axes are flipped
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Fig. 7. Spectrogram of the shaft vibrations in the TS plane. Left: simulation result with TPM and no fluid inertia effects.
Right: simulation result with the TPM and fluid inertia effects

Table 1
Dimensionless comparison of different simulation models with the experiment

Criteria Experiment GÜMBEL cavitation, no inertia TPM, no inertia TPM and inertia

Sub 1 starting frequency 0.5 0.5 0.5 0.5

Sub 1 subsiding frequency > 1 0.91 > 1 > 1

Sub 1 max. amplitude 0.3 0.3 0.52 0.52

Synchronous excitation max. amplitude 0.25 0.12 0.14 0.14

Simulation duration [h:min] – 2:08 15:44 18:42

Fig. 8. Dimensionless circumferential pressure distribution
of the compressor side SFD in a bearing land midplane

raised. Rising synchronous excitation in turn can suppress sub-
synchronous oscillations. It should also be noted that the cal-
culation model did not include an axial bearing which can also
influence radial rotor vibrations significantly.

The inclusion of fluid inertia effects did not influence the ro-
tor performance at all, as can be seen in Fig. 7. This result seems
to contradict literature sources that predict fluid inertia effects at

Re∗ > 1 [17, 18]. Most works however assume centered circu-
lar orbits for their predictions, which holds true for SFDs with
centralizing springs. However, in the calculated example, the
SFDs operate with very high eccentricity. The turbine side SFD
for example stays in contact with the housing over the whole
simulation duration while the compressor side SFD operates at
relative eccentricities ε > 0.6. The influence of fluid inertia on
the pressure distribution of the compressor side SFD at maxi-
mum rotational speed is depicted in Fig. 8. A direct comparison
between the pressure build ups of different simulations was not
possible, since the SFDs will assume slightly different orbits in
the presence of fluid inertia. Instead, the pressure distribution
with and without fluid inertia were defined as output, while the
bearing forces were calculated with the inertial pressure distri-
bution. It can be seen, that the influence on pressure distribution
is noticeable. It results in a reduction of the resulting SFD force
of about 4.2 % and a phase shift of the force vector of 2 de-
grees. Since the SFD does not operate in a circular centered
orbit, those values are not constant for the whole orbit. A dis-
tinctive shift of the pressure field compared to the inertialess
solution as it can be found in literature (e.g. [2]) is not present.
The reason for this difference lies within the different operating
conditions. The orbit of the squeeze film damper is neither cir-
cular nor centralized and the lubricant is cavitated. If a circular,
centralized orbit is assumed, the model can accurately repro-
duce the pressure shift from literature.
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raised. Rising synchronous excitation in turn can suppress sub-
synchronous oscillations. It should also be noted that the cal-
culation model did not include an axial bearing which can also
influence radial rotor vibrations significantly.

The inclusion of fluid inertia effects did not influence the ro-
tor performance at all, as can be seen in Fig. 7. This result seems
to contradict literature sources that predict fluid inertia effects at

Re∗ > 1 [17, 18]. Most works however assume centered circu-
lar orbits for their predictions, which holds true for SFDs with
centralizing springs. However, in the calculated example, the
SFDs operate with very high eccentricity. The turbine side SFD
for example stays in contact with the housing over the whole
simulation duration while the compressor side SFD operates at
relative eccentricities ε > 0.6. The influence of fluid inertia on
the pressure distribution of the compressor side SFD at maxi-
mum rotational speed is depicted in Fig. 8. A direct comparison
between the pressure build ups of different simulations was not
possible, since the SFDs will assume slightly different orbits in
the presence of fluid inertia. Instead, the pressure distribution
with and without fluid inertia were defined as output, while the
bearing forces were calculated with the inertial pressure distri-
bution. It can be seen, that the influence on pressure distribution
is noticeable. It results in a reduction of the resulting SFD force
of about 4.2 % and a phase shift of the force vector of 2 de-
grees. Since the SFD does not operate in a circular centered
orbit, those values are not constant for the whole orbit. A dis-
tinctive shift of the pressure field compared to the inertialess
solution as it can be found in literature (e.g. [2]) is not present.
The reason for this difference lies within the different operating
conditions. The orbit of the squeeze film damper is neither cir-
cular nor centralized and the lubricant is cavitated. If a circular,
centralized orbit is assumed, the model can accurately repro-
duce the pressure shift from literature.
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6. CONCLUSION
An algorithm for transient simulations of squeeze film damped 
rotors, including inertia effects and cavitation, was presented 
and validated with experimental results. The algorithm is capa-
ble to deliver results within a reasonable time frame. Good 
agreement with an experimental result was achieved. The fluid 
inertia did influence the calculated pressure fields, but had little 
to no effect on the dynamic behaviour of the whole rotor, despite 
the relatively high modified REYNOLDS number Re* = 2 of 
the installed SFDs. The result suggests, that the rotordynamics 
of the examind turbocharger are dominated by different effects, 
like contact between the floating bushings and the housing and 
by the properties of the inner fluid films, which do not show 
significant inertia effects. It may therefore be possible to neglect 
fluid inertia even for Re* > 1 in semi-floating bearings in order 
to reduce the model complexity and calculation time. Further 
investigations should focus on the influence of turbulence and 
the pressure field in deep oil supply grooves of SFDs.
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