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Abstract: The GRACE-based model GGM02S is a global gravity model expressed in sphe­ 
rical harmonics. As the model is a global solution, a certain smoothing of the available 
gravity field information is unavoidable. For regional geoid determination the irregularities 
of residual gravity field should be included. The paper presents the global GRACE gravity 
field solution, regionally improved by adding a residual field, which is represented by radial 
base functions. 

The GRACE observations over the territory of Poland are analysed and a regionally 
improved GRACE geoid from this data is derived. This improved regional geoid is compared 
with the Polish quasigeoid and differences between the global and regionally improved 
GRACE GGM02S solutions are discussed. The study shows that the error of the official 
GRACE GGM02s solution was reduced by 50% due 10 regional refinement. 
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1. Introduction 

Global gravity field solutions obtained from GRACE K-band observations and expres­ 
sed in spherical harmonics do not fully exploit the information contained in this data. 
As an example the original K-band data along an GRACE orbital arc crossing the 
Himalayan can be compared with the synthetic K-band data along the same arc, 
computed from a global GRACE solution for the same month. Figure I shows the 
difference between the original and the synthetic data and the topography beneath the 
arc. Recognizable, there is a correlation of the differences with the topography, meaning 
that the residual data consists not only of noise but still contains a signal, which is 
not represented by the global GRACE solution. Therefore, the GRACE gravity field 
solution can be improved regionally, by adding a residual field, which is represented by 
radial base functions. The location and shape of these radial base functions are to be 
estimated from the residual K-band data, i.e. from the difference between the original 
K-band data and the synthetic K-band data, computed from a global GRACE solution. 
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Unfortunately, the residual K-band data contains not only gravity field information 
but also errors coming from imperfect de-aliasing or calibration errors. Hence, an 
independent gravity field solution is necessary to discriminate in the regional solution 
between the gravity content and artefacts. For this purpose the Polish quasigeoid will 
be used, because of its homogeneity and high precision. 
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Fig. I. Residual K-band observations along an arc over the Himalayan 

2. Regional improvement of global GRACE solutions 

The standard GRACE product is a gravity field model expressed in spherical har­ 
monics. Because of the truncation of the spherical harmonics expansion at a certain 
degree and order N a certain smoothing of the available gravity field information 
is unavoidable. Wavelength shorter than 20 OOO km/N are simply not present in the 
solution. The resolution can only be enhanced, if the global solution is augmented 
by a correction field, represented by base functions with a finite supports or at least 
by rapidly decaying base functions. These functions modify the global solution only 
regionally, but contain all frequencies up to infinity. The simplest class of such rapidly 
decaying base functions are the so-called radial base functions. The class of radial 
base functions is characterized by the property that their values only depend on the 
spherical angle between their centre point lJ and the evaluation point !;. Let Q be the 
unit sphere and <T = {<T11} be a sequence fulfilling the condition 
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Then a radial base function on the unit sphere is a function of the following 
structure 

( 1 )Il+ 1 (( s )T l 1/111.rr (s) = ~ ro cr.P; ro l] , l] E Q, (2) 

Here, the functions P11 are the Legendre polynomials, the vector 11 points to 
the centre of the radial base function and the sequence {0-11) determines its shape. 
The function łjl,1.a- is harmonic outside Q, radially symmetric around 11 and for a proper 
choice of the shape sequence {0-11} it rapidly decays with the distance between si llsll 
and 11- 

Fig. 2. Gravity field generated by a single radial base function 

In Figure 2 a gravity field represented by a single radial base function łjl,1.a- lo­ 

cated at 11 with the spherical coordinates l] = (~,-i) is displayed. The intended 
regional improvement bV of the global GRACE solution is now to be constructed by 
the superposition of several radial base functions 

N

sv (s) = I c,I/J,1,.a-, Cs) 
l=I 

(3) 

The scaling factors c1, the position vectors 11, and the shape sequences o-1 have to 
be chosen in such a way that the regional improvement óV optimally fits the residual 
K-band data. Since only a finite number or residual K-band observations is available, 
it is impossible to determine the infinite real numbers of the shape sequences o-1. 
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For this reason instead of the general shape sequences, only sequences generated by 
simple rules are taken into account and the parameters of the generating rules are 
estimated from the residual K-band data. One example of such a generating rule is 

CT11 = CY11, 0 < CY < 1 (4) 

With this choice ,jf11.u- represents the potential of a unit point-mass located at atl 
If for further use the choice of the shape sequence is restricted to the class described 
in ( 4 ), the notation of the radial base function can be changed into i/J'l,a 

3. Line-of-sight gradiometry 

In order to estimate the parameters c1, ri,, a1 of the regional improvement oV from 
residual K-band observations, a direct connection between these two items has to be 
established. In the experiments being presented here, this connection is generated in 
the form of the so called line-of-sight gradiometry (Keller and Sharifi, 2005). The idea 
of this approach will be sketched briefly now. The GRACE K-band observations can 
be expressed by the positions and the velocities of both satellites in the following way 

. (x2(t) - X1 (t)?(x2(t) - X1(t)) 
p(t) = llx2(t) - x1 (t)II 

If the above equation is differentiated with respect to time, one obtains 

.. () (x2(t) - x1(t)?(x2(t) - x1(t)) llx2(t) - x1(t)II 
pt = 

llx2(t) - x1 (t)ll2 

llx2(t) - X1 (t)ll2 llx2(t) - X1 (t)II 
+----------- 

llx2(t) - X1 (!)112 

[(x2(t) - X1 (t)? (x2(t) - X1 (t))]2 

llx2(t) - X1 (t))ll3 

Using the Newtonian equation of motion 

(5) 

x(t) = VV(x(t)) (6) 

the difference in the accelerations of both satellites can be expressed as the second 
order derivative of the potential in flight-direction of the satellites 

(7) 

(8) 
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If the second order derivative of the potential in flight-direction is denoted by r 
f= (x2(t)-x1(t))T vzv(x2(t)-x1(t)) (x2(t)-x1(t)) 

llx2(t) - X1 (t)II 2 ll(x2(t) - X1 (t))II 
this gravity gradient can be computed from the range acceleration by 

p(t) 
f=----- 

llx2(t) - X1 (t)II 

(9) 

llx2(t) - X1 (t)ll2 llx2(t) - X1 (!)li 
llx2(t) - X1 (t)II 

[(x2(t) - X1(t))T (x2(t) - X1(t))]2 
+----------_;__ 

llx2(t) - x1 (t)ll4 

p IILl.xll p2 
=----+- p p2 p2 

which exactly corresponds to formula (3) in (Keller and Sharifi, 2005). The last two 
terms in the expression above are correction terms and can be computed from the 
approximate positions and velocities x;°), x;0l; i = I, 2 of the two satellites, obtained 
from a numerical orbit integration in a reference field: 

p(t) 
f=----­ 

llx2(t) - X1 (t)II 

llx;oi(t) - x;°J(t)ll
2 
llxi0J(t) - x\0l(t)II 

llxi0\t) - x\0l(t)II 

+ [(xi0l(t) - x\0l(t)l(x;0\t) - x\0\t))]2 

llxi0\t) - x\0\t)ll
4 

(10) 

Hence, after pre-processing of the K-band data according to (10), the line-of-sight 
gravity gradients at the barycenter of the two satellites are available. Splitting up the 
unknown potential V into its known reference part Vo and its unknown correction part 
oV, results in the following observation equation: 

(x2(t) - x1(t)l 2 (x2(t) - x1(t)) (x2(t) - x1(t)) or= r- -----v' Vo 
llx2(t) - x1 (t)II 2 llx2(t) - X1 (t)II 

(x2(t)- X1(t)? 2 (X2(t) - X1(t)) (x2(t)- X1(t)) = -----v' oV 
llx2(t) - X1 (t)II 2 llx2(t) - x1 (t)II 

= f C (x2(t) - X1(0? v72 . (X2(t) - X1(t)) (x2(t) - X1(t)) ft ' llx2(t) - X1 (t)II l/lri;,a, 2 llx2(t) - X1 (t)II 

(11) 



94 Markus Antoni, Andrzej Borkowski, Wolfgang Keller, Magdalena Owczarek 

This is a non-linear observation equation for the unknown parameter 11,, a-1, 
i = 1, 2, ... , N. In the c1 the observation equation is linear. For this reason methods of 
non-linear optimisation have to be applied for the estimation of these parameters. 

4. Unconstrained minimization 

In the following we will investigate the non-linear least squares problem 

IIF(x)ll2 - min for F : 'R 11 - 'R111
, m > n (12) 

The observation equation (IO) can be brought into the normal form ( 12) by setting 

(13) 

and 

_ f (x2(t1) - x,(t1)f 2 (x2(t1)- x1(t1)) (x2(t1) - x1(t1)) 
Fj(x) - óT(lj) - LJ c, li li V 1/Jri a li li 

i=I x2Ct1)-x1(t1) ,,, 2 x2(t1)-x1Ct1) 

j = 1,2, ... ,m 
(14) 

The idea is that starting from an initial guess x0 in each iteration step k an improved 
guess Xk+ 1 is computed in such a way that the sequence of target-function values 
IIF(xk)ll2 is monotonously falling. In other words, in each step the misfit between O 
and F(xk) has to be reduced. This can be achieved by approximating F linearly in xk 

(15) 

and determining x in such a way, that the linear approximation becomes O. This leads 
to the iteration 

(16) 

In the mathematical literature the iteration (14) is known as Gauss-Newton iteration 
(Ortega and Rheinboldt, 1970). In practical applications the Gauss-Newton iteration is 
lacking a certain robustness. This means, close to a local minimum the Jacobian V F(xk) 
gets almost rank-deficient and numerical rounding errors can degrade the solution of 
the normal equations 

(17) 

considerably. For this reason a regularization is necessary. This can be achieved by 
requiring that the step-length is below a certain bound 

(18) 
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The bounds rk are chosen so, that the sequence of target-function values is in­ 
deed decreasing. The regularized version of the Gauss-Newton method is known 
as Levenberg-Marquardt method or as trust-region method (Marquardt, 1963). Well 
tested implementations of the Levenberg-Marquardt algorithm are available both as 
public-domain software as well as toolboxes of commercial products. 

For regional gravity improvement the Levenberg-Marquardt method was success­ 
fully applied in Antoni et al. (2008) and Antoni et al. (2009), using the energy-balance 
as observation type. As the energy-balance provides only a rather coarse resolution, 
for the quasigeoid improvement the line-of-sight gradiometry will be used instead. 

5. Penalty methods 

If an unconstrained minimization technique as for instance the Levenberg-Marquardt 
iteration is applied to the problem ( 10), the initial guess for the parameters 'li, ai, 
i = l, 2, ... , N comes from prior information or from geophysical estimations. During 
the iteration process these parameters can move arbitrarily far from the initial guess 
an can end up with values, which are geophysically not reasonable. In order to avoid 
this, constraints 

Ja; - a,.oJ < !la, JJ11; -11i.OJI < t-.11 ( 19) 

have to be added. These constraints are implemented as so-called penalty functions 
(Courant, 1943) 

and 

l
a - a·oJ < !la , I f, 

, else 
(20) 

, l11; - 11i.OI < t-.11 
, else 

(21) 

This means, no penalty has to be paid, if a parameter is inside the assigned bounds 
and the penalty grows exponentially if it moves out of these bounds. Hence, the new 
non-linear least-squares problem is 

IIG(x)ll2 --t min for G : 'A" --t 'R111+k (22) 

with 

This augmentation by penalty functions enables to solve the constrained non-linear 
problem by minimization techniques. 



96 Markus Antoni, Andrzej Borkowski, Wolfgang Keller, Magdalena Owczarek 

6. The Polish quasigeoid model 

The quasigeoid model used for verification of the obtained results is the model named
"quasigeoid 2001 ". This is a generally accessible quasigeoid model for Poland, recom­
mended by The Head Office for Geodesy and Cartography in Poland as a standard for
densification of vertical control with GPS.

The "quasigeoid 200 I" model was determined by fitting the gravimetric quasigeoid
model quasi97b to height anomalies at the sites of Polish GPS/levelling networks (Pażus
et al., 2002).

The determination of the quasigeoid model quasi97b was based on the 1' x I'
grid of free-air gravity anomalies, generated from available gravity data for territory
of Poland and neighbouring countries (Łyszkowicz, 2002). The quasigeoid model was
developed by the remove-restore technique, using the Fast Fourier Transform, where
the global effects were represented by the geopotential model EGM96. The accuracy
of this model was estimated at the level of 5 cm.

The available data from GPS/ levelling points were GPS-derived heights and nor­
mal heights referred to Kronstadt86 at the 752 sites of the following Polish GPS/levelling
networks:
- EUREF-POL - the extension of the European Reference Frame in the territory of

Poland,
- POLREF - densification of EUREF-POL network,
- EUVN - Polish part of European Vertical GPS-Reference Network,
- WSSG - Military Satellite Geodetic Network, established for the automatic navi-

gation purposes,
- TATRY - the network established by the Institute of Geodesy and Cartography in

Tatra Mountains.

Quasi97b model was fitted to the GPS/levelling quasigeoid at the points of the
above networks with the use of third degree polynomial and thin plate spline function.

Since the "quasigeoid 200 l" model was developed, newer gravity data, geopotential
models and development of high-resolution digital terrain models stimulated extensive
research on Polish quasigeoid modelling. The recent research on the determination of
precise quasigeoid in Poland had been conducted in 2002-2005 within the framework
of the project "Determination of a centimetre geoid model in Poland with the use
of geodetic data, gravity data, astronomical data, geological data and satellite data"
supported by the Polish Committee for Scientific Research (Kryński and Łyszkowicz,
2006a). As a result, there was a number of new quasigeoid models developed: an
astro-gravimetric model, gravimetric quasigeoid models, GPS/levelling models, an in­
tegrated model and the best-fitted model. An overview and summarization of this
models is given by Kryński and Łyszkowicz (2006b).

For the verification of localized GRACE solutions the "quasigeoid 200 l" was used
because of the common access of the model. Moreover the accuracy of the model is
sufficient for that purpose. Based on the "quasigeoid 200 l" a dense grid of quasigeoid
heights was interpolated. The short- and long- wavelength featured difference between
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quasigeoid and geoid is insignificant for the purpose of validation of regional gravity 
field improvement discussed in this paper. 

7. Numerical experiments 

7.1. Closed loop simulation of regional gravity improvement using line-of-sight 
gradiometry 

The first step in the conducted numerical experiments is the verification of the algorithm 
described above by a simulation study. For this purpose the EGM96 model, complete 
up to degree and order 60 was chosen as reference field V0. The residual field bV was 
generated by the superposition of 20 radial base functions t/1,1;,a;, where the location 
parameters 11; where randomly chosen within Middle-Europe and the shape parameters 
were also randomly chosen within the interval [0.9, 0.999]. The closed-loop simulation 
consisted of 8 steps: 
I. Within the combined field V = Vo + bV the one-month orbits of the two GRACE 

satellites were numerically integrated. 
2. From the integrated positions and velocities x;(t), x;(t), i = I, 2 the range rates p(t) 

were derived. 
3. The range rates p(t) were converted line-of-sight gradients r. 
4. These three steps were repeated for the reference field Vo only, delivering the 

reference line-of-sight gradients r0. 
5. The residual line-of-sight gradients bf= r - r0 were computed. 
6. The non-linear least squares problem (14) was solved by Levenberg-Marquardt 

iteration, leading to an estimation bV of the residual potential bV. 
7. Steps I to~ were repeated for V = Vo+ bV leading to estimated residual line-of-sight 

gradients br. 
bVwas compared to bV and br was compared to óT. 

The flow-chart of the closed-loop simulation study is given in Figure 3. The residu­ 
al line-of-sight gradients bf, where the non-linear least-squares adjustment starts from, 
their estimation bf after non-linear least-squares adjustment and the difference between 
both fields are displayed in Figure 4. Visually, it is hard to distinguish betwee~the real 
residual line-of-sight gradients bf and the estimated line-of-sight gradients br. Their 
difference amounts only to about 30% of the given signal. The difference between the 
given and the estimated residual gradients has two sources: 

The simulated noise in the data propagates into the estimated parameters. 
The initial guess is not made manually but automatically by the algorithm. 

Therefore, the number of base functions used for the non-linear least-squares adjust­ 
ment does not necessarily coincide with the number of base functions used for the 
generation of the residual field. 

Another view onto the results are the histograms of the given gradients, the esti­ 
mated gradients and the histogram of the differences between them. These histograms 
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are displayed in Figure 5. The figure shows that both the histogram of the given and of
the estimated data is non-symmetric. This means, the data contains not only noise but
also a weak signal. The histogram of the difference almost resembles the probability
density of the normal distribution. One can conclude that the non-linear least-squares
adjustment extracts most of the weak signal from the data and leaves only a normal
distributed noise.

l 1
choose li V as the super- lposition of randomly placed choose V0 as EGM96 estimated liV "--

and randomly shaped
radia! base functions 

! 1
V=V0+8V estimated V 

i' ,,

l - l ---

GRACE orbits I GRACE reference orbits I estimated GRACE orbits iby numerical integration ' by numerical integration by numerical integration 
l

t -- l
GRACE range-rates ł GRACE reference estimated GRACE Irange-rates range-rates 

li

- l l 
line-of-sight gradients r- I reference line-of-sight li estimated line-of-sight

gradients r, gradients
Ił I'

.,, \- I \ I 
residual line-of-sight

i-- 
estimated residual

gradients or line-of-sight gradients t

r . -

Leven berg-Marquardt

,, -w -

Fig. 3. Flow-chart of closed-loop simulation of regional gravity improvement using line-of-sight
gradiometry

All in all it seems to be justified to say that the non-linear least-squares algorithm
for regional gravity field improvement works properly, at least as long as the gravity
field information in the residual data is not too strongly overpowered by non-gravitative
error sources.
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Fig. 4. Results of the simulation study 
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7.2. Verification of the non-linear least-squares GRACE solution by the Polish 
quasigeoid 

After gaining confidence into the usability of the non-linear algorithm for gravity field 
improvement using residual GRACE data, the algorithm has to be validated by real 
data. Only a completely independent data source can be used for such a validation. 
The "quasigeoid 2001" model for Poland was chosen for such a validation, due to its 
excellent quality and homogeneity. Figure 6 explains the initial situation. 
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The images in the left column show different solutions for the Polish quasigeoid. 
The top image is the quasigeoid model, the middle image the geoid computed from the 
GRACE GGM02s model (Tapley et al., 2005) complete up to degree and order 60, and 
the bottom image is the quasigeoid solution from an integrated gravity-GPS-levelling 
quasigeoid. In the right column the difference between the quasigeoid and the GRACE 
geoid is displayed. It is visible that the global GRACE solution is only a coarse 
approximation of the quasigeoid. Not only that the difference between them amounts 
up to 2 m, also details are missing in the global GRACE solution. For instance, the 35 m 
geoid undulation band running from south-west to north-east is almost a straight line 
in the GRACE solution, while it shows a significant curvature both in the quasigeoid as 
well as in the integrated gravity-GPS-levelling quasigeoid. Figure 7 shows the change 
of the situation when additional GRACE data from May 2003 was used to improve the 
global GRACE solution regionally. The arrangement of images in Figure 7 is basically 
the same as in Figure 6. 

Only the global GRACE GGM02s solution is replaced by the regionally improved 
solution. In the right column an additional image was added, showing the estimated 
positions and the shape parameters of the radial base functions. The figure shows that 
the difference between the regionally improved GRACE solution and the quasigeoid 
dropped down from 2 m to only 1 m. Also the 35 m geoid undulation band now shows 
more structure than before. Amazingly, this considerable improvement was possible 
using only one month of data and only 7 bas~_functions. For a further improvement 
the estimated residual line-of-sight gradients bT are used as new input data and are 
analysed in the same way as the original residual line-of-sight gradients or, giving se­ 
cond order estimations oVi for the residual potential and for the residual line-of-sight 
gradients or1• The combined gravity field solution is thus V = Vo + oV + oVi. 
The combined solution is compared to the Polish quasigeoid in Figure 8. Visually, 
there is no difference between the solution given in Figure 7 and the combination 
solution displayed in Figure 8. 

A more detailed picture gives the error statistics. In Figure 9 mean value, rms, ma­ 
ximum and minimum of the differences between the Polish quasigeoid and 
geoid from regionally improved GRACE solution are displayed. The blue columns 
refer to the one-step solution and the yellow columns refer to the combined solution. 
The combined solution does not differ much from the one-step solution. Only the 
rms became a little smaller. This means that the second step could not do more than 
only smooth the solution slightly. The reason for that can be explained by Figure 5. 
The residual line-of-sight gradie~s Jr have an almost perfect normal distribution den­ 
sity histogram. This means that or contains practically no gravity information but only 
errors of different sources. 
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8. Conclusions 

In the article a method was presented to improve global GRACE solution regio­
nally, using radial base function for the refined analysis. The method was tested in
a closed-loop simulation and against the Polish quasigeoid. The simulation study
proved that the method basically gives the correct answer, limited only by the errors
contained in the data and the quality of the initial guess.

The application of the method to GRACE data of May 2003, reduced the error of
the official GRACE GGM02s solution by 50%, while the remaining error is around
1 m. This error can be attributed to the limited resolution of the GRACE missions.
The size of the Polish territory is just at the resolution limit of this mission.

A further improvement will be possible using data of the recently launched GOCE
mission instead of GRACE data. GOCE will provide an up to four times higher resolu­
tion as GRACE. Even more, the original data types of the GOCE mission are already
gravity gradients. Hence, the presented method is well prepared for the processing of
GOCE data. The GOCE observation can be used directly and it is not longer necessa­
ry to convert the original observations into gravity gradients, as it was necessary for
GRACE data. This obsolete pre-processing step, will further increase the performance
of the method presented here.
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Streszczenie

Model GGM02S wyznaczony na podstawie danych z misji GRACE jest globalnym modelem grawi­
metrycznym opartym na harmonikach sferycznych. Ponieważ model ten jest globalnym rozwiązaniem,
nieuniknione jest pewne wygładzenie informacji grawimetrycznych. Dla wyznaczenia lokalnego modelu
geoidy konieczne jest uwzględnienie informacji o zmienności lokalnego pola grawitacyjnego. W pracy
przedstawiono globalne rozwiązanie GRACE, poprawione przez dodanie informacji o lokalnym polu gra­
witacyjnym, określonym za pomocą radialnych funkcji bazowych. Obserwacje GRACE z obszaru Polski
zostały przeanalizowane i na ich podstawie został wyznaczony ulepszony lokalny model geoidy. Model
ten porównano z istniejącym modelem quasigeoidy dla Polski ,,quasigeoida 200 l ", oraz przeanalizowano
różnice uzyskane pomiędzy globalnym a lokalnie wzmocnionym rozwiązaniem GRACE GGM02S. Bada­
nia wykazały, że zastosowanie modelowania regionalnego zmniejsza o 50% błąd oficjalnego rozwiązania
GRACE GGM02S.


