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eter [4]. Thin-film solar cell based on a multinary compound 
Cu(In, Ga)Se2 has an efficiency of 20% [5].

A dye-sensitized solar cell belongs to third-generation solar 
cells, which have higher efficiency than a thin film-based 
solar cell. It was introduced by Gratzel and O’Regan in 1991. 
Michael Gratzel was awarded the 2010 Millennium Technology 
Prize for his contribution in the field of solar cells [6]. The basic 
structure of the dye-sensitized solar cell is made up of semi-
conductor coated photoanode electrode, sensitizer, electrolyte, 
and counter electrode [7].

Dye-sensitized solar cells are a subgroup of photoelectrochem-
ical solar cells since they both depend on an electrolyte. They 
have a couple of additional features like an organic or organome-
tallic dye sensitizer and a nanoparticulate semiconductor rather 
than a solid crystal semiconductor. They are a potentially signifi-
cant development in solar technology, with efficiencies up to 11% 
reported in the literature [8]. But later, 15% solar cell efficiency 
as a prototype was introduced [9]. When the zinc-oxide nanorods 
are deposited, the quantum efficiency is enhanced [10].

While dye-sensitized solar cells do not have as high effi-
ciency as their conventional silicon counterparts, there are 
already advantages for this new technology. The first and most 
obvious advantage is their low cost. Due to cheaper starting 
materials, ease of production, dye-sensitized solar cells are 
comparatively much less expensive to prepare in comparison 
with silicon crystal solar cells. Also, their overall production is 
less detrimental to the environment than the output of conven-
tional silicon cells [11]. Furthermore, dye-sensitized solar cells 
have considerable flexibility in shape, colour, transparency, and 
performance also under diffuse light [12, 13]. Dye-sensitized 
solar cells could be incorporated into massive varieties of prod-
ucts, e.g. hand baggage, building assimilated photovoltaics for 
walls of buildings or windows [14‒16].

1.	 INTRODUCTION
As the global population is growing, energy resources are 
depleting at a similar pace. Although fossil fuels are the most 
abundant source of energy, by the next century, these fuel 
sources will have been depleted [1]. For a green and healthy 
environment, renewable energy resources are emphasized. 
Renewable resources such as solar and geothermal energy, 
wind power, etc. have been explored to satisfy the demand for 
energy. By the photosynthesis process, the sun is proven as the 
most efficient resource of energy for all living creatures. If 
approximately 1% of the earth’s surface is covered with solar 
cells with 10% efficiency, then it will provide twice as much 
energy as required [2]. Solar cells are widely used in small-scale 
devices and power panels.

The photovoltaic effect was observed while inserting light on 
silver chloride during photography. The first photovoltaic cell 
was developed in 1839 by Becquerel using a liquid electrolyte 
and an electrode. Modern solar cells are very dissimilar from 
this first cell and use a solid-state junction between p and n-type 
semiconductors to convert light into electrical power. The first 
advanced solid-state solar cell was built by D.C. Chapman at 
Bell Labs in 1954. The silicon-based crystalline solar cells are 
fabricated by the Czochralski method. The efficiency of these 
cells is dependent on the temperature [3]. The second-gener-
ation solar cells such as Cadmium telluride (CdTe), Copper 
indium gallium selenide (CIGS) and amorphous silicon (a-Si) 
use solar cells as thin film and powder form. Although these 
cells are flexible and portable, efficiency is the critical param-
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Abstract. The increasing concern for worldwide energy production is the result of global industrialization and decreasing energy resources. 
Despite the cost factor, solar energy continues to become more popular due to its long-term nature as a resource and growing conversion effi-
ciency. A dye-sensitized solar cell converts visible light into electricity. The efficient use of dye as a sensitizer is the critical factor in enhancing 
the performance of the dye-sensitized solar cell. Natural dyes are found in abundance in leaves, flower petals, roots, and other natural resources. 
Due to the advantages of natural dyes such as cost-effectiveness, the simpler extraction process, and being environmentally friendly, etc., 
researchers are working extensively to replace synthetic dyes with natural ones. This paper highlights the various types of natural dyes and 
their effect on the efficiency of the dye-sensitized solar cell.
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Fig. 2. Sunlight to electrical energy conversion

Fig. 1. Schematic representation of working of dye-sensitized solar 
cell [16]

The performance of the dye-sensitized solar cell depends 
on the dye used in that cell. This article reviews various dyes 
used for the fabrication of dye-sensitized solar cells along with 
their efficiency.

2.	 WORKING OF DYE-SENSITIZED SOLAR CELL
In general, the dye-sensitized solar cells work on the pure phe-
nomena of photoelectrochemical reaction, i.e. when sunlight 
or light from any source which has potential more significant 
than the threshold energy of the electrons in the dye, illuminates 
the cell, then the dye molecule within the cell disintegrates 
to impart an electron which moves towards the cathode and 
the remaining dye molecule reaches the electrolyte layer and 
recharges itself [17, 18]. A deficiency is created in the elec-
trolyte, which is completed by the electron released from the 
anode, and thus the circuit completes, and the current moves 
within the circuit as shown in Fig. 1.

2.1. Steps to generate electrical energy from sunlight
The following steps convert photons (sunlight) to current (elec-
trical energy) [19]. Figure 2 shows the pictorial view of sunlight 
to electrical energy conversion.
1.	 Photo sensitizers absorb photons that are adsorbed on the 

TiO2 surface.
2.	 Metal Ligand Charge Transfer (MLCT) transition is re-

sponsible for the excitation of the photosensitizers from the 
ground state (S) to the excited state (S¤). Oxidation of the 
photosensitizer (S+) takes place due to the injection of the 
excited electron into the conduction band of the TiO2 pho-
toanode.
●	 Excitation process:

	 S + hv → S¤.� (1)

●	 Charge Injection:

	 S¤ → S + + e–(TiO2).� (2)

3.	 Consequently, the injected electron in the conduction band of 
TiO2 diffused through TiO2 particles toward the back-contact 
glass substrate and successively reached the charged elec-
trode through the external load and wiring
●	 Transportation of charge:

	 e–(TiO2) → e–(CE).� (3)

Here, CE is the charged electrode.
4.	 When the electron is accepted by oxidized photosensitiz-

er (S+) from the I− ion redox mediator regeneration of the 
ground state (S) takes place, and the I− is oxidized to the oxi-
dized state, I3

− (equation 4). Nevertheless, two main (undesir-
able) recombination reactions decrease the overall efficiency 
of DSSC. The excited electron in titania can straightway re-
combine with the oxidized dye sensitizer or with the oxidized 
iodide redox couple in the electrolyte [20] (equation (5)).
●	 Regeneration of dye:

	 2S + + 3I − → 2S + I3
−.� (4)

●	 Recombination:

	 S + + e–(TiO2) → S.� (5)

5.	 After diffusing toward the counter electrode, the oxidized 
redox mediator I3

− is reduced to I− ions.
●	 Regeneration of iodine:

	 I3
− + 2e → 3I −.� (6)

Generally transfer of an electron to I3
− can happen either 

at the boundary between titania and electrolyte or at areas 
of the anode contact (mostly TCO layer on glass) that are 
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Fig. 3. Components of dye-sensitized solar cell

exposed to the electrolyte [21]. The efficiency of DSSC is 
governed by the following energy sections
●	 The excited state of the dye photosensitizer.
●	 The ground state of dye photosensitizer.
●	 The Fermi level of the titania electrode.
●	 The redox potential of the mediator (I−/I3

−) in the elec-
trolyte [22].

The speedy retrieval of the dye sensitizer is significant for 
achieving longer stability in order to maintain an enduring 
separation of charge which is critical for the performance of 
the dye-sensitized solar cell.

2.2. Performance parameters for a dye-sensitized solar cell
When the light is switched on in a dye-sensitized solar cell con-
taining the circuit system, open-circuit voltage Voc and short 
circuit current Isc may be obtained [23]. The ratio between 
maximum output power received at the output to the sunlight 
power is known as the overall efficiency of solar energy. The 
fill factor, overall conversion efficiency are the essential per-
formance parameters of the dye-sensitized solar cell are [24]:

2.2.1. Open circuit voltage
The voltage of the cell is known as the open-circuit voltage 
when the cell is stated as open-circuited, and the output current 
is nil [25].

	 Voc = Vt ln
µ

Isc
Io

¶
 + 1 � (7)

2.2.2. Short circuit current (Isc)
The cell is stated as short-circuited when the output voltage is 
nil. The short circuit current is equivalent to the conversion of 
the total number of photons to hole-electron pairs [26].

	 Isc = I + Io exp
µ

V
Vt

¶
 ¡ 1 � (8)

Here, Vt is the threshold voltage, and Io is the output current

2.2.3. Fill factor (FF)
It is a vital parameter for the determination of the efficiency 
of the cell. At a potential somewhere between an open circuit 
and short circuit, the maximum output power (Pmax) can be 
obtained, where the cell delivers the highest power output with 
the voltage (Vmax) and current (Imax).

	 FF =  Vmax.Imax
Voc.Isc

� (9)

2.2.4. Conversion efficiency (η)
This parameter is associated with the overall performance of 
the cell. It is stated as the ratio of maximum power obtained 
by the cell (Pmax) to the power of the incident radiation on the 
illustrative area of the cell (Pin).

	 Eff iciency =   Fill Factor.Voc.Isc
Incidental Optical Power

� (10)

It depends on the temperature of the cell, quality of the illu-
mination, and the spectral distribution of the intensity, due to 
which, a standard measurement condition is used for the testing 
of solar cells [27].

3.	 COMPONENTS OF A DYE-SENSITIZED SOLAR CELL
The dye-sensitized solar cell consists of vital components such 
as conductive glass substrates, metal oxide semiconductor coat-
ing, the dye, the redox electrolyte, and the counter electrode [6]. 
Each component is essential for the conversion of sunlight into 
the current [28‒30] (Fig. 3).

The conductive glass substrates used for the dye-sensitized 
solar cell serve as a backbone of the cell. This solid surface 
provides structural support for the dye-sensitized solar cell, and 
most importantly, it provides a complete path through which 
current can enter and leave the dye-sensitized solar cell when 
in a circuit [31]. It allows the light to pass into the cell with 
limited optical attenuation and also a surface to which the TiO2 
is bonded. Various types of organic or organometallic dye mol-
ecules can be used as a sensitizer for dye-sensitized solar cells, 
where incoming light interacts with the dye molecule, excit-
ing an electron to a higher energy state [32]. The electrolyte in 
a dye-sensitized solar cell is the electron donor for the dye. It 
is composed of a redox couple that acts as a charge transport 
medium between the dye on the electrode and the counter elec-
trode. Finally, the counter-electrode is a second TCO coated 
slide with catalyst deposited and heated onto the surface. It 
helps in the transfer of electrons into the redox electrolyte, and 
therefore the very little amount of catalyst is required for the 
cell [2]. The various components of a dye-sensitized solar cell 
are shown in Fig. 3.
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3.1. Charge collectors
The dye-sensitized solar cells are typically assembled with two 
sheets of transparent conductive oxides acting as charge col-
lectors and a substrate for the deposition of the semiconductor 
and catalyst [33, 34]. Transparent conducting oxides (TCO) 
are metal oxides coated on the soda lime (generally) glass sub-
strate to make it electrically conductive. To reduce the energy 
loss, its electrical conductivity should be kept as high [35]. 
Generally, TCO coating is either of fluorine-doped tin oxide-
FTO (SnO2: F, FTO) or indium-doped tin oxide-ITO (In2O3: Sn, 
ITO). Nowadays, FTO coated glass is used in dye-sensitized 
solar cells in place of ITO coated glass due to its better thermal 
stability at high temperatures. The transmittance of the substrate 
is a deciding factor to select the TCO substrate. Recently alu-
minium-doped zinc oxide (AZO) has also been explored [36]. 
Table 1 shows the difference between various TCO coatings.

3.2. Photo anode
The photoelectrode (or photoanode) in a dye-sensitized solar 
cell is prepared from a skinny layer of sensitized semiconduc-
tor material (usually TiO2, ZnO, SnO2, etc.) with an extensive 
bandgap, deposited onto the TCO substrate [33]. High light-har-
vesting efficiency (LHE) is achieved if the semiconductor layer 
offers a vast surface area (high roughness) in order to get a con-
siderable amount of sensitizer molecules adsorbed [37].

Titanium dioxide (TiO2) is the most efficient material 
among the several choices of wide-bandgap semiconductors for 
dye-sensitized solar cell and have attracted considerable atten-

tion because of its lower cost, non-toxicity, availability in the 
market, biocompatibility and has excellent chemical stability 
[38]. The method to prepare TiO2 nanoparticles film is very easy, 
and no vacuum is needed. Generally, photoelectrode thin films 
encompass mesoporous structured titania, obtained after sinter-
ing of a TiO2 thin film at a temperature higher than 400°C [39]. 
Based on the annealing temperature, it is present in three crys-
talline structures, namely anatase, rutile, and brookite [40‒42]. 
Rutile is stable while anatase and brookite are metastable.

As brookite is very difficult to synthesize, for photocatalytic 
activity, only rutile and anatase polymorphs are considered vital 
[43]. However, pure anatase displays an advanced photocata-
lytic activity than pure rutile [44].

3.3. Dye sensitizer
A dye is stated to be a substance which imparts colour and 
which has a specific affinity towards the substrate it is being 
applied upon. There has been a prodigious number of dyes that 
have been used to prepare efficient polymer solar cells [45].

3.3.1. Characteristics of dye
Some of the stringent characteristics a dye should possess for 
being coated on a dye-sensitized solar cell substrate are as fol-
lows:
●	 Since more than 50% of solar energy is emitted in the region 

from 400‒800 nm, dyes that absorb in this region are pre-
ferred as a broad absorption spectrum helps in capturing as 
much of the solar radiation as possible.

Table 1
Difference between various TCO coatings

Sr. 
No.

Parameter Indium-doped  
Tin Oxide Coated Glass

Fluorine-doped  
Tin Oxide Coated Glass

Aluminium-doped  
Zinc Oxide coated Glass

11 Temp (°C) 350°C 600°C 600°C

12 Transparency Medium in visible light Better to visible light
UV reflectivity is high, and 

transparency to visible light is 
better

13 Resistance Resistance rises with temperature Resistance is constant up to 
600°C 

Ideal for temperature-sensitive 
polymer substrates

14 Thermal stability Lower Excellent Excellent 

15 Conductivity Moderate conductivity Good conductivity Excellent conductivity 

16 Tolerance Moderate High High 

17 Coating ITO coated on the passivation 
layer of the glass surface

On a glass surface, FTO is 
coated directly

Using etching, patterning of films 
is more facile

18 Molecular structure Cubic structure Tetragonal structure Hexagonal structure 

19 Reflectance in  
the IR zone Lower Higher Higher 

10 Specified Sheet 
resistivity ∙10 ohms/sq ∙10 ohms/sq ∙10 ohms/sq 

11 Transmittance occurs 550 nm – ¸83% 550 nm – ¸85% 400‒1000 nm = 82‒83% 

12 Film thickness 1800‒2000 Å 1800‒2000 Å 8000‒8500 Å 
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●	 The extinction coefficient of the dye molecule should be 
high over the whole absorption spectrum. This assists in the 
absorption of most of the light within a monolayer of the dye 
because an increase of the optical density of the electrode 
deteriorates the photovoltage and also causes diffusion prob-
lems in the electrolyte at high current densities.

●	 The dye should be soluble in a particular solvent for adsorp-
tion onto the electrode and should not be absorbed by the 
electrolyte.

●	 The bonding of the dye with the substrate (affinity) should 
be of remarkable strength, and it should get adsorb strongly 
on the surface of the semiconductor to make sure that the 
electron is injected efficiently into its conduction band and 
to avoid regular leakage from the electrolyte [46].

●	 The electron released should have enough excitation energy 
when it moves through the cell to meet the electrode.

●	 The dye should be able to transfer the electron to the TiO2 
rapidly in order to avoid undesirable recombination to the 
ground state of the dye [47].

●	 A redox electrolyte may be used for regeneration of the dye 
(such a dye should be used) [45]. Also, the oxidized state of 
the dye must have a more positive potential than the redox 
couple in the electrolyte. The dye should stay stable in its 
oxidized form, allowing it to be reduced by an electrolyte.

3.3.2. Classification of dyes
There are broadly two general classifications of the dyes nat-
ural and synthetic (human-made). Synthetic dyes require the 
usage of scarce elements in their making and are challenging 
in treating, while natural dyes are easily processed able and can 
be made out of just any natural material like peels of fruits, 
barks of trees, leaves, fruit juices, fruit pulps, etc. Moreover, as 
a substitute to the noble Ru complex sensitizers, organic dyes 
show many advantages like easily designable molecular struc-

tures, natural synthesis, cost-effectiveness, lesser environmental 
issues, and higher molar extinction coefficients [48]. So, they 
can be considered a better substitution of synthetic, once they 
attain higher efficiency.

Some functional groups that are present in the dyes main-
tain the affinity with the electrode they have been coated on, 
thus enhancing the charge transfer. Natural dyes are generally 
used with titanium dioxide (TiO2) (nanoparticles) coating as an 
electrode, as this material exists in abundance and shows higher 
affinity with the dyes. Associativity is a significant issue with 
these natural dyes, as the proper functional groups needed to 
enhance it is known as an anchoring group, which should make 
bonds with the titania via surface hydroxyl groups. The carbox-
ylic group and its derivatives are generally part of this group. 
Hydroxy groups also show the tendency of binding onto TiO2 
[49]. Furthermore, sulfonate and silane have also been used. 
Structures of efficient sensitizers containing binding groups 
(phosphonic acid) were first established by Pechy et al. [50].

The difference between natural dyes and synthetic dyes are 
shown in Table 2. Due to the stability problem and colour fad-
ing issues, natural dyes are less efficient. The synthetic dyes 
have a maximum absorption range in the solar spectrum. There-
fore, these sensitizers produce better output than natural dyes.

3.3.3. Review of various dyes for dye-sensitized solar cell
The different natural dyes that are used for the fabrication of 
dye-sensitized solar cells are reviewed and summarized in tabu-
lar form, as shown in Table 3. The performance of the dye-sen-
sitized solar cell is evaluated by using various parameters such 
as open-circuit voltage, short circuit current, fill factor, and 
efficiency [51]. The plant pigmentation can be understood by 
maximum wavelength (λmax). The comparative performance 
parameters of the natural dye-based dye-sensitized solar cell, 
with semiconductor electrode TiO2, are shown in Table 4.

Table 2
Difference between natural dye and synthetic dye

S. No Parameter Natural dye Synthetic dye

1 Fabrication 
Process

Simple chemical procedure Requires multi procedures, which are costly  
and time-consuming

2 Availability Natural dye is 100% available Long term availability of man-made dyes is a problem

3 Efficiency As the degradation of natural dye is higher,  
the efficiency is lower

The efficiency of synthetic dyes is higher

4 Cost Natural dyes are cheap, as they are naturally 
available and require fewer chemical procedures

Synthetic dyes are costly due to their production process

5 Stability Less stable due to the degradation process More stable

6 Environmental 
effect

Environmentally friendly because of its natural 
occurrence

Due to its chemical nature, its effects are harmful to the 
environment

7 Absorption rate 400‒700 nm range of the solar spectrum up to 800nm range of the solar spectrum

8 Reproduction Reproduction of the same shades is difficult Easy to reproduce

9 Variety Limited range of colours Wide range
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Table 3
Review of different dyes used and their performance as a sensitizer

S. 
No Dye used Result obtained Reference

1 Blueberry The photovoltaic performance is reduced due to dye aggregation and intermolecular energy 
transfer. The efficiency achieved is 1.13%

[53‒55]

2 Dragon fruit, 
cabbage and grape

The voltage and current of dye-sensitized solar cells increase with light, the efficiency of 
dragon fruit, red cabbage, and grapes are 0.015%, 0.006%, and 0.011% respectively [56]

3 Basella Alba Seeds
The basella alba seeds extracted dye is applied on nanocrystalline photoelectrode titanium 
oxide, which is further deposited on tin oxide, 48.5% film factor and 0.115% efficiency is 
achieved

[57]

4 Calotropis With the dye extracted from Calotropis, better visible absorption and better temperature 
response at an enhanced temperature range are achieved [58]

5 Olive leaves, red 
hibiscus

Numerical modelling has been studied using MATLAB. It has been shown that the 
photovoltaic performance of olive leaves is higher than red hibiscus flowers [59]

6 Plant pigmentation Efficiency is optimized (up to 50%) by using a source measure unit, due to irradiation time 
and dye stability [60]

7 Blackberry Without any polymer electrolyte, efficiency is 0.076%, the efficiency increases up to 0.242% 
when PAN liquid is used

[49, 54, 
61‒63]

8 Plant leaves dyes The efficiency of five Chlorophyll dyes extracted are Fig (0.49%), Black Tea (0.08%), Green 
tea (0.03%), Henna (0.05%), Schinus terebinthifolius (0.73%) [64]

9 Ziziphus jujuba 
leaves 

The efficiency is 1.077%. It has been reported that the dye structure is highly connected with 
the TiO2 surface [7, 64]

10 Lemon leaves dye The efficiency reported using lemon leaves dye is 0.036%. The efficiency is low because of 
poor dye absorption, which inhibits charge transfer to titanium [65]

11 Hibiscus dye Hibiscus enhances electron transfer, as it is ascribed to anthocyanin and adheres to TiO2 
surface. The efficiency is 1.19%

[16, 53, 61, 
62, 66, 67]

12 Red Sicilian orange 
juice dye

For optical activity, cyanine and delphinidin are the responsible pigments.  
The efficiency is 1%

[49, 58]

13 Flower based dye: 
Luffa cylindrica L

The dye-sensitized solar cell exhibited open voltage of 0.52 V, short circuit current 
0.44 mA cm−2, fill factor of 0.60, efficiency of 0.13% and IPCE »30% (at λ = 430 nm) [68]

14 Wild Sicilian 
prickly pear dye

The existence of carboxylic groups similar to that of Ru poly-pyridyl complexes offers the 
benefits of better interaction between the dye. The efficiency is 2.06%

[69‒71] 

15 Seed based dye: 
Eruca Sativa seeds 

It has been reported that while using lithium iodide as an electrolyte, the conversion 
efficiency becomes double. 0.725% of efficiency is reported [64]

16 Purple cabbage Anthocyanins absorb long-wavelength lights and are water-soluble in nature. The 0.75% 
conversion efficiency is reported using purple cabbage extracted dye [53, 72]

17 Red cabbage This article is focused on developing dye as a precursor. The red cabbage extracted dye is 
used, and the efficiency reported is 2.90%

[67, 73]

18 Begonia Anthocyanin in Begonia dye extract was stable till 150°C. The efficiency is 1.86% [74]

19 Pomegranate ORAC and VIS technology are used to study the anthocyanin property or pomegranate seed 
extracted dye. The efficiency is 1.15%

[7, 75‒77]

21 Spinach leaves dye The efficiency reported, using spinach dye, is 4%, the visible absorption range 
is 422‒659 nm

[53, 72, 75, 
78, 79]

22 Red rose petals dye The efficiency reported with red rose dye is highest, i.e. 0.81% [80]

23 Red turnip The efficiency reported is 1.7%, which is 50% than the N179 base cell [81]

24 Eggplant Due to variable factors such as light intensity, and TiO2 linkage, eggplant extracted dye 
produces different results. The efficiency reported is 0.64%

[64, 69, 71]
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Table 4
Performance parameters of natural dye-based dye-sensitized solar cell

Dye Solution Reference Pigment λmax (nm) Isc (mA) Voc FF η (%)

Rhododendron [101] Anthocyanin 0.530 0.689 0.585 60.9 0.57

Yellow rose [101] Xanthophyll 487 0.600 0.554 57.1 0.270

Rosella (Hibiscus sabdariffa L.) [102, 103] Anthocyanin 520 1.630 0.400 0.57 0.370

Erythrina variegata [48, 104] Chlorophyll 451 492 0.780 0.480 0.55 –

Hibiscus surattensis [105, 106] Anthocyanin 545 5.450 0.390 0.54 1.140

Raspberries [107, 108] Betacyanin 560 0.090 0.340 61.10 0.380

Cherries [7, 109, 110] Betacyanin 500 0.460 0.300 38.30 0.180

Wild Sicilian prickly pear [81] Betalin 465 8.200 0.380 0.38 1.190

Ivy gourdfruits [111, 112] β – Carotene 458 480 0.240 0.640 0.49 0.990

Bitterleaf [113, 114] Chlorophyll 400 0.070 0.340 0.81 0.690

Spinach [75] Chlorophyll 437 0.470 0.550 0.51 0.130

Festuca ovina [115] Chlorophyll 420 660 1.180 0.540 0.69 0.460

Red cabbage [116] Anthocyanin 537 0.500 0.370 0.54 0.130

Pomegranate [117] Anthocyanin 412 665 2.050 0.560 0.52 0.590

Shiso [101] Chlorophyll 440 600 3.560 0.550 0.51 1.010

Botuje [118] Flavonoid 400 0.690 0.050 0.87 0.120

Henna [119] Anthocyanin 518 1.870 0.610 0.58 0.660

Ficus retusa [120] Chorophyll 670 10.900 0.500 0.27 1.490

Anethum graveolens [121] Chlorophyll 666 0.960 0.570 40.00 0.220

Madder [122] Anthraquinone 540 0.540 0.389 0.69 0.100

S. 
No Dye used Result obtained Reference

26 Strawberry
Delphinidin-based dyes are more used than Cyanidine and pelargonidin-based dyes, due to the 
potential of embedding titania and transferring photons. Strawberries are rich in pelargonidin 
and blackberries and blueberries in cyanidin. The efficiency is 0.62%

[55, 82, 83]

27 Wormwood The percentage efficiency of wormwood has enhanced from 0.524% to 0.9% due to the 
advanced application of dyes over the substrate [72, 84]

28 Wakame The 4.6% efficiency is reported, and dye-substrate affinity was high [85]

29 Turmeric (Curcumin 
Dye)

As compared to deprotonated curcumin dye, K2CO3 is stabilized more and has an efficiency 
of 9.9%

[53, 83, 86]

30 Papaya leaf dye The efficiency of the cell is directly related to HUMO and LUMO; the efficiency reported 
with papaya leaf extract is 0.28%

[87]

31 Calotropis leaves The leaves are covered in a white powder which helps in alleviating heat by scattering 
incident radiation and efficiency increased to 0.214% than 0.108% for cells without powder [88]

32 Mexican 
PreHispanic The efficiency using Mexican pre-Hispanic dyes is reported as 0.24% [89]

33 Areca catechu The energy conversion rate is high, with an efficiency of 0.38%. The fill factor is 62.9% [90]
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4.	 SUMMARY OF NATURAL DYES FOR DYE-SENSITIZED 
SOLAR CELL

As the literature depicts, many researchers are working on 
enhancing the efficiency of natural dyes. The conversion effi-
ciency of the dye-sensitized solar cell is dependent on many 
other vital parameters [52].

It has been observed that, out of all plant pigments, anthocy-
anins are preferred because their absorption spectrum range is 
broader, i.e. gamut of red to purple [91]. Secondly, the energy 
absorption is enhanced in the case of chlorophyll, as it has two 
absorptive peaks. Another plant pigment like betalin also has 
a good absorption range.

The best results with natural organic dyes come from spinach 
with 4% efficiency [53, 72, 75, 79], red beetroot 2.71% [78, 92] 
and red cabbage 2.9% [93, 94]. These natural entities are rich in 
anthocyanin, betalains, and chlorophyll, or any such strong light 
sensitizers. Currently, numerous organic dyes have been used to 
produce output as perfect as the inorganic dyes, but the result 
seems to falter and would not achieve the maximum laid down 
by the inorganic dyes [95]. Thence, a fair amount of research 
work is being inputted in determining the perfect environment 
for the lasting and efficient functioning of the solar cells [96].

4.1. Problems associated with natural dyes
For enhancing the stability and efficiency of the dye-sensitized 
solar cell, many researchers are working rigorously. But still, 
the efficiency of natural dyes is less as compared to the human-
made dyes, for dye-sensitized solar cells [66, 97‒100]. Some 
problems with natural dyes are listed here:
●	 In the presence of sunlight, the dye causes instability issues 

in the dye-sensitized solar cells. The human-made dye such 
as ruthenium has less degradation in the presence of sunlight, 
so it shows more excellent stability.

●	 In dye-sensitized solar cells, there is a problem of poor 
absorption in the solar spectrum, especially in the red part. 
Due to poor absorption, a limited current is generated, which 
limits the output efficiency of the cell. Natural dyes are poor 
absorber than human-made dyes.

●	 If inhaled, ingested, or absorbed through the skin, natural 
dyes can cause harmful effects, for example, logwood has 
further ingredients such as haematein and hematoxylin can 
cause irritation or inflammation.

●	 Availability of raw material may depend on season or spe-
cies, which can be problematic for researchers, whereas 
human-made dye can be produced in the laboratory through-
out the year.

5.	 CONCLUSION
Over the past few years blackberries, blueberry, hibiscus and 
spinach-based dyes were frequently used. The high anthocy-
anin content of blackberry and blueberry and high chlorophyll 
concentration in spinach is a reason for their frequent usage. 
It should also be noted that a significant amount of research 
has been put into improving the efficiencies of red beetroot, 
red cabbage, and red turnip—this review article emphasizes 
natural dye and performance parameters of the dye-sensitized 
solar cell. The vital point for an efficient dye-sensitized solar 
cell is cost-effectiveness, abundance, and its environmentally 
friendly nature. Further research on natural dyes for increas-
ing the stability and efficiency of dye-sensitized solar cells is 
encouraged. An alternative to increase stability and absorption 
range is hybrid dyes, which is a mixture of natural and human-
made dye, such as mixing of chlorophyll dye and anthocyanin 
dye boosts up the efficiency. The sensitizer should have high 
life and high extinction coefficient, which proves sufficient 
binding between semiconductor and sensitizer. The hydroxyl 
and carboxyl groups should be present in the dye. The addition 
of graphene with natural dye extract may enhance the efficiency 
of nature dye-based dye-sensitized solar cell.
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