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Abstract: Statistical moments have been used in different applications as in shape analysis of 
object, pattern recognition, edge detection texture analysis etc. The idea is to use the moments as 
features of high level for surface matching. The essential goal of surface matching is to determine 
transformation parameters between two surfaces generated in TIN or DEM without identical 
points. Statistical moments are considered as features that are applied to solve that goal, One of the 
main problems with using statistical moments for surface matching and for other applications is 
a very expensive computation time. To overcome this difficulty many algorithms have already been 
proposed. 

New approach of efficient computation of inertial moments for surface matching is proposed in 
the paper. The approach is based on Green's theorem that allows for transforming double integral 
into a line integral. In the consequence computation time of inertial moments of a single TIN-model 
(triangle) is reduced by a factor 4 as compared with time consumed by the use of direct method of 
double integral. The direct computation using line integral, that does not involve any 
approximation, ensures preservation of the accuracy of computed moments. 
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1. Introduction 

Object shape representation is an important aspect of image processing, pattern recognition 
and computer vision. The moment of an image object or a function of image moment are 
often involved in the description of an object shape due to the invariance to geometrical 
transformation. It means that moment invariants are independent of scaling, rotation and 
translation of transformation. Therefore, the moments are widely used in image analysis 
and image processing. 

The most common statistical moments are geometrical ones that include inertial and 
axial moments (Gesu and Planichka, 2001; Planichka and Zaremba, 2003; Luong, 2004); 
central moments, normalized central moments and moment invariants (Li and Shen, 1991; 
Spiliotis and Mertzios, 1998; Yang and Albergtsen, 1996). Other moments are Zemike and 
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Legendre ones that are based on the theory of orthogonal polynomials (Kochanzad and 
Hong, 1990; Liao and Pawlak, 1996). 

In most applications the order of moments does not exceed 3 that corresponds to 
geometrical properties of object. For a binary image (gray bi-level image) the geometrical 
moments of the zero order represent total object area; two moments of the first-order 
determine a location of its centroid; moments of the second-order are used to determine the 
features such as the principal axes of an object (its orientation angle), radius of a gyration 
circle and object ellipse (the lengths of the semi-major and semi-minor axes) (Yang and 
Albergtsen, 1996). Moments of higher order are used to identify the corner and approximate 
digitized curves (Shu et al., 2002). 

Some fields of geometrical moment applications are presented in the paper. To 
recognize a pattern the geometrical moments have efficiently been used in shape analysis 
basing on the area, centroid, orientation and screwed object (Yang and Albergtsen, 1996). 
Geometrical moments are also able to identify edges with sub-pixel accuracy (Ghosal and 
Mehrotra, 1993), to be applied in texture analysis (Tuceryan, 1994), for polygonal 
approximation of digitized curves (Shu et al., 2002; Singer, 1993) and for fitting the 
intensity surface (Li and Shen, 1994). Other new approaches have been utilized to the curve 
skeletonization (Zou et al., 2001). Moment invariants independent of transformation are 
used to scene matching and object classification task (Wei and Lozzi, 1993) as well as to 
surface matching (Luong, 2004 ). 

The literature provides many approaches of computation applicable only to binary 
images (images have only two gray levels: background and object) (Dai et al., 1992; 
Flusser, 2000; Jiang and Bunke, 1991; Spiliotis and Mertzios, 1998; Zhou et al., 2002). 
Some approaches of moment computation are implemented both for gray level images and 
binary ones (Philips, 1993; Planichka and Zaremba, 2003; Yang and Albergtsen, 1996). 

A common problem of using moments for different purposes is that the computation time 
(complexity) using direct method of double integral is very expensive. Many fast algorithms 
have been proposed to efficiently perform the computation of the moments. In order to speed up 
the moment computation some techniques have been outlined in the paper (Yang and 
Albergtsen, 1996). The details of those fast algorithms can be comprehensively found in many 
publications (Dai et al., 1992; Gesu and Planichka, 2001; Jiang and Bunke, 1991; Li and Shen, 
1991; Philips, 1993; Planichka and Zaremba, 2003; Zhou et al., 2002; Li, 1993). 

The goal considered refers to the use of moment invariants for surface matching. Two 
sets of points of the same scene, obtained with different sensors represent two surfaces in 
two local systems without identical points. The goal of surface matching is to find 
transformation parameters between two local systems. The use of inertial moments has 
been proposed for that purpose (Luong, 2004). At first, the two sets have to be generated in 
the TIN or DEM. The imageries of the TIN and DEM can be treated as binary images. The 
inertial moments of each single triangle in the TIN or a single square in DEM in OXYplane 
can be written in the general form (Luong, 2004) 

µp,q = ff kXPYqf(X,Y)dXdY 
s 

(1) 
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where p, q = 1, 2, 3, ... ,N are the orders of a moment, f(X, Y) is the density distribution 
function of a triangle or a square, Sis the surface patch of a triangle or a square, k is the 
element of area of a TIN-triangle or a DEM-square. 

The paper presents the choice of a fast algorithm using Green's theorem to compute 
efficiently the moments given by (1) for surface matching. 

2. Computing inertial moments of generated TIN using Green's theorem 

On the basis of (1) and (Luong, 2004) the inertial moments of a single triangle in TIN can be 
written as follows 

µp,q = ky ff XP yąf(X, Y) dXd y
I!.

(2) 

where ky= ✓a2 + b2 + 1; a, bare taken from the equation of a triangle: Z= aX + b Y+ c;
and T = 1, 2, 3, is the index of a triangle. 

For the case of a binary image: 

f(X,Y) = f
0
1 V X,Y E 11.1 otherwise 

(3) 

the equation (2) becomes 

µp,q = t, ff XP yą dXd y
I!.

(4) 

If the moments with p, q = O, 1, 2 are computed directly from (4) the computation is quite 
time consuming (Luong, 2004). For example, calculation of µ2_0 or µ0_2 requires 10 
additions and 46 multiplications while to calculate µ 1, 1 as many as 20 additions and 91 
multiplications are needed (Table 1). 

To speed up the computation of moments theµ p,ą defined by ( 4) can be transformed into 
the line integral by using Green's theorem 

(5) 

where li!. is the boundary of a triangle (Fig. 1). 
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Fig. I. The triangle 123 in OXY plane a); 
the line integral along (1-3) side parallel to OY vertical axis will be equal to Ob) 

Considering Fig. 1 the equation (5) can be written in the form 

Suppose that the equation of a straight line can be written as 

where 

and dY = m;idX; i.l = 1, 2, 3; i :t; j 

The equation (6) becomes now 

(7) 

For p, q = O, 1, 2 the six moments can now be computed using the following formulae 

1 ~ ? ? µo,o = -kT L,; mii(Xj - X) 
2 i=l, j=2 

i=2, j=3 
i=3, j= I 

(8) 
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1 ""' 3 3 µ1,0=-kr ~ m;j(Xj-X) 
6 i=I, j=2 

i=2, j=3 
i=3, )= I 

(9) 

µ1,1 = ~kr L m~j(X~ - X~)+ ~kr_ L mijbij(X~ - X~) 
8 i=l,j=2 6 1=l,1=2 

i=2. j=3 i=2, j=3 
i=3,j=I i=3,j=I 

(10) 

(11) 

1 ""' 4 4 µ2,0 = -kr ~ mij(X1 - X) 12 i=l, j=2 
i=2, j=3 
i=3, j= 1 

(12) 

1 ""' 3 4 4 2 k ""' 2 b (X 3 _ X 3) µ0_2=-kr ~ mij(Xj-X)+- r_ ~ m;j ij j ; 
4 i=I, j=2 3 !=I, 1=2 

i=2, j=3 i=2, j=3 
i=3, j= I i=3, j= I 

1 ""' b2 2 2 + - kr ~ m ii ij (X i - X ) 
2 i=l,j=2 

i=2, j=3 
i=3, j= I 

(13) 

T ab I e I. Comparison of number of arithmetic operations required in the methods considered 

Luong, 2004 IO IO 20 40 46 46 91 183 

Green's theorem 17 5 11 33 23 16 14 53 

Numbers of arithmetic operations required to compute µ2,0, µ0,2, µ 1,1 using formulae 
(11), (12), (13) are given in Table l. From data in Table 1 and from the formulae (8)- (13) 
one could state that 

• the number of multiplications will theoretically be reduced by a factor 4 when using 
Green's theorem, 

• the formulae used to compute six moments are simpler and more efficient than the 
ones of Luong (2004). 

When one side of a triangle is parallel to O Y axis the value of the moment calculated 
along that side will be equal to O. In such case each sum from (8) - (13) consists of two 
components only, instead of three. 

In the same way inertial moments of a triangle in OXZ and OYZ planes could be 
computed. 
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3. Computing inertial moments of generated DEM 

Basing on (1) and on the bilinear function generating DEM and with/(X, Y) = l the inertial 
moments of a square in DEM have the following form 

M,,.ą = ff kn (X, Y) X" Y9 dXdY
s

(14) 

where kn(X, Y) = (i~r + (~~r + 1, 

Z= A0 +AI X+ A2 Y + A 3XY - the bilinear function for DEM, 
D = 1, 2, 3, ... - the index of a DEM element (a square). 

The function under the double integral operator (14) is non-linear. Computation of the 
inertial moments of a single DEM element using direct formula (14) is more difficult. To 
overcome the difficulties the moments of a DEM element should be computed the same way 
as the one used in case of a TIN model. The single element (1234) of DEM in each plane 
OXY, OXZ, DYZ is thus divided into four independent triangles 123,341,124,234 (Fig. 2). 
The moments of each quadrilateral M p,« in every plane can be computed as a sum of four 
moments of four independent triangles whose values are determined with (8) - (13) 

(15) 

y z z

4 3 4•\- - 3 

a) b) ~/21 c) 
/,('x 
/",' i: 

2 \2 
L L 

X X 
X1=X, X,=X, X,=X, X2= X, 

'---~---~--y 
Y,= Y, Y,= Y2 

Fig. 2. Projections of a single element of DEM in each plane OXY (a), OXZ (b), OYZ (c). 

The projection of an element of DEM onto OXY plane is considered the square with the 
side lengths L (Fig. 2a). Their moments are easily computed because the sides along X-axis 
(1-2 and 4-3) have the same direction orientation mu With respect to height differences 
between the node points of DEM elements, their projections onto OXZ and OYZ planes will 
have the shape of trapezium with two bottom sides (1-4 and 2-3 in Fig. 2b; 1-2 and 3-4 in 
Fig. 2c) parallel to OZ axis. For each of them the moments are calculated using ( 15) and (8) 
- (13). 
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Next, it could be noted from Fig. 2 that in each plane OXY, OXZ, OYZ the projections of 
each DEM element have two sides parallel to OYand OZ axis. The values of the moment 
calculated using line integrals along the sides parallel to the axes are equal to O. In that case 
the moments of a single triangle determined by using (8)- (13) will correspond to the sum 
of only two line integrals computed along two remaining sides. 

4. Some attentions to moment-based surface matching 

For surface matching the moment invariants are used because they are invariant to 
translation, rotation and change of scale of geometrical transformation. Moment invariants 
(Yang and Albergtsen, 1996) were built as a combination ofnormalized central moments of 
the second and third order. Seven moment invariants I are expressed as follows 

I, = 'T/2.0 + 1]0,2;

12 = Cf/2.0 + f/0.2)2 + 4f/L; 

/3 = (f/3,0 - 3f/1,2)2 + (3f/2,1 - f/0,3)2; 

/4 = ('T/3,0 + 'T/1,2)2 + ('T/2,1 + f/0_3)2; 

ls= (f/3,0 - f/1,2)(f/3,o + f/1,2)[(f/3,o + f/1,2)2 - 3(f/2,1 + f/0,3)2] + 

+ (3f/2.1 - f/o,3)(f/2.1 + f/o,3)[3(f/3,o + f/1,2)2- ('T/2,1 + f/0,3)2]; 

16 = (f/2,0 - f/o,2)[(f/3,o + 171,2)2 - ('T/2,1 + 7]o,3)2] + 47]1,1(1]0,3 + 1]1,2)('T/2,1 + 1]0,3);

11 = ('T/2,1 - 170,3)(f/3,o +1]1,2)[(f/3,o + 171,2)2 - 3(f/2,1 + f/0,3)2] + 

+ (37]1,2 - f/3,o)('T/2,1 + f/o,3)[3(f/3,o + f/1.2>2 - (1]2,1 + f/o,3)2] 

(16) 

The f/µ.ą moments are the normalized central moments and they are calculated as 
follows 

µp,q
f/p,q = (U )Y o.o 

where (17) 

The central moments are 

µp_q = ff (X- XcY(Y- Yc)qdXdY
5 

(18) 

where Xe= m 1_011110_0; Ye= 1110, 1 /1110,0 represents the centroid of the object, m 1_0, 1110,1 are two 
moments of the first order that locate the centroid, mo.o is the total object area. 

For surface matching the coordinates of centroid of TIN-triangle or DEM-square are 
directly calculated from coordinates of their node points. There is no need to compute 
mo.o, m 1,0, mo,,.
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When X,= Ye= O then equation (18) becomes (1). It represents the geometrical moment
of an object.

For computation of central moments using (18), first of all, two polynomials under the
integral operator are divided into components using the identities as follows

where (p) p!
k = k!(p _ k)!;k= 1,2,3, ...

The same procedure can be applied for (Y - Yet- Then after multiplying two
polynomials the Green's theorem can be applied for transforming double integral into a line
integral. Next the computation will be followed using (6).

The goal of surface matching is to determine transformation parameters between two
surfaces in two local systems of the same scene without identical points. The process of
surface matching will be performed in 3 individual planes OXY, OXZ, OYZusing computed
moments of a single TIN (triangle) or DEM (square) model. The details of processing of
surface matching have been presented in Luong (2004).

5. Conclusions 

The paper presents an approach of efficient computation of the moments of generated TIN
and DEM for surface matching.

To overcome a disadvantage of expensive computation time of moments with
preserving the accuracy, the approach using Green's theorem is proposed. Basing on
Green's theorem the double integral can be transformed into a line integral. In the proposed
method the number of multiplications is theoretically by a factor 4 smaller than in the direct
method. The derived formulae used to moment computation of a TIN-model are simpler
than the previous formulae obtained directly from double integral. It allows for better
organizing calculations on the computer. When a surface is in a generated DEM, the single
elements of DEM have to be divided into four independent triangles. The moments of each
element of DEM can thus be computed simply using the formulae introduced for
a TIN-model.

The increased efficiency of moment computation accelerates all the processing of
surface matching. With using the proposed method the accuracy of computed moments will
correspond to the one obtained with rigorous double integral formulae, since their
computation process does not involve any approximation. Both methods of computations
provide surface matching with the same accuracy.
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Streszczenie 

W ostatnich latach, integracja zbiorów danych punktów reprezentujących powierzchnie tego samego terenu za
pomocą techniki dopasowania (matching techniques jest jednym z głównych kierunków badań. Ogromne zasoby
danych mogą być otrzymane różnymi technologami. Zastosowanie momentów jako cechy wysokiego poziomu
w celu dopasowania powierzchni jest rozwiązaniem globalnym, które pozwala na znalezienie parametrów
transformacji pomiędzy tymi układami bez wstępnych warunków. Dokładność i szybkość wyznaczanych
parametrów transformacji zależą od dokładności i szybkości wyznaczanych momentów.

Niniejsza praca przedstawia efektywną metodę obliczenia momentów bezwładności sieci TIN i DEM dla
dopasowania powierzchni. Metoda ta opiera się o twierdzenie Greena, które pozwala na przekształcenie
momentów bezwładności obliczonych z podwójnej całki na całkę liniową wyznaczaną wzdłuż trzech boków
trójkątów w TIN i w DEM. Zastosowana metoda daje możliwość 4-krotnego zmniejszenia liczby operacji
mnożenia. Wyprowadzone wzory umożliwiające obliczenie momentów w oparciu o twierdzenie Greena mają
prostą postać. Pozwala to na efektywne wykonanie obliczeń na komputerze. Przy zastosowaniu zaproponowanej
metody dokładność obliczonych momentów będzie zachowana, bo proces obliczenia jest bezpośredni i nie
wymaga stosowania aproksymacji.


