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Abstract: A multiple regression model approach was developed to estimate buffering indices, as well as biogas and 
methane productions in an upflow anaerobic sludge blanket (UASB) reactor treating coffee wet wastewater. Five input 
variables measured (pH, alkalinity, outlet VFA concentration, and total and soluble COD removal) were selected to 
develop the best models to identify their importance on methanation. Optimal regression models were selected based 
on four statistical performance criteria, viz. Mallow’s Cp statistic (Cp), Akaike information criterion (AIC), Hannan– 
Quinn criterion (HQC), and Schwarz–Bayesian information criterion (SBIC). The performance of the models selected 
were assessed through several descriptive statistics such as measure of goodness-of-fit test (coefficient of multiple 
determination, R2; adjusted coefficient of multiple determination, Adj-R2; standard error of estimation, SEE; and 
Durbin–Watson statistic, DWS), and statistics on the prediction errors (mean squared error, MSE; mean absolute error, 
MAE; mean absolute percentage error, MAPE; mean error, ME and mean percentage error, MPE). The estimated model 
reveals that buffering indices are strongly influenced by three variables (volatile fatty acids (VFA) concentration, 
soluble COD removal, and alkalinity); while, pH, VFA concentration and total COD removal were the most significant 
independent variables in biogas and methane production. The developed equation models obtained in this study, could 
be a powerful tool to predict the functionability and stability for the UASB system.  
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INTRODUCTION 

Few crops receive as much attention as coffee in relation to the 
environment. The fact of growing in tropical and subtropical 
areas; together with being a North-South product, from the 
consumption and production point of view; being associated with 
occasions of frequent consumption; as well as being a drink 
related to social interaction, make coffee a product that generates 
interest and attention. Since high standards of environmental 
sustainability are continually demanded for its production, coffee 
processing is one of the activities that needs to adapt its 

production technologies to reduce environmental impact [SANTOS 

et al. 2009].  
Only 20% of the coffee fruit is usable and the remaining 80% 

is waste [HOUBRON, RUSTRIAN 2003]. Two types of processing exist: 
dry and wet. In Central America, the most widely used method of 
processing is wet, despite requiring the consumption of large 
amounts of water [GUARDIA-PUEBLA et al. 2013]. Coffee industry is 
considered one of the most polluting, with serious negative 
environmental impacts. This activity generates a considerable 
increase in organic pollution (2.4–21.9 kg COD ∙ dm–3), and in 
suspended matter (1.0–10.0 kg TSS ∙ dm–3); as well as generation 
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of unpleasant odors, coloration and loss of visual quality, if the 
wastes are not treated properly [GUARDIA-PUEBLA et al. 2014a, b; 
2016; JUNG et al. 2012]. In addition, coffee wastewater has low pH 
values (<4); therefore, a severe water pollution occurs during 
harvest seasons, which affects the availability of water for human, 
industrial and recreational use [SELVAMURUGAN et al. 2010]. 

To increase the stability and to improve the performance of 
the anaerobic reactors, it is necessary that the microorganisms be 
retained within the reactor. A technology capable of achieving 
these two issues is the upflow anaerobic sludge blanket (UASB) 
reactor. The success of the UASB system is based on the 
formation of an anaerobic granular sludge at the bottom of the 
reactor which determines the speed of the start-up stage and the 
efficiency of the anaerobic treatment [CHONG et al. 2012]. 

The operation of the anaerobic digestion (AD) process is 
complex and highly dependent on the configurations of the 
reactors. In addition, these latter can vary significantly according 
to the different characteristics of the influent and operational 
conditions. For that reason, the system must be constantly 
monitored and controlled due to possible incidental instable 
conditions. Particularly, biogas or methane production rates, and 
buffering indices, can provide an indication of the overall 
anaerobic biomass activity in the process [TURKDOGAN-AYDINOL, 
YETILMEZSOY 2010]. Since the AD process is very vulnerable to 
fluctuations in the input characteristics of the influent (rates of 
organic and hydraulic load, pH and presence of toxic organic 
compounds), biogas and methane productions, and buffering 
indices, largely depend on the conditions applied to the reactor. 
Therefore, the complicated interrelations that exist between the 
different factors involved in the AD process can be explained with 
statistical prediction models in which only those key variables are 
considered.  

Regression analysis is a statistical process to estimate the 
relationships between variables and is widely used for prediction 
and forecasting [MONTGOMERY 2013]. It includes many techniques 
for the modelling and analysis of various variables, when the 
focus is on the relationship between a dependent variable and one 
or more independent (or predictor) variables. In all cases, the 
objective is to estimate a function of the independent variables 
called the regression function.  

Many techniques have been developed to carry out 
regression analysis (linear and nonlinear approaches). Therefore, 
several estimation models have been developed to describe biogas 
or methane production from UASB reactors treating organic 
wastes. For example, BARAMPOUTI et al. [2005] performed 
a dynamic mathematical model for the prediction of biogas 
production from a potato wastewater treatment plant in an UASB 
reactor. The technique used included regression analysis by 
residuals. For the model construction, the authors used seventeen 
parameters including the following: wastewater flow rate, reactor 
temperature, pH, total and soluble influent chemical oxygen 
demand (COD), volatile fatty acids (VFA), and alkalinity. 
YETILMEZSOY and SAPCI-ZENGIN [2009] used a three-layer artificial 
neural network (ANN) model to predict COD removal efficiency 
of UASB reactors treating real cotton textile wastewater diluted 
with domestic wastewater. In this study, nine input parameters, 
such as hydraulic retention time (HRT), pH, COD influent 
concentration, operating temperature, alkalinity, VFA concentra-
tion, dilution ratio, organic loading rate (OLR), and total 
suspended solids (TSS) concentration, were used as dependent 

variables. SINGH et al. [2010] assessed the performance of an 
UASB reactor of a wastewater treatment plant with linear and 
nonlinear models. In their research, partial least squares 
regression, multivariate polynomial regression and artificial 
neural networks modelling methods were applied to predict the 
levels of biochemical oxygen demand (BOD) and COD in the 
effluent, while using four input variables (BOD, COD, ammonia-
cal nitrogen (NH4–N) and total Kjeldahl nitrogen (TKN)) 
measured weekly in the influent (untreated) and effluent (treated) 
wastewater. TURKDOGAN-AYDINOL and YETILMEZSOY [2010] used 
a multiple inputs and multiple outputs fuzzy-logic-based model 
to predict biogas and methane production rates in a pilot scale 90 
L mesophilic UASB reactor treating molasses wastewater. Five 
input variables such as OLR, total COD removal rate, influent 
alkalinity, influent pH and effluent pH were fuzzified by the use 
of an artificial intelligence-based approach. YETILMEZSOY [2012] 
used an integrated multi-objective optimization approach, within 
the framework of nonlinear regression based on kinetic modelling 
and desirability function, to optimize an UASB reactor treating 
poultry manure wastewater. The author developed a regression 
analysis based on an estimation model for biogas generated using 
several independent parameters, such as pH, electrical conduc-
tivity, total dissolved solids, chemical oxygen demand, alkalinity, 
chloride, total Kjeldahl nitrogen, ammonia, and total phosphorus. 
In order to develop the best model, taking into account the 
highest estimation performance, eight model equations including 
different input parameter combinations were analysed. RAMESH 

et al. [2015] developed a multiple linear model in which COD 
removal was the dependent variable, and different parameters, 
such as HRT, OLR, sludge loading rate, influent pH, effluent pH, 
inlet and outlet VFA concentration, inlet and outlet volatile 
suspended solids and total solids (VSS/TS) ratio, and influent and 
effluent COD, were considered as independent variables. The 
results of the step-wise regression method applied revealed that 
only four parameters (influent COD, effluent COD, volatile solids 
and total solids (VS/TS) ratio and influent pH) were significant on 
COD removal. Finally, ANTWI et al. [2017] worked with artificial 
neural networks and multiple nonlinear regression models to 
estimate biogas and methane yield in an UASB reactor processing 
potato starch wastewater. In this research, the coefficient of 
multiple determination (R2) of the artificial neural networks 
reached 98.72% and 97.93%, while the one of the multiple 
nonlinear regression models attained values of 93.9% and 91.08%, 
for both biogas and methane yield, respectively. 

In most of the already mentioned research work, the 
selection of the best prediction model was done following some 
statistical performance criterion: R2, adjusted coefficient of 
multiple determination (Adj-R2), residual average (RA), sum 
of squared residuals (SSR), standard error of the estimate (), and 
p-value. However, to ensure that the best regression model be 
obtained, other criteria must also be taken into account.  

Consequently, different model evaluation criteria, like 
Akaike information criterion (AIC), Hannan–Quinn criterion 
(HQC), and Schwarz-Bayesian information criterion (SBIC), are 
increasingly being used to address model selection problems. 
However, very little is understood about the relative efficiency of 
these information theoretic criteria when modelling UASB 
systems. Another important example is the Mallow Cp statistic, 
which is one of the most used methods to compare all possible 
regressions and select the best parameter estimate. A researcher 
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can use Mallow Cp statistic to obtain a measure of bias in 
a reduced model. Such parameter can be extremely useful for 
evaluating the robustness of the reduced model obtained by the 
different stepwise regression procedures. 

In this work, an attempt to model the performance of an 
UASB system for the treatment of wet coffee wastewater has been 
made, using different multiple regression models in which the 
values measured of different reactor variables have been included. 

Considering the above mentioned facts, the specific 
objectives of this study were: (1) to develop a rapid and efficient 
methodology able to define operational parameters that influence 
the performance of an UASB reactor; (2) to identify essential 
process variables capable of making reliable predictions by means 
of various descriptive statistics; and (3) to verify the validity of the 
multiple regression model by several additional testing data sets 
to make reliable simulations and predictions. Five independent 
variables (pH, alkalinity, outlet FVA concentration, and total and 
soluble COD removal) obtained from the UASB process treating 
coffee wet wastewater were selected based on multiple linear 
regression analysis approach. The anaerobic process parameters 
were identified to optimize the performance of the UASB system. 

MATERIAL AND METHODS 

SUMMARY OF PREVIOUS STUDIES 

The experimental methodology, which includes obtaining the wet 
coffee wastewater and the seed sludge, as well as its characteristics, 
the configuration and the start-up stage of the UASB reactor, the 
chemical reagents used, the description of the equipment, the 
chemical analyses performed, the gas collection system and other 
technical details of operation, have been documented in previous 
papers [GUARDIA-PUEBLA et al. 2013; 2014a, b]. 

ALKALINITY INDICES MEASUREMENT 

Obtaining alkalinity indices (alpha index (AI), buffer index (BI) 
and BI-AI ratio) was based on the determination of alkalinity due 
to VFA compounds (V2), the alkalinity of bicarbonates (V1) and 
total alkalinity (V1 + V2). A 25 cm3 sample was taken and titrated 
with 0.02 N H2SO4 to a pH value of 5.75. The volume of acid 
consumed was considered as V1. Then, the titration continued 
until a pH value of 4.3 was obtained. This other volume of acid 
consumed was considered as V2. Total alkalinity was determined 
as the sum of V1 and V2. 

The AI index was considered as the relationship between 
bicarbonate alkalinity and total alkalinity according to Equation (1). 

AI ¼ V1= V1 þ V2ð Þ ð1Þ

The BI index expressed the relationship between the alkalinity of 
VFA compounds and total alkalinity (Eq. 2). 

BI ¼ V2= V1 þ V2ð Þ ð2Þ

Likewise, the BI-AI ratio was considered as the relation between 
VFA compounds alkalinity and bicarbonate alkalinity (Eq. 3). 

BI � AI ratio ¼ V2=V1 ð3Þ

RESEARCH METHODOLOGY 

Regression model selection. A multiple regression approach was 
used to fit a linear model for each of the dependent variables: 
biogas production, methane production and alkalinity indices 
(AI, BI, and BI-AI) based on the independent variables: pH, 
alkalinity, VFA concentration, and total and soluble COD 
removal. One of the assumptions of the classical regression 
analysis is that the model used has to be correctly specified. To 
determine the quality of the prediction model it is necessary to 
take into account some general guidelines: i) moderation or 
simplicity; ii) identifiability; iii) goodness of fit; iv) theoretical 
consistency; and v) predictive power. The specification error was 
assessed assuming that one or more of the following mistakes 
were not committed: i) omit a relevant variable; ii) include an 
unnecessary variable; iii) adopt a wrong functional form; iv) 
incorrect specification of the stochastic disturbance term; and v) 
measurement errors [RAMESH et al. 2015]. The consequences of 
including irrelevant variables in a model are, fortunately, not 
serious. However, when a legitimate variable of the model is 
omitted the consequences are very serious: the coefficients of the 
variables are inconsistent and violate the usual hypothesis testing 
procedures. Therefore, the selection of the optimal regression 
model was based on information about the goodness of the 
adjustments provided by four statistical parameters. 

The mean squared error (MSE) characterizes the estimate of 
the variance of the deviations from the fitted model (Eq. 4), given by: 

MSEmodel ¼

Pn
i¼1 yi � ŷið Þ

2

n � p � 1
ð4Þ

where: is the observed value; is the predicted value by the fitted 
model, n is the number of observations and p is the number of 
independent variables included in the model. 

The Mallow’s Cp statistic was calculated according to 
Equation (5): 

Cp ¼

Pn
i¼1 yi � ŷið Þ

2

MSE fullð Þ
� nþ 2p ð5Þ

where: MSE(full) is the mean squared error of the model when all 
independent variables are included on it.  

If a fitted model has little bias, Cp should be close to p-value. 
It is desirable to have a small Cp as long as the value is not much 
greater than p. 

The AIC (Eq. 6) was calculated from:  

AIC ¼ 2 ln RMSEð Þ þ
2p

n
ð6Þ

where: RMSE is the root mean squared error during the 
estimation period, p is the number of estimated coefficients in 
the fitted model, and n is the sample size used to fit the model. 

Notice that AIC is a function of the variance of the model 
residuals, penalized by the number of estimated parameters. In 
general, the model that minimizes the mean square error without 
using too many coefficients in relation to the amount of data 
available will be selected. 

The Hannan–Quinn criterion (HQC) (Eq. 7) was calculated 
from: 
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HQC ¼ 2 ln RMSEð Þ þ
2p ln ln nð Þð Þ

n
ð7Þ

This criterion uses a different penalty for the number of 
estimated parameters. The Schwarz-Bayesian information criter-
ion (SBIC) (Eq. 8) was calculated from: 

SBIC ¼ 2 ln RMSEð Þ þ
p ln nð Þ

n
ð8Þ

Again, the penalty for the number of estimated parameters 
is different from that of the other criteria. 

Multiple regression approach. The general form of the 
multiple regression approach used in this study was developed 
from measurements recorded at equally spaced time intervals. 
The dependent variables (AI, BI, BI-AI index, biogas production 
and methane production) were denoted by y, the input variables 
by x1, x2, …, xk (pH, alkalinity, outlet FVA concentration, and 
total and soluble COD removal), and a random error term was 
added (Eq. 9). Coefficients β0, β1, βk, which were usually 
unknown, were subsequently estimated by the regression analysis. 

y ¼ �0 þ �1x1 þ �2x2 þ � � � þ �kxk þ "̂ ð9Þ

where: x1, x2, and xk are the represented terms for the quantitative 
predictors, and k is the number of independent regressors 
excluding the constant term. 

For the purpose of modelling, several assumptions were 
considered: linearity of the models, constant variance and 
homoscedasticity, non-autocorrelation, explicative variables are 
stochastic, non-multicollinearity, normal distribution of the 
errors, and specification bias does not exist. 

Statistics for the fitted model and residual analysis. To 
evaluate the performance of the model and the goodness of the fit, 
several descriptive statistical parameters were selected: R2 (Eq. 10), 
Adj-R2 (Eq. 11), standard error of estimation (Eq. 12), and 
Durbin–Watson statistic (DWS) (Eq. 13).  

R2 ¼

Pn
i¼1 yi � ŷið Þ

2

Pn
i¼1 yi � �yið Þ

2
ð10Þ

Adj-R2 ¼
n� 1
n� p� 1ð Þ

Pn

i¼1
yi � ŷið Þ

2

Pn

i¼1
yi � �yið Þ

2

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
MSE
p

ð12Þ

DWS ¼

Pn� 1
i¼1 eiþ1 � eið Þ

2

Pn
i¼1 e

2
ð13Þ

where: yi denotes the observed value, is the arithmetic mean of the 
observed data, and ei ¼ yi � ŷi is the residual of the response 
variable for an individual i. 

On the other hand, the goodness of the adjustments 
obtained with the prediction models were evaluated with four 
statistical criteria that were applied to the prediction errors 
(Eq. 14). These criteria are defined in the Eqs. (15)–(19): mean 
squared error (MSE), mean absolute error (MAE), mean absolute 
percentage error (MAPE), mean error (ME), and mean percen-
tage error (MPE). 

ei ¼ yi � ŷi ð14Þ

MSE ¼

Pn
i¼1 ei

2

n � 1
ð15Þ

MAE ¼

Pn
i¼1 eij j

n
ð16Þ

MAPE ¼

100
Pn

i¼1
eij j

yi

n
ð17Þ

ME ¼

Pn
i¼1 ei

n
ð18Þ

MPE ¼

100
Pn

i¼1
ei

yi

n
ð19Þ

RESULTS AND DISCUSSION 

UASB PROCESS 

The UASB was operated for a period of about seventy days at 
different hydraulic retention time (HRT is 21.5 h, 18.5 h, and 15.5 
h) after the start-up stage of the anaerobic system was completed. 
The operation began with an HRT of 21.5 h and OLR of 3.6 kg 
COD·m–3·d–1; subsequently, HRTs were step wisely shortened to 
18,5 h and 15.5 h with increases OLRs of 3.8 kg COD·m–3·d–1 and 
4.1 kg COD·m–3·d–1, respectively. Despite the different organic 
and hydraulic loading conditions, the UASB system successfully 
treated the coffee wet wastewater [GUARDIA-PUEBLA et al. 2014b].  

Table 1 shows the summary of the descriptive statistics of all 
the variables taken in the study, which were classified into 
independent variables and dependent variables. The mean and 
standard deviation for each variable was calculated for 45 
observations. Total and soluble COD removal remained in the 
range of 53.5–81.2% and 62.5–85.6% and standard deviations of 
8.0% and 6.5%, and coefficient of variation between 8.35 and 
11.52%, respectively; alkalinity had a mean of 1685.87 mg 
CaCO3·dm–3 and standard deviation of 305.72 mg CaCO3·dm–3; 
the pH was in the range of 6.53–8.38; and the total VFA 
concentration was 222.28 ± 16.64 mg·dm–3. Meanwhile, the 
alkalinity indices showed the lowest coefficients of variation 
(between 3.5 and 6.68%), and the biogas production and methane 
concentration had values of 0.254 ± 0.012 dm3·d–3 and 
51.3 ± 7.27% and coefficients of variation of 4.84% and 14.18%, 
respectively. 

REGRESSION MODELS SELECTION  
FOR THE EXPERIMENTAL DATA  

Mallow’s Cp statistic is a powerful technique for model selection in 
regression. Mallow’s Cp is an objective measure of the degree of 
bias in a reduced model and it is extremely useful in measuring the 
level of bias of the parameter estimates, βk. Essentially, researchers 
should select the reduced model with the highest Adj-R2, Lowest 
MSE, and lowest Mallow’s Cp value. These selection criteria are 
highly appropriate when researchers are interested in data 
description and parameters estimation [ZUCCARO 1992]. 

The AIC handle a trade-off between the goodness-of-fit and 
the complexity of the model, i.e. it provides a relative appraisal of 
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the information loss when a certain model is used to estimate 
data. However, the main disadvantage of this method is that it 
does not provide a numerical value that allows determining the 
quality of the model. The model that best fits a series of data is the 
one that results with the lowest AIC value. This parameter, 
therefore, not only provides information on the goodness of the 
fit, but also avoids an over-adjustment when choosing the model 
that minimizes the loss of information [WANG, LIU 2006]. 

Similarly, the SBIC also enables the selection of models 
between a finite set of models, due to that probability function is 
very narrowly related with the information-theoretic criteria AIC. 
Both SBIC and AIC methods introduce a penalization term for 
the number of parameters in the model; thereby, the lowest value 
implies a minor number of explanatory variables, a better 
adjustment, or both. Nevertheless, the penalization term of the 
SBIC is greater than the AIC method. Essentially, the two 
penalized criteria are based on two different model selection 
approaches: AIC is aimed to find the best adjustment model to 
the data, meanwhile SBIC is designed to identify the true model 
[ACQUAH 2010].  

The HQC is another criterion for model selection and is an 
alternative to the other AIC and SBIC criteria. The method allows 
obtaining the measure of goodness of fit from a statistical model. 
In addition, it is a model selection criterion among a finite set of 
models. When the numerical values of the dependent variable are 
identical, in order to compare all the estimates, it is used to 
compare the estimated models [SHITTU, ASEMOTA 2009]. 

In this study of regression, twenty-two mathematical models 
were solved and automatically sorted according to the four 
information-theoretic criteria considered. Nevertheless, with 
representative motives only the more promissory eight models 
will be showed. Table 2 shows the comparison among the eight 
models selected according to Cp, AIC, HQC, and SBIC. In general, 
the models selected have a single structure; the number of 
variables is between 2 and 3 that guarantees the simplicity of the 
relations. The prediction models for buffering indices were 
defined as a function of four operating independent variables 
(pH, alkalinity, VFA concentration, and soluble COD removal); 

while, the models for the prediction of biogas production and 
methane yield were established as a function of three process 
variables (pH, VFA concentration, and total COD removal). For 
the selection of the best prediction models the lowest values of Cp 

were considered; on the contrary, the highest values of AIC, HQC 
and SBIC were considered as the best criteria. 

GOODNESS-OF-FIT TEST AND RESIDUAL ANALYSIS 

The goodness-of-fit of a statistical model describes the way that 
a data set is adjusted. In general, the measures of goodness-of-fit 
summarize the discrepancy between the observed values and the 
expected values in a model. The best adjustment models obtained 
according to the dependent variables studied, defined as 
a function of the independent variables, are shown in Table 3. 
Also, the performance criteria parameters (R2, Adj-R2, and DWS) 
calculated, obtained from that models, are summarized in Table 3. 
The performances of the buffering indices are given as follow: 
AI = f(VFAconc, SCODrem), BI = f(pH, SCODrem), and BI-AI ratio 
= f(alk, VFAconc, SCODrem); meanwhile, both parameters that 
characterize the quality of gas are a function of two variables: 
methane prod. = f(VFAconc, TCODrem), and biogas prod. = f(pH, 
TCODrem). High values of R2 and Adj-R2 were obtained by all 
models (interval of variation for R2 and Adj-R2 and were between 
0.854–0.928 and 0.848–0.925, respectively), except for biogas 
production where the values were more modest (0.658 and 0.651, 
respectively). 

Commonly, the goodness-of-fit is measured through the R2, 
which shows the variation proportion of the dependent variables 
explained by the independent variables. Nevertheless, a better 
practice is to use Adj-R2 due to, sometimes, R2 would be able to 
provide a too much optimist result of the regression. For both 
parameters, values will be between 0 and 1; closer to 1, the 
adjustment will be better.  

High degrees of precision and a good deal of the reliability 
of the models were indicated by low values of SEE (Tab. 3). 
Standard error of estimation indicates the standard deviation of 
y values regarding to the estimated regression line, which is 

© 2021. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB). 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/) 

Table 1. Descriptive statistics 

Variables Average Standard 
deviation 

Coefficient of 
variation (%) Minimum Maximum Range 

Independent variables 

pH 7.55 0.63 8.35 6.53 8.38 1.85 

Alkalinity 1685.87 305.72 18.13 1204.0 2208.0 1004.0 

VFA concentration 222.28 16.64 7.49 185.08 260.28 75.20 

Total COD removal 69.52 8.0 11.52 53.5 81.2 27.7 

Soluble COD removal 77.31 6.5 8.35 62.5 85.6 23.14 

Dependent variables 

AI 0.49 0.017 3.5 0.45 0.53 0.08 

BI 0.50 0.020 4.08 0.47 0.54 0.07 

BI-AI ratio 1.00 0.067 6.68 0.89 1.13 0.24 

Biogas production 0.254 0.012 4.84 0.237 0.285 0.048 

Methane concentration 51.33 7.27 14.18 40.0 61.0 21.0  

Source: own study. 
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frequently used as a measure that summarizes the goodness-of-fit 
of a model.  

The best-known test for detecting serial correlation is the 
DWS. Currently, it is common to include reports of the DWS in 
the regression analysis, together with the R2, Adj-R2, t-statistic, 
among others. As a rule, there is no first order correlation when 
the DWS value is close to a value 2, either positive or negative. 
However, if the value closes to 0, the presence of a perfect positive 
correlation in the residuals is indicated. On the contrary, being 

a negative correlation is evidenced when a value close to 4 is 
obtained. 

In all models, the DWS was found in the non-autocorrela-
tion region among the residues; so, multiple linear regression 
models are appropriate. On the other hand, statistical models 
with the lowest p-value were considered significant. Probability 
values below 0.05 specify that the model is significant at 95% of 
probability. Based on the p-values given in Table 3, all 
mathematical models were properly selected according to the 
statistical performance criteria considered. The regression 
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Table 2. Comparison of eight mathematical models according to the selection of the statistical performance criterion considered 

Depended 
variables 

Statistical 
criterion 

Independent variables included in the model 

ACD ACE AE BCE C CD CE E 

AI index 

Cp 56.72 4.25 128.50 4.20 518.24 56.39 2.30* 183.53 

AIC –9.65 –10.48 –9.06 –10.48 –8.01 –9.71 –10.55* –8.92 

HQC –9.59 –10.42 –9.01 –10.42 –7.98 –9.67 –10.50* –8.89 

SBIC –9.49 –10.32 –8.94 –10.32 –7.93 –9.59 –10.43* –8.84 

BI index 

Cp 4.75 2.05* 2.33 3.12 47.95 8.45 7.02 5.12 

AIC –8.68 –8.75 –8.76* –8.72 –8.06 –8.62 –8.65 –8.72 

HQC –8.62 –8.69 –8.71* –8.66 –8.03 –8.57 –8.61 –8.69 

SBIC –8.52 –8.59 –8.64* –8.56 –7.98 –8.50 –8.53 –8.64 

BI-AI ratio 

Cp 6.73 2.35 4.19 2.05* 51.98 8.67 5.19 4.32 

AIC –6.23 –6.33 –6.31 –6.34* –5.61 –6.21 –6.29 –6.33 

HQC –6.17 –6.27 –6.26 –6.28 –5.58 –6.16 –6.24 –6.30* 

SBIC –6.07 –6.17 –6.19 –6.18 –5.53 –6.09 –6.17 –6.25* 

Biogas  
production 

Cp 3.93 5.46 47.02 5.30 4.68 2.01* 3.46 56.71 

AIC –9.66 –9.62 –8.99 –9.63 –9.69 –9.73* –9.69 –8.93 

HQC –9.60 –9.56 –8.94 –9.57 –9.66 –9.68* –9.65 –8.90 

SBIC –9.50 –9.46 –8.87 –9.47 –9.61* –9.61 –9.57 –8.85 

Methane 
production 

Cp 2.15* 17.02 29.18 19.48 186.92 7.02 28.62 32.00 

AIC –10.12* –9.79 –9.63 –9.75 –8.49 –10.02 –9.64 –9.63 

HQC –10.06* –9.73 –9.58 –9.69 –8.46 –9.98 –9.59 –9.60 

SBIC –9.95* –9.63 –9.51 –9.59 –8.41 –9.90 –9.52 –9.55  

Explanations: A = pH, B is alkalinity, C = VFA concentration, D = total COD removal, and E = soluble COD removal; the asterisk indicates the best 
value selected for each statistical criterion. 
Source: own study.  

Table 3. Summary of multiple regression results for the best-fit models 

Model 
Descriptive statistics 

R2 Adj-R2 SEE DWS p-value 

AI = 0.000895VFAconc + 0.003821SCODrem 0.928 0.925 0.004 2.099 0.0000 

BI = 0.037804pH + 0.002709SCODrem 0.920 0.863 0.057 2.314 0.0000 

BI-AI ratio = 0.0000705alk + 0.001148VFAconc+ 
0.008103SCODrem 

0.881 0.843 0.038 2.511 0.0000 

Biogas prod. = 0.000907VFAconc+ 0.000758TCODrem 0.658 0.651 0.007 2.116 0.0000 

Methane prod. = 0.001512pH + 0.001709TCODrem 0.854 0.848 0.006 2.074 0.0000  

Explanations: R2 = coefficient of multiple determination, Adj-R2 = adjusted coefficient of multiple determination, SEE = standard error of estimation, 
DWS = Durbin–Watson statistic, and p-value <0.05 was considered as significant. 
Source: own elaboration. 
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analysis showed a small deviation in the prediction of the models 
obtained. The check of the adequacy of the models showed a good 
correlation between the observed and predicted values, shown in 
Figure 1. The cluster point around the diagonal line indicates 
a good fit of models. 

It is a common practice to use the residues to check the 
assumptions of the model, since the residues will have a normal 
distribution with zero mean and constant variance if the 
assumptions are met. To evaluate the model performances, 
descriptive statistic and residual analysis are given in Tables 4 and 
5, respectively. When the fit is better, the residuals will be smaller 
and, consequently, statistics on the prediction errors will be small. 

Good models are those that meet more adjustment quality 
criteria. However, in circumstances where a criterion is not met, 
the model obtained will not necessarily be unfeasible from 

a practical point of view. If the normality in the residuals is not 
satisfied, that assumption will not be decisive, that is, the 
methodology is more or less robust to the lack of normality. 
Another aspect to consider is that under conditions of similar 
quality when adjusting models, the simplest model should always 
be preferred. 

BUFFERING INDEX MODELLING 

In this research, pH, alkalinity, VFA concentration, and SCOD 
removal values were selected as variable inputs to model the 
buffering indices performances (AI, BI, and BI-AI ratio). The 
correlation for buffering indices between testing outputs and the 
experimental data is depicted in Figure 2. 

© 2021. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB). 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/) 

Fig. 1. Check of the adequacy of the models 
showing the correlation between experimental and 
predicted values: a) AI index; b) BI index; c) BI-AI 
index; d) biogas production; e) methane produc-
tion; source: own study 

Table 4. Summary of descriptive statistic 

Statistic Calculation 

Results 

AI  BI  BI-AI ratio  biogas  
production  

methane  
production  

observed predicted observed predicted observed predicted observed predicted observed predicted 

s2

Pn
i¼1 xi � �xð Þ

2
.

n � 1 0.0003 0.0003 0.0004 0.0005 0.0039 0.0070 0.0002 0.0001 0.0002 0.0002 

SD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 xi � �xð Þ
2
.

n � 1

r

0.0175 0.0174 0.0192 0.0212 0.0621 0.0834 0.0123 0.0118 0.0157 0.0158 

CV
s=�x100 3.54% 3.52% 3.83% 4.24% 6.24% 8.40% 4.85% 4.66% 12.09% 12.12% 

s
x

s
� ffiffiffi
n
p

0.0026 0.0026 0.0029 0.0032 0.0093 0.0124 0.0018 0.0018 0.0023 0.0024  

Explanations: s2 = variance, SD = standard deviation, CV = coefficient of variation,  = standard error. 
Source: own study. 
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The respective close ranges of AI, BI, and BI-AI ratio were 
between 0.45 and 0.53, 0.47 and 0.54, and between 0.89 and 1.13 
for observed values; and between 0.45 and 0.53, 0.44 and between 
0.55 and 0.80 for predicted values, respectively, which suggest 
a good-fit of the selected models to the dataset. Moreover, the 
similar average values closer to the unity obtained indicate 
a satisfactory prediction for the UASB system: observed values of 
0.49, 0.5, 1.0, and predicted values of 0.49, 0.50, 0.99 for AI, BI, 
BI-AI index values, respectively. 

Figure 3 shows the visual agreements between experimental 
data and predicted values of buffering index. The highest AI 
values were observed at the initial reactor operation associated 
with the start-up stage of the system. Nevertheless, when the 
stability conditions were reached, the values were in the range of 
0.45–0.51, although these values were obtained by evaluating the 
maximum OLR. 

In addition, the highest BI-AI ratio values were obtained in 
the initial stage of operation; however, when stability in the 
system was reached, the values decreased. Although literature 
recommends that BI-AI index be less than 0.3, that value is 
associated with the treatment of domestic wastewater [LAHAV, 
MORGAN 2004]. PÉREZ and TORRES [2008] reached an adequate 
range of BI-AI ratio between 0.44 and 0.55 treating wastewater 
from the cassava starch process in an anaerobic filter. The authors 
concluded that COD removal efficiency and biogas production 
were closely related to the variation of the buffering indices. 

PREDICTION OF BIOGAS AND METHANE PRODUCTION 

The values measured and predicted by the biogas production and 
methane yield models obtained were plotted in Figure 4. A close 
pattern of variation among the measured and predicted values for 
both variables is evident suggesting a good predictive capability of 
the selected models. Biogas increased along with the increasing 
indicating a positive correlation. The variation range of biogas 
production observed was between 0.23–0.28 dm3∙d–1, while 
a variation range of 0.22–0.28 dm3∙d–1 was obtained by the 
prediction model. Furthermore, biogas production was in the 
range of 0.10–0.16 for both observed and predicted values. 
Methane fractions were maintained in the range of 45–58%. 

PREDICTION OF BIOGAS AND METHANE PRODUCTION 

BARAMPOUTI et al. [2005] correlated biogas production using the 
multiple regression technique and residue analysis. The authors 
determined three mathematical models by correlating biogas 

production with several independent variables. The most strongly 
correlated variables were wastewater flow rate, total influent COD 
concentration, and soluble influent and effluent COD concentra-
tion. However, although the three models had similar capacities 
to estimate the biogas production rate, the ability to predict and 
control the values of the dependent variable was different. 
YETILMEZSOY and SAKAR [2008] obtained a prediction model to 
quantify the biogas production rate. Experimental results 
obtained from three different operating phases were performed 
through nonlinear regression analysis. Nonlinear modelling study 
showed that HRT and influent COD concentration were found to 
be main operational variables, which directly affect biogas 
production rate and COD removal efficiency. On the other hand, 
TURKDOGAN-AYDINOL and YETILMEZSOY [2010] defined two models 
that predict the performance of biogas and methane production 
rates as a function of five process variables. The best-fit-models 
for biogas production or methane production were based on five 
different model components (OLR, volumetric TCOD removal 
rate, alkalinity, inlet and outlet pH). The non-linear regression 
variable results showed that volumetric TCOD removal rate and 
effluent pH had more importance than other model components 
in prediction of both biogas and methane production rates. 
A multiple regression model for the estimation of biogas 
production from landfill leachate treatment system using leachate 
characteristics was developed by AKKAYA et al. [2015]. In that 
research, the model obtained was based on six different 
independent variables (COD, conductivity, alkalinity, pH, total 
phosphorus, and total Kjeldahl nitrogen). The developed multiple 
regression model shows sufficient prediction performance, for 
that reason the authors concluded that the developed equation 
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Table 5. Residual analysis 

Variable MSE MAE MAPE ME MPE 

AI 0.2∙10–4 0.0039 0.7988 0.1∙10–4 –0.0044 

BI 0.0032 0.0501 10.0 0.0042 0.4306 

BI-AI ratio 0.0014 0.0313 3.1172 0.2∙10–4 –0.1262 

Biogas production 0.5∙10–4 0.0050 1.9853 0.8∙10–4 –0.0193 

Methane production 6.9598 2.0777 4.1861 –0.1349 –0.8104  

Explanations: MSE = mean squared error, MAE = mean absolute error, MAPE = mean absolute percentage error, ME = mean error, and MPE = mean 
percentage error. 
Source: own elaboration. 

Fig. 2. Box-and-whiskers plot; source: own study 

236 Dynamic modelling of an anaerobic reactor treating coffee wet wastewater via multiple regression model 



model is a good biogas production predictor tool. Also, ANTWI 

et al. [2017] estimated the biogas production and methane yield 
from an UASB reactor with the multiple nonlinear regression 
approach. Statistical analysis of the regression input variables 
revealed that COD, VFA concentration, and HRT variables were 
the most significant ones in the prediction of biogas production 
and methane yield.  

The small deviations (between 0.48% and 6.0%) in the 
validation of the five models achieved indicated the suitability of 
the proposed integrated approach and suggested that this 
methodology could be successfully adapted to the design and 
operation of a mesophilic UASB reactor treating coffee wet 
wastewater. The correlation between the measured and the model 
predicted values of the dependent variable is considered an 
important parameter to indicate the predictive ability of the 
model. In terms of prediction, all regression models in this study 
reach high levels of predictive capacity. The amount of variance 
explained exceeds 84% and the maximum expected error rate is 

12%, except for biogas production. In context, the results support 
the validation of the models and provide levels of safety in the 
regression models as the basis for developing operation and 
control strategies for anaerobic reactors. 

CONCLUSIONS 

The behaviour of the buffering indices, and the biogas and 
methane productions generated in an UASB reactor treating 
coffee wet wastewater were evaluated and modelled. Data 
obtained were used to predict the behaviour of the system 
without using biomodelation mechanisms, which involve a great 
degree of complexity and insecurity. Both total and soluble COD 
removal efficiencies observed were higher than 75% and 80%, 
respectively, under various organic and hydraulic loading 
conditions. Alkalinity indices showed a small variation range 
between 0.45 – 0.54, and the biogas production and methane 
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Fig. 3. The correlations between testing outputs and the experimental 
data for buffering index with relative standard deviation (SD); source: 
own study 

Fig. 4. A head to head comparison of performances for observed and predicted values of biogas production and methane production with relative 
standard deviation (SD); source: own study 
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production have values of 0.254 ± 0.012 dm3 ∙ d-1 and 
51.3 ± 7.27%, respectively. The multiple regression model 
approach modelling methodology for the construction of 
dynamic models proved to be very satisfactory. The selection of 
the best prediction model requires the development of novel 
approaches in order to improve the reliability of the reactor 
performance. The optimal regression model selection was based 
on the selection of four statistical performance criteria: Mallow’s 
Cp statistic, AIC, HQC, and SBIC. Proper selection of regression 
models requires the use of low Cp values and higher AIC, HQC, 
and SBIC values. The predictive abilities of the models obtained 
were evaluated through various goodness-of-fit tests and residual 
analysis. In terms of prediction, all the regression models achieve 
high levels of predictive accuracy, with the interval of variation 
for R2 and Adj-R2 of 0.854 – 0.928, and 0.848 – 0.925, 
respectively, except for biogas production which had more 
modest values (0.658 y 0.651, respectively). In terms of 
explanation, the estimated model reveals that buffering indices 
are strongly influenced by three variables, viz. Volatile fatty acids 
(VFA) concentration, soluble chemical oxygen demand (COD) 
removal, and alkalinity. Meanwhile, VFA concentration and total 
COD removal were the most significant independent variables in 
biogas production. On the other hand, regression variable results 
showed that pH and total COD removal were found to be more 
important for methane production. Choosing the most appro-
priate model representing the extension of the experimental data 
can help to recognize possible technical faults and to reduce 
operating costs of plants in the planning stage. As a main result 
from this work, the developed equation models obtained are 
a good predictor tool for the upflow anaerobic sludge blanket 
(UASB) reactor treating coffee wet wastewater. 
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