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Abstract

The work contains discussions and simulation analyses of the expectation
formation processes, taking account of the data revisions. In particular, it
contains results of simulations examining statistical properties of the rationality
tests and extrapolation processes, with particular focus on their behaviour in
the case of short samples and data with measurement errors. The conclusions
indicate that the rationality test based on the optimal regression and the
proposed adaptive and accelerating tests are the most efficient and flexible.
The tests showcasing best properties have been applied to a new set of
macroeconomic forecasts for Poland. The results show that there are no
grounds for rejecting the hypothesis on the rationality of forecasts derived
from the National Bank of Poland (NBP) and the Organisation for Economic
Cooperation and Development; however, this property was rejected for the
European Commission. What is more, the comparative analysis indicates that
only the national institution (NBP) may potentially aim the final readings of
the macroeconomic data as the forecasting target. Finally, it transpires that the
extrapolative models, albeit simple and intuitively interpreted, generally fail to
correctly explain the forecast formation processes regarding the Polish economy.
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1 Introduction
One of the key questions in the context of expectations in the theory of economy is the
process of forming them by various agents. Many economic models assume the impact
of expectations on the ongoing decisions. However, accounting for the expectations
within the models requires making assumptions concerning relevant expectation
formation processes that should be appropriately calibrated to the empirical data.
The main revolution in the theory of expectations took place following the publication
of an article by Muth (1961), who defined the term of rational expectations. It
forms a basis for the neoclassical economy and for the resultant Lucas critique
that puts the impact of agent’s expectations on their decisions at the centre of
interest. A broader discussion of the place of rational expectations in the history
of economy and their evolution can be found in Coibion et al. (2018). Formally,
the Muth’s hypothesis of rational expectations rests on an assumption that agents
build expectations that are coherent with the actual economic processes and make
use of the entire set of information available. Their critique mainly concerns the
lack of a realistic assumptions concerning the availability of information as well as
possibilities (an assumption of knowing and understanding of the entire economic
system) and economic justification (omitting costs) of information processing.
Abundant models repealing these assumptions have been proposed, especially the
ones based on information rigidities: sticky information, noisy information, or rational
inattention models (they are more thoroughly discussed in, among others, Coibion and
Gorodnichenko, 2015). Extrapolative expectations that assume a linear scheme of
learning based on the past data and errors provide a simplified framework. Notably,
the model of adaptive expectations based on the error correction mechanism has
become a subject of numerous analyses and modifications summarised in Evans and
Honkapohja (2012). In particular, the extrapolative models are not informationally
efficient, and their errors can be serially correlated – for discussion see e.g. Pesaran
and Weale (2006) or Pesaran (1985).
Testability of the expectation models depends on the existence of relevant data to
which they could be compared. Specifically, the expectations are non-observable,
but the surveys offer some form of approximation. A discussion concerning the
observability of expectations and the quality of survey data can be found, for example,
in Tomczyk (2011). The literature offers abundant analyses of survey expectations
from households, enterprises, and professional forecasters. The recent overview of
analyses based on survey expectations can be found in Clements (2019). The most
easily available and comprehensive datasets are often maintained by the global central
banks. Specifically in Poland, National Bank of Poland runs several surveys among
consumers, enterprises and professional forecasters, which provide predictions of the
main economic variables. Series of articles by Łyziak and Stanisławska concern
detailed analysis of these data, especially focused on the inflation expectations,
overview of which can be found in their recent work Łyziak and Sheng (2018) or
Baranowski et al. (2021).
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Testing the expectation formation models requires not only some data on the
expectations themselves, but also on the past readings of forecasted variables and
a more broadly perceived state of the economy. Defining the entire set of information
available is not trivial though, since most macroeconomic variables are revised largely
and multiple times. Almost until the beginning of the 21st century data revisions
were mostly ignored - econometricians assumed that they are small and random, and
therefore do not affect modelling, inference or forecasting (Croushore, 2011). Only
since the release of the first real-time data for the United States by the Federal Reserve
Bank of Philadelphia, many studies have been published falsifying the previously
adopted simplifying assumptions. Specifically, data revisions are important in several
aspects of forecasting. Firstly, they directly affect the forecasting process - data
selection, model fit, possibly also expert adjustment. Secondly, the revisions may
impact discrepancies observed among forecasts from various sources and increase their
perceived uncertainty. Thirdly, for revised data it is unclear which reading to use to
define the forecast error, and therefore revisions affect the entire forecast quality
evaluation and conclusions about the expectation formation process in general, which
is of specific interest in this paper. Recent overview of the related literature can be
found in Clements and Galvão (2019) and detailed analysis of the Polish data revisions
in Ziembińska (2017) and Ziembińska (2021).
The extrapolative expectation formation processes present a simplified learning model
and are dependent only on the past readings and expectations. Therefore, the set of
information de facto contains only a variable subject to an analysis, which allows quite
straightforward analysis of the impact of revisions on this process. This is one of the
objectives of this work. As for the rationality models - they are well-documented
in the empirical literature, but their small-sample properties have not been well
scrutinised, especially in the context of data with measurement errors resulting from,
for example, the abovementioned revisions. Patton and Timmermann (2012) have
analysed the properties of rationality tests for a sample of 100 observations in a series
of Monte Carlo experiments. Additionally, they took account of several structures
of measurement errors found in the data. To the best of my knowledge, similar
analyses regarding the extrapolative tests do not exist. In this work I would like to
shed light on the understanding and statistical properties of expectation formation
tests in the context of data with measurement errors. I am conducting a series of
Monte Carlo experiments for different scenarios concerning the revision process and
non-optimality of generated forecasts through extending the ones proposed by Patton
and Timmermann (2012) by scenarios with non-zero mean measurement error and a
shorter sample of 50 observations. When defining the forms of a measurement error
analysed as part of the simulation, I am referring to the scale of revisions of the Polish
macroeconomic data analysed in Ziembińska (2017). Next, I am testing the results on
a set of forecasts of Polish macroeconomic variables prepared by forecasters from large
research centres. I have analysed predictions of basic variables concerning national
accounts, inflation, and unemployment, derived from the European Commission (EC),
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Organisation for Economic Cooperation and Development (OECD) and the National
Bank of Poland (NBP).
In the following sections I will discuss rational and extrapolative expectation models
and methods of their testing; afterwards, I will present the Monte Carlo experiment
studying the properties of the discussed tests. Finally, I will analyse whether the
forecasts formulated for the Polish economy are rational and consistent with the
extrapolative models. The results and the ensuing discussion aim at providing
understanding of the impact of data revision on the considered phenomena.

2 Rational expectations
The existence and form of mathematical representation of the expectation formation
processes depend on the understanding of uncertainty in the decision-making process,
for example, on distinguishing between actual uncertainty and the risk taken. In the
case of expectations formed as point forecasts against the mean square loss function, it
is usually assumed that they represent an expected value of the subjective conditional
distribution with respect to a set of public and private information available to
a given agent. Such a mathematical representation takes account of uncertainty
resulting from disagreements in information sets and subjective convictions. This
model includes a restrictive version of rational expectations originally formulated
by Muth (1961), which assumes that private information has no impact on the
expectations and each agent is familiar with an actual “objective” distribution that
describes a real model of the economy. A consequence of these assumptions is two
properties of expectation errors: they have zero mean and are serially uncorrelated.
A broad analysis of mathematical properties of rational expectations can be found,
for example, in Pesaran and Weale (2006). However, the literature does not provide
lots of discussion on the relation between rational expectations and the quality of
data used to evaluate the condition of the economy. In line with the assumptions of
the Muth’s model and in the context of revised data, the process of forming rational
expectations should also consider the revision process as an element of the real model
of the economy. However, taking account of the revisions in the process of testing
rational expectations is less unambiguous, for example as regards forecasts from survey
data.
The most popular method of rationality testing is a regression proposed by Mincer
(1969):

Yt = a+ bŶt|t−h + εt (1)

and a test based on it (hereinafter: the MZ Test):

H0 :
{ a = 0
b = 1
∀t1 6= t2 : Cov(et1 , et2) = 0,

(2)

P. Ziembińska
CEJEME 13: 405-453 (2021)

408



Quality of Tests . . .

where Yt denotes a forecasted variable for the reference period t, Ŷt|t−h is its forecast
prepared in period t − h and et = Yt − Ŷt|t−h denotes the error. I will apply
the εt designation for regression residuals throughout my work. a and b denote
model coefficients; similarly - I will apply initial alphabet letters to denote models’
coefficients.
Another method for forecasts with numerous horizons was proposed by Patton and
Timmermann (2012). They demonstrated that the condition of rationality, when
assuming the mean square loss function, implies specific restrictions for the higher
moments. Let us denote subsequent times when forecasts Ŷt|t−hi of the variable Yt
are formed as 1 ≤ h1 < ... < hk ≤ t and the corresponding errors as et|t−hi . Patton
and Timmermann (2012) prove that under condition of rationality and mean square
loss function (i.e., when Ŷt|t−hi = E(Yt|It−hi)), the following conditions occur for the
stationary process:

i) Test 1: E(e2
t|t−(h+1)) ≤ E(e2

t|t−h) - of the increasing mean square error (MSE);

ii) Test 2: E(Ŷt|t−(h+1)Yt) ≥ E(Ŷt|t−hYt) - of the decreasing covariance;

iii) Test 3: V ar(Ŷt|t−h − Ŷt|t−(h+1)) ≤ 2Cov(Yt(Ŷt|t−h − Ŷt|t−(h+1))) - covariance
restriction;

iv) Test 4: E(Ŷ 2
t|t−(h+1)) ≥ E(Ŷ 2

t|t−h) - of the decreasing mean squared forecast
(MSF);

v) Test 5: E((Ŷt|t−(h+1) − Ŷt|1)2) ≤ E((Ŷt|t−h − Ŷt|1)2) - of the increasing mean
square forecast revision (MSFR).

Based on these conditions, the authors developed a set of regression tests of
multidimensional inequalities. Under the null hypothesis the testing statistics are a
weighted average of the chi-square statistics (more details can be found in the original
article). Finally, the authors also propose a unidimensional optimal test based on the
following regression:

Yt = a+ bŶt|1 +
k∑
i=1

ci(Ŷt|t−h − Ŷt|t−(h+1)) + εt. (3)

The rationality hypothesis is then equivalent to the following conditions: a = 0,
b = 1,∀i : ci = 1 (hereinafter: the PT Test). The last approach offers several
advantages. First, in their Monte Carlo experiments the authors demonstrate high
power and good size of this test. Second, which is significant in the context of the real-
time data, the PT Test offers a possibility of replacing the realized value of a variable
with its short-term forecast (assuming the optimality of forecasts). The authors point
out that this enhances the small-sample properties of the test, especially if we consider
the data with significant measurement errors or if the predictive power of the model
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is low. The lack of necessity to define the actual reading of the variable enables us to
examine the rationality of forecasts independently of the revision process.
As regards forecasts with many horizons, I am also checking an alternative version of
the MZ Test:

et|si+1 = a+ b(Ŷt|t−h − Ŷt|t−(h+1)) + εt. (4)

A standard rationality test is then equivalent to the hypothesis H0 : a = 0,
b = 0,∀t1 6= t2 : Cov(εt1 , εt2) = 0 (Test CG). Coibion and Gorodnichenko (2015)
proved that b > 0 leads to rejection of a rationality assumption. More complex tests
proposed by the authors allow verifying numerous possible models lying behind the
lack of rationality, for example of information rigidity, asymmetrical loss function or
reputational smoothing of forecasts (cf. for example Bordalo et al., 2020).
In the case when the Yt variable is subject to revisions, the presented rationality
tests may bring about different conclusions, depending on which reading we use.
Notably, it might be the revisions that constitute an element of the information set,
the consideration of which decides on the optimality of a forecast. In rationality
tests we use both the realization of a variable, which can be subject to revisions,
and its forecasts, at the formation of which the available information sets may have
significantly depended on the revision. Taking the data revision process into account
may in general be based on a broader analysis of dependence of the forecast errors on
the revision or, in a simplified version, on the comparative analysis of test results for
different readings.

3 Extrapolative expectations
The concept of rational expectations is often rejected in empirical studies and
criticised for its unrealistic assumptions. Therefore, other expectation formation
models have been developed with different degrees of conservatism of assumptions
concerning the information set. The class of extrapolative models defined by a linear
function of past known readings has been analysed particularly frequently (cf. Pesaran
and Weale, 2006):

Ŷ extrapolativet|t−h = a+
∞∑
i=0

bi,sYt−h−i. (5)

The linear model is certainly a simplification of the actual expectation formation
process, but it provides better understanding of the mechanism behind the learning
process. If the data are subject to revision, the understanding of the extrapolative
model becomes less intuitive due to the ambiguity of the Yt−h−i variable. In practice,
it is not always possible to maintain a coherent time series, which would be desirable
from the theoretical point of view. Therefore revisions introduce inconsistencies in
the theoretical models. In practice, the latest available data are used most frequently,
which means that the degree to which the revision has been considered varies at
different moments. Usually the largely revised data are present at the end of a
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sample, whereas the first readings are found mainly at the beginning. The question
of how a forecaster treats the revisions and whether they take account of their impact
on the subsequent readings of a variable is of key importance for the extrapolative
expectations. Let us note that the discussed approach is different than that of Pesaran
(1985), where a measurement error is discussed in the context of expectations instead
of data that take account of errors in the explained variable. In this section I will
provide several examples of extrapolative models, the accompanying intuition, and
possible methods of dealing with revisions on that basis. To the best of my knowledge,
these models have not been discussed in the context of the real-time data (Arnold
(2012) can be treated as an exception). A more detailed overview of the literature
can be found in Pesaran (1985). Pesaran and Weale (2006) also introduced some
combined models, e.g., an adaptive-regressive (supplementing the adaptive model
with autoregressive component), or the adaptive-acceleration.

List of extrapolative models:

i) M1: a naïve model adopts the latest reading available as a prediction of the
next one:

Ŷt|t−h = Yt−h. (6)

ii) M2: a first-degree extrapolative model assumes a certain rate of change of a
variable. It adjusts the latest reading by a certain fraction α ∈ (−1, 1) of the
latest observed increment:

Ŷt|t−h = Yt−h + α(Yt−h − Yt−2h). (7)

For α = 0 this equation is reduced to the naïve scheme. A positive α coefficient
means that a forecaster expects that the existing trends will remain, while the
opposite sign indicates an expectation of trend reversal. We are assuming here
that the forecasts are formed at regular intervals, i.e., every h period, but it is
easy to extend the proposed models to arbitrarily chosen intervals. It should
be noted that all adjustments of forecasts in this model (for longer horizons)
depend only on the newly published data (and potentially on the revision, too).
If a forecast aims at correctly prognosing the initial reading, then only a
publication for the next reference period will change the prediction value.
However, if it aims at the final reading, then subsequent rounds of revisions
may influence the adjustment of both Yt−h and Yt−2h (especially for forecasts
with a short horizon, i.e., when h frequency is high).

iii) M3: the acceleration model assumes that a change in expectations takes place
only if a change is observed in data themselves:

Ŷt|t−h = Ŷt−h|t−2h + α(Yt−h − Yt−2h), (8)

where Ŷt−h|t−2h = E(Yt−h|It−2h). Similar as in the previous model, all revisions
depend on the new data and potentially on the revision.
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iv) M4: the first-degree adaptive model assumes that a forecaster adapts their
previous forecast by a certain fraction of the latest error made:

Ŷt|t−h = Ŷt−h|t−2h + α(Yt−h − Ŷt−h|t−2h). (9)

In this case the revisions may have an impact on the observed forecast error,
therefore the question of how the forecaster defines their objective is of key
significance here. If an error is adapted at each subsequent reading of a variable,
a similar thing will happen to the forecast.

v) M5: the mean reversion model assumes that the process will only slightly deviate
from the long-term steady state. Mathematically, the forecast is a weighted
average of the historical mean and the latest value observed:

Ŷt|t−h = αY + βYt−h. (10)

Two questions emerge as regards this model in the context of data revisions:
what value should be adopted as a long-term mean and whether the last observed
reading is updated when the data are revised. If yes, then for the sake of
coherence we should assume that the average is calculated also based on the
latest readings available.

We can define tests of specific extrapolative models based on the following regressions:

i) Test 1: Ŷt|t−h − Yt−h = const+ εt

ii) Test 2: Ŷt|t−h − Yt−h = const+ α(Yt−h − Yt−2h) + εt

iii) Test 3: Ŷt|t−h − Ŷt−h|t−2h = const+ α(Yt−h − Yt−2h) + εt

iv) Test 4: Ŷt|t−h − Ŷt−h|t−2h = const+ α(Yt−h − Ŷt−h|t−2h) + εt

v) Test 5: Ŷt|t−h = const+ αY + βYt−h + εt

and test two conditions:

Hbias
0 : const = 0, (11)

Hmodel
0 : α̂ = α, (12)

where α̂ is an ordinary least squares (OLS) estimate of α (analogical denotations are
applied to other parameters of the models). The last hypothesis is different for the
M5 scheme:

Hmodel,M5
0 :

{
α̂ = α

β̂ = 1− α. (13)

Let us note that testing the abovementioned hypotheses makes sense mainly if we
have any a priori knowledge concerning the actual expectation formation process and

P. Ziembińska
CEJEME 13: 405-453 (2021)

412



Quality of Tests . . .

not if we search for its form. If we are not familiar with this process, which happens
always when we analyse forecast data from an unknown model at our disposal, it is
more adequate to use a more general test form. Pesaran (1985) postulates to estimate
extrapolative models as distributed lag models, which yields consistent estimates even
if the data are burdened with measurement errors. Let us consider the following
regression:

Test 6: Ŷt|t−h = const+ βŶt−h|t−2h + γ1Yt−h + γ2Yt−2h + εt. (14)

Due to short series, I am not going beyond the second lag. The literature indicates
that the lags of higher order are usually not statistically significant and, beyond doubt,
hard to interpret. For example, while analysing the inflation expectations, Pesaran
(1985) indicates that “except for one period lagged rate higher order lags do not exert
any statistically significant influence on inflation expectations.”
I am testing both this general specification and tests corresponding to the specific
models. Let us pay attention to the fact that the discussed regressions do not have
a time structure, since they aggregate forecasts with different horizons. Therefore,
we should not assume any structure of the residuals (as in Pesaran, 1985). The
M1:M5 models are embedded in the model described by Equation (14). Below, I am
defining restrictions imposed on the parameters of Equation (14) corresponding to the
specific models. Note that, apart from M5, the intercept represents the forecast bias
in all models – I am considering it in the estimation, and I am separately testing the
const = 0 hypothesis. The bias may, for example, correspond to excessive optimism
or pessimism displayed by a forecaster, who may formulate expectations in line with
the extrapolative scheme and then adjust them based on behavioural factors.

Hnaive
0 :

{
β = γ2 = 0
γ1 = 1;

(15)

Hextra
0 :

{
β = 0
γ1 = 1− γ2;

(16)

Hacc
0 :

{
β = 1
γ1 = −γ2;

(17)

Hadapt
0 :

{
β = 1− γ1

γ2 = 0;
(18)

Hrev
0 :

{
β = γ2 = 0
const
x = γ1 + 1.

(19)

The above discussion aims at indicating problems with interpretation regarding basic
extrapolative models in a situation where the data are subject to revision. The
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objective behind testing these models is to explain how a forecaster understands the
data generating process and how they learn from the data and own errors.

4 The Monte Carlo experiment
In this part I would like to shed light on statistical properties of all expectation
tests discussed above. I am conducting a series of Monte Carlo experiments for
different scenarios concerning the revision process and non-optimality of generated
forecasts, at the same time extending the ones proposed by Patton and Timmermann
(2012) by scenarios with non-zero mean measurement error and a shorter sample of
50 observations. First, I will characterise the experiment to discuss the power and
size of defined tests. The test power is a probability of not making type II error:
adopting the null hypothesis when it is in fact false. The test size is a probability of
making type I error, namely rejecting the true null hypothesis.

4.1 Structure
Following the standards adopted in the literature and structure of the models fitted
to the Polish real-time data (cf. Ziembińska, 2017), I am generating the main process
as Yt ∼ AR(1):

Yt = µY + φ(Yt−1 − µY ) + εt, for: t = 1, ..., T ; εt ∼ N(0, 1). (20)

I am taking into consideration the following specifications: µ = 0.75, φ = {−0.5, 0.5}
and T = {50, 100, 1000}. In fact, I am generating adequately longer data and,
following the structuring of appropriate series of forecasts, I am cutting off the last T
observations that represent input data for the tests. This approach is different from
the one applied by Patton and Timmermann (2012), where the sample was in fact
appropriately shorter.
Next, I am introducing the measurement error (for example, resulting from the
revision process):

Ỹt = Yt + ψt, (21)

where ψt ∼ N(µψ, σ2
ψ) with a mean: µψ ∈ {0,−0.1µY , 0.1µY } and standard deviation:

σψ ∈ {0,
√
µY σY , 2

√
µY σY }. Compared to the literature, I am additionally analysing

the behaviour of tests in the case of non-zero mean revisions which – as shown in
Ziembińska (2017) – are not uncommon in the Polish macroeconomic publications.
I will be considering the optimal forecast (against the mean square error minimisation
criterion):

Ŷt|t−h = µY + φh(Yt−h − µY ) (22)

and five models of extrapolative forecasts described by Equations (6)–(10).
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As far as the extrapolative and acceleration schemes are concerned, I will analyse α ∈
{−0.3,−0.1, 0.1, 0.3}, while for the adaptive and mean reversion: α ∈ {0.2, 0.5, 0.7}.
Where necessary, I am using the unconditional mean µY as the initial forecasts. I am
considering h = 1, 4, 8 horizons. Let us note that the discussed tests are based only on
the extrapolative structure, which in practice means that in the case of no variability
of the measurement error (namely, for σψ = 0), the equations will be fully fitted by
definition. Of course, we do not observe such a situation in practice since the real
data do not derive from an ideal theoretical model and since a forecaster may not be
familiar with that process. Therefore, for the extrapolative models we are omitting
the case where σψ = 0.
Wishing to analyse the power of tests, we need to generate sub-optimal forecasts,
that is, those for which the tests should reject the null hypothesis. Let us define it as
follows (cf. Patton and Timmermann, 2012),

Ŷ subt|t−h = Ŷt|t−h + σξ,hξt,t−h, (23)

where ξt,t−h ∼ N(0, 1) and σξ,h ∈ {
√
µY σY ,

2(h−1)
7
√
µY σY }. The latter specification

corresponds to a situation where a standard deviation of the forecast error increases
with its horizon (for h = {4, 8}).

4.2 Results
Tables 1, 2, and 3 present the results of forecast rationality tests. Panels for µψ = 0
and T = 100 replicate some results obtained by Patton and Timmermann (2012).
Both the size and power of tests are highly similar to the ones presented in the original
work. Test 3 is the only exception and demonstrates much lower power. Other results
confirm the conclusions reached by the authors: the MZ test rejects the null hypothesis
too frequently, especially for longer horizons; tests 1–5 based on inequalities have a
much smaller size than the nominal one; the PT test has the best properties, especially
when we use a forecast with the shortest horizon (proxy) instead of the realization
of a variable; test 4 (of the decreasing MSF) has high power in the case where the
forecast error increases with its horizon. When it comes to the PT and CG tests, it is
worth paying attention to the monotonicity of power in relation to the measurement
error variance in the case where the forecast error increases with its horizon. Only
about 10% power in the case of the lack of a measurement error indicates that it is
responsible for rejecting the null hypothesis (and not the test efficiency). Summing
up, in the case of a zero mean measurement error, the PT test, based on the “optimal
regression”, and the CG test have the best performance; whereby if the forecast error
increases with its horizon, the test 4, based on the property of decreasing mean square
forecasts, provides best results.
Let us now analyse how these numbers change under the influence of shortening the
sample to 50 observations. First, as regards tests 1–5, the size increases and is closer
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to or even exceeds the nominal 10% (particularly for longer horizons), while their
power changes only slightly. When it comes to the PT, CG, and MZ tests, the size
basically does not change under the influence of the sample reduction (except for the
aggregated MZ test for h = 4), similarly as the 100% power for a constant forecast
error. The size distortion observed for the MZ test is well documented in the literature.
As regards certain tests analysed here, we are observing a similarly increasing size or
power distortion, which can challenge the consistency of these tests. However, we need
to emphasize that in most cases the differences are not significant, the analysed sample
lengths are small (max. 100 observations) and theoretical critical values have been
applied (replicating those used most frequently in practice). Potentially, they can also
result from a calculation error, but the applied number of simulation repetitions (1000)
constitutes a standard in the literature (compare e.g. Patton and Timmermann,
2012). In a situation where the forecast error increases along with its horizon, the
power of the MZ test does not change, but for the PT and CG tests the probability
of not making a type II error decreases. Notably, for the optimal test with a proxy,
the power decreases from over 90% to 60-70% for a shorter horizon and from 80-90%
to 40-50% for the longer horizon (depending on the distribution of a measurement
error). Additionally, good properties of test 4 remain regardless of the sample length.
Finally, let us discuss how the properties of the rationality tests change when the
measurement error has a non-zero mean µψ 6= 0. When it comes to inequality tests,
the size changes depending on the sign of the error mean. In particular, as regards
the positive mean error in tests 1, 3, and 5, it increases to 40-70%, thus considerably
exceeding the nominal level. This is an intuitive result for test 3, where the mean
effect does not level in a simple way, but nevertheless, it is surprising for other tests.
When it comes to tests based on regressions, the non-zero measurement error causes
a far more frequent rejection of the null hypothesis, in line with the expectations.
Therefore causing the increase in the size of tests, regardless of an exact form of the
error and the forecast horizon. Again, it is worth noting the asymmetry between the
positive and negative error mean – the latter has lower impact on the weakening of the
regressive tests’ properties. The results concerning the power of tests do not change
considerably for various values of the mean measurement error, but it should be noted
that they are often monotonic in relation to its variance – the higher the variability
of error (e.g., revision), the more frequently we will reject the null hypothesis.
Let us now move on to the discussion of results of extrapolative tests. Tables 4 and
5 present results for the naïve scheme for samples consisting of 50, 100, and 1000
observations. As regards the Hbias

0 test: the size is similar to the nominal 10% only
if the measurement error has a zero mean. For smaller samples, in the case of a
non-zero measurement error mean, the bias test has a better size when this error
is more volatile (i.e., when σψ is higher), but then its power considerably decreases.
Conclusions for the bias test are identical for all discussed models and generally do not
offer good properties. Particularly, regardless of the size of the analysed sample and
at the lack of a measurement error, our suboptimality condition causes the rejection
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of the null hypothesis only for around 10% of samples. Higher values of this test’s
power (especially for the sample of 1000 observations) only reflect the non-zero mean
measurement error, thus there is also a remarkably high probability of rejecting the
true null hypothesis. The aggregated test based on Equation (12) demonstrates
particularly good properties in terms of size, but its power is very low in most cases.
The distribution of estimated coefficients in this regression is centred in accordance
with the hypothesis Hnaive

0 , regardless of the forecast error, which makes us reject
it too seldom. Therefore, my conclusion is that in the case of the naïve model, even
with the zero mean forecast error the discussed tests have too low power to reject the
false null hypothesis and should not be used.
Tables 6, 7, and 8 present results for the first order extrapolative model. As regards
the bias test, it is worth paying attention to differences resulting from the α parameter.
For the positive coefficient (denoting the expected trend continuation), the bias test
Hbias

0 has a much smaller size than for the negative coefficient. It translates into a
test size that is smaller than the nominal 10% for α > 0 and zero mean measurement
error. It should be noted that for the non-zero measurement error the size distortion
of this test (similarly as for the aggregated test) increases with the length of sample. It
results from the higher concentration of the intercept distribution around the non-zero
measurement mean (cf. Figure A.1 in the Appendix).
Comparison of the size and power of tests Hmodel

0 across the extrapolative models
indicates that they do not perform very well – the proportion of rejected null
hypotheses basically does not depend on the imposed forecast error. This conclusion
is coherent for various levels of the measurement error, sample length and forecast
horizons. It indicates that the imposed forecast error increases the uncertainty of
estimation enough to make it difficult to obtain statistical significance. As regards
the aggregated test based on Equation (14), a reasonable size – smaller than 10% –
received for shorter samples also reflects the lack of statistical significance. It is worth
noting that the higher the absolute value of coefficient α, the worse the statistical
properties. A comparison of the results of size and power of the aggregated test
(Hextra

0 ) suggests that the size is often greater than the power, which reveals that the
imposed measurement error increases the uncertainty of estimation enough to make
it difficult to obtain statistical significance.
Due to such weak properties observed, I will analyse the estimation results in more
detail. The analysed charts are presented in the Appendix. Figures A.1 and A.2
show examples (for φ = 0.5, h = 4 and σξ,h = √µY σY ) of distributions of estimated
intercept and coefficient α for tests Hbias

0 i Hmodel
0 . The charts clearly demonstrate

that a non-zero measurement error is responsible for the rejection of the no-bias
hypothesis, regardless of the imposed forecast error. For the Hmodel

0 tests, the
distributions are remarkably similar for all analysed configurations. The imposed
suboptimality of forecasts changes the volatility of α̂ only slightly, which means that
the size and power of a test depend mainly on the sample length (the shorter the
sample, the less of the test’s statistical significance). When it comes to the aggregated
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test, a distribution of intercept from Equation (14) is centred around zero. Rejection
of the null hypothesis Hextra

0 in most cases (regardless of the forecast error) results
from the shift of the coefficient β̂ distribution centre in relation to zero to ca. −0.15,
which implies that γ̂1 + γ̂2 ≈ 0.15. An exception is a situation where the measurement
error variance σ2

ψ = 0, when distribution β̂ is centred around zero and causes non-
rejection of the joined hypothesis Hextra

0 . Reduction of the sample size considerably
increases dispersion of the estimated parameters. These results reveal that these tests
should essentially not be used, regardless of a specification.
Tables 9 and 10 present results for the adaptive model. In line with the expectations,
the Hbias

0 test rejects the true null hypothesis at the nominal level only for a zero
mean measurement error, but even then, the test power does not exceed 60% and
declines with the forecast horizon. Sizes of Hmodel

0 and Hadapt
0 tests are similar to

the nominal level, regardless of the sample length, form of the measurement error and
forecast horizon. One should note that the power of these tests strongly depends on
the α coefficient, which defines how strongly a forecaster adapts their last prediction
by a realized error. The higher the adjustment level, the less frequently we reject a
false null hypothesis for both tests. The Hmodel

0 test has higher power than the test
based on Equation (14) for a longer horizon and for a more volatile measurement error
in case of higher adaptive coefficients. The forecast horizon and sample length have
only a slight impact on the power of discussed tests for a constant forecast error (in
relation to the horizon) and for low adaptive coefficients. With higher α the longer
horizon and a smaller sample reduce the test power. Overall, the Hmodel

0 test has
good properties for the adaptive model, regardless of the forecast horizon and the
sample length.
Let us now analyse the results for the acceleration model. Irrespective of the form of
measurement error or forecast error (we are only analysing situations where the latter
has a zero mean), we do not reject Hbias

0 in any of the considered cases (therefore,
the results are not presented in a table). This is not a negative feature of the test and
we can presume that it results from the fact that on both sides of the estimated
equation (Test 3) we observe differences derived from the same process – either
forecasts or actual values. This implies that the mean measurement error with a
non-zero value that can disturb other bias tests has been eliminated owing to the
structure of variables used for the estimation. The Hmodel

0 test has low power of 12-
20%, regardless of the sample size and the analysed forecast error. Distribution of the
α̂ coefficient is more dispersed for short samples and suboptimal forecasts, but it still
concentrates around a theoretical value (cf. Figure 1). The Hacc

0 test also has weak
properties – the null hypothesis is nearly always rejected, regardless of parameters.
A more detailed analysis of distribution of coefficients in Equation (12) shows that
such weak properties of this test may result from taking an intercept into account.
Therefore, we are conducting an additional experiment neglecting the intercept in
the estimation. The results are presented in Tables 11 and 12. The power of thus
formulated test is close to 100% for all analysed schemes. What is interesting is that
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the test size is highly similar to the nominal size for a short sample and large variance
of the measurement error. Even though we too often reject the true null hypothesis
at a sample consisting of 1000 elements, the aggregated test without intercept has
considerably better properties.

Table 12: Size of Test 3 (acceleration) - estimation with no intercept

T = 50 T = 100 T = 1000

α µψ σψ h=1 h=4 h=8 h=1 h=4 h=8 h=1 h=4 h=8

-0.1 0 √µY σY 0.50 2.40 3.10 1.60 5.30 4.90 60.30 72.60 72.60
-0.1 0 2√µY σY 7.70 11.90 12.30 21.00 30.00 26.50 99.30 99.40 99.90
-0.1 0.1µY

√
µY σY 0.50 2.30 2.40 0.80 3.70 2.90 49.50 62.80 65.20

-0.1 0.1µY 2√µY σY 4.10 8.50 8.60 15.00 22.20 22.20 98.70 99.10 99.10
0.1 0 √µY σY 1.20 2.30 3.70 2.80 7.80 7.10 79.50 89.10 88.40
0.1 0 2√µY σY 15.70 16.70 14.10 34.00 37.40 40.20 100.00 99.90 100.00
0.1 0.1µY

√
µY σY 0.30 2.10 2.60 2.10 4.40 5.00 68.20 81.60 81.00

0.1 0.1µY 2√µY σY 10.70 14.60 10.10 25.30 31.80 30.20 100.00 99.50 99.90

Table presents empirical size of Test 3 (accelaration) with hypothesis (17) (Hacc0 ) for estimation without
intercept. It is based on 1000 simulations and asymptotic critical values. 10% nominal size is assumed. T
denotes the sample size.

Table 13 presents results for the mean-reversion scheme. At first, let us note that this
is the only scheme with a different equation structure for Hbias

0 and Hmodel
0 tests that

have a non-differentiated variable on the left. As regards both these tests, the size
is similar as the nominal 10%. However, we should pay attention to the fact that it
increases alarmingly with an increase of the sample size. The probability of rejecting
a true null hypothesis also increases with an increase of an adjustment coefficient
α. The power of both these tests is incredibly low and does not exceed 20% even
for a sample of 1000 elements (detailed results are available on request). The Hrev

0
test size indicates that it nearly always rejects the null hypothesis, regardless of the
forecast error. Similar as with the previous scheme, I will check whether removal of
intercept from the estimated equation will improve the properties of the aggregated
test. Tables 14 and 15 present those results for Hmodel

0 and Hrev
0 tests. Obviously, the

removal of intercept implies that the test size will increase in a situation of a non-zero
mean measurement error. Indeed, the results for the Hmodel

0 test indicate this. Let
us note that the properties of the aggregated test have considerably improved, and
its size is basically similar as the nominal one, regardless of the measurement error
form and the forecast error. Unfortunately, the removal of intercept has triggered a
considerable decline in the power of both tests and indicates that they should not be
used at large.
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Figure 1: Distribution of α̂ when testing Hmodel
0 for the acceleration model (h=4,

α = 0.3)
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Plots show the distribution of α̂ when testing Hmodel0 for the acceleration model across 1000 Monte Carlo
samples. Columns correspond to the level of mean measurement error (µψ ∈ {0,−0.1µY , 0.1µY }), rows
to its standard deviation (σψ ∈ {0,

√
µY σY , 2

√
µY σY }). Suboptimal forecast with σξ,h = √µY σY is

assumed.

5 Polish macroeconomic forecasts
This section aims at analysing the expectation formation process for the set of
Polish macroeconomic data prepared by forecasters of large research centres. To
this end, a new set of forecasts of basic variables has been prepared based on two
international sources: the European Commission (EC) and the Organisation for
Economic Cooperation and Development (OECD) and the National Bank of Poland
(NBP). The data cover the forecasts of annual growth rates of national accounts and
inflation as well as harmonised unemployment rate for the period between as early
as 1998 and end-2020. A detailed description of that data set is included in the
Appendix.
Based on the results of simulations, we can arrive at a conclusion that two rationality
tests have the best properties: a test based on an optimal regression (PT test) and
the CG test; as well as tests of adaptive scheme (Hmodel

0 ) and acceleration scheme
(Hacc

0 for estimation without intercept). The Hmodel
0 test requires familiarity with the
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adaptive process, which remains unknown when we have only expectations data at our
disposal. Therefore, it is necessary to apply the Hadapt

0 test, which has lower power
in case of the longer forecast horizon and a more variable measurement error. In a
situation where there are no grounds for rejecting the model based on regression (14),

Table 16: Expectations formation tests for the Polish macroeconomic forecasts

Forecast Rationality tests Acceleration test Adaptive test

Source Variable N PT PT
proxy CG adj.R2

Hacc
0

pvalue
adj.R2 Hadapt

0
pvalue

EC Exports nsa yy 71 0 0.00 0.5 58.54 0.00 -0.61 0.00
EC GDP deflator 61 0 0.00 0.29 83.49 0.00 6.62 0.00
EC GDP nsa yy 78 1 1.00 0.09 * 82.38 0.00 20.50 0.00
EC GFCF nsa yy 71 1 0.00 0.05 * 42.12 0.00 -0.35 0.00
EC Imports nsa yy 71 0 0.00 0.61 * 43.36 0.00 0.41 0.00
EC Private cons. nsa yy 71 0 0.00 0.43 81.87 0.00 20.89 0.00
EC Public cons. nsa yy 58 0 0.00 0 77.13 0.00 32.06 0.00
EC Harm. unemployment rate 60 0 0.00 0.1 ** 98.31 0.00 80.25 0.21
NBP CPI yy (avg) 69 1 1.00 0.8 72.83 0.00 31.21 0.00
NBP Exports nsa yy 77 1 1.00 0.36 * 54.44 0.00 -1.93 0.00
NBP GDP nsa yy 77 1 1.00 0.15 * 83.15 0.00 6.28 0.00
NBP GFCF nsa yy 77 1 1.00 0.13 24.16 0.00 0.35 0.00
NBP Imports nsa yy 77 1 1.00 0.16 * 31.54 0.00 0.44 0.00
NBP Private cons. nsa yy 77 1 1.00 0.02 84.58 0.00 9.01 0.00
NBP Public cons. nsa yy 74 1 1.00 0.11 * 76.49 0.00 29.39 0.00
NBP Harm. unemployment rate 80 1 1.00 0 96.09 0.00 58.76 0.01
OECD CPI yy (avg) 58 1 1.00 0.52 64.70 0.00 -3.66 0.00
OECD Exports nsa yy 76 1 1.00 0.87 82.07 0.00 13.44 0.00
OECD GDP deflator 69 1 1.00 0.1 88.64 0.00 65.50 0.41
OECD GDP nsa yy 76 1 1.00 0.43 86.11 0.00 23.96 0.00
OECD GFCF nsa yy 76 1 1.00 0 37.70 0.00 -1.79 0.00
OECD Imports nsa yy 76 1 0.53 0.15 * 65.07 0.00 0.93 0.00
OECD Private cons. nsa yy 76 1 1.00 0.49 88.19 0.00 38.75 0.00
OECD Public cons. nsa yy 38 1 1.00 0 ** 70.83 0.00 30.64 0.00
OECD Harm. unemployment rate 41 1 0.00 0.05 * 98.09 0.00 82.88 0.36

Table presents p-values from the rationality tests: PT, PT with proxy and CG. Rationality tests relate to
a shorter sample of forecasts prepared up to the end of 2016. For acceleration and adaptive tests adjusted
R-square is presented together with the p-values of the respective tests. N denotes number of observations
in the estimation. Presented results are calculated for the final readings (i.e. after data revisions). We
separately calculate results for the initial readings. Stars denote situations when conclusions for a given
test are different for the initial data assuming 0.01 (’***’), 0.5 (’**’) and 0.1 (’*’) significance level.

it is possible to estimate the adaptive parameter α̂. Otherwise, we will be unable to
determine its significance. Table 16 presents results of these tests for the analysed set
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of Polish macroeconomic data pooled across all forecast horizons. The p-values are
presented based on relevant tests for errors calculated against the final reading. I have
marked with asterisks situations where a conclusion derived from a specific test would
be different when using the initial readings (the number of asterisks corresponds to
the level of significance).
First, let us note that as regards the rationality tests the conclusions differ depending
on the applied test and that especially the PT test proposed by Patton and
Timmermann (2012) provides unambiguous results. When it comes to this test, the
revision process also has considerably lower significance – conclusions are identical for
the initial and final readings. As regards most analysed variables, the PT test rejects
the hypothesis of rationality for forecasts derived from the European Commission, but
not for NBP and OECD. In several cases the use of a short-term forecast as a proxy
changes the conclusions of the PT test. It is also worth noting that tests applying a
proxy do not necessarily yield more conservative results. It reveals a significant role
of the revision process in the forecasting process as well as its equivocal character.
In particular, it may attest to the fact that the forecasters are not convinced which
reading they forecast. The results show that only NBP can potentially treat final
readings as a forecasting target – the CG test indicates that for variables forecasted
by NBP the rationality hypothesis is more seldom rejected in relation to the final
reading. As regards extrapolative models, one should note good fit of acceleration
models to the Polish forecasts – the determination coefficient often reaches 70-80%.
However, both tests reject the null hypothesis for nearly all variables. An exception
is the GDP deflator forecasted by OECD and unemployment rate predicted by the
European Commission, but the adaptive coefficient estimated for these predictions is
not statistically different from zero (and for the first variable negative), which poses
interpretation problems (in general, a negative coefficient would indicate a strong
expectation of a trend change).

6 Summary
The work includes a discussion on the expectation formation processes, taking account
of the processes of revision, and a broad range of applied tests and their comparative
analysis. To the best of my knowledge, this topic has not been considered in this
context and has not been tested, not only regarding Poland.
The analysis of properties of the rationality tests has confirmed the results known
from the literature, demonstrating that the standard Mincer-Zarnowitz test rejects the
null hypothesis too frequently, especially for longer forecasting horizons; tests based
on inequalities have smaller size compared to the nominal; a test based on optimal
regression proposed by Patton and Timmermann (2012) has the best properties,
particularly when we use a forecast with the shortest horizon as a proxy for the
actual reading of a variable. Finally, the decreasing mean square forecast test has
high power in a situation where the forecast error increases with its horizon. These
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conclusions indicate that the test based on optimal regression is the most efficient and
flexible. The value add of the presented analysis is an answer to a question of how the
tests behave at short samples and in a situation of non-zero mean measurement error
arising, for example, from data revisions. In the case of the selected optimal test, the
size basically does not change under the influence of sample reduction, similarly as its
100% power at a constant forecast error (in relation to the horizon). In a situation
where the forecast error increases with its horizon, the test power declines from over
90% to 60-70% for the shorter horizon and from 80-90% to 40-50% for the longer
horizon. Conversely, a non-zero measurement error causes a much more frequent
rejection of the null hypothesis, thus the increase of the size of all regression tests,
irrespective of an exact form of this error and the forecast horizon, however it does
not trigger any significant changes of their power. It is worth noting the asymmetry
between the positive and the negative mean error – the latter has smaller impact on
the weakening of these tests’ properties. What is interesting, a similar relationship is
not observed for the discussed extrapolative tests.
Among the extrapolative tests, the adaptive model stands out. The sizes of Hmodel

0
and Hadapt

0 tests are similar as the nominal level, regardless of the sample size, form
of the measurement error and forecast horizon. The Hmodel

0 test has higher power
than the test based on Equation (14) at a longer horizon and at a more variable
measurement error for higher adaptive coefficients α. In general, the higher the
adaptation of the previous forecast by the executed error, the less frequently we
reject the false null hypothesis for both tests.
The proposed tests have worse properties for other extrapolative models. Notably, we
often observe an increase in the size or power distortion along with an increase in the
sample size, which can question consistency of these tests. In the case of the naïve
scheme, the discussed tests have too low a power at a zero mean forecast error to be
able to reject the false null hypothesis. When it comes to the extrapolative scheme of
the first order, it is worth noting the differences in test properties arising from the sign
and scale of the α parameter, which denotes the expectation of trend continuation
(positive) or change (negative). The higher the absolute value of the α coefficient
(especially for positive values), the worse the statistical properties of the tests. The
aggregated test size is often higher than the test power, which indicates that the
imposed forecast error increases the estimation uncertainty enough to make it difficult
to obtain statistical significance and implies that the test should not be used. As
regards the acceleration scheme, we have never rejected the no-bias hypothesis, which
results from the test construction. The Hmodel

0 test for this scheme has low power,
regardless of the sample size and the forecast error considered, but the aggregated
Hacc

0 test demonstrates quite good properties when we remove intercept from the
equation – the power of thus formulated test amounts to nearly 100% for all analysed
configurations.
Summing up, based on these results, we can conclude that the best properties are
showcased by the two rationality tests: based on the optimal regression (PT test)
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and the CG tests; as well as the adaptive and acceleration tests (Hmodel
0 and Hacc

0 for
estimation without intercept). The Hmodel

0 test requires familiarity with the adaptive
process, which remains unknown when we have only the survey expectations at our
disposal. Therefore, it is necessary to apply the aggregated test with lower power. In
the case where there are no grounds for rejecting a model based on regression (14),
it is possible to estimate the adaptive parameter α̂.
Finally, the selected tests showcasing good properties have been applied to the analysis
of the process of forming Polish macroeconomic forecasts from the large research
centres. Predictions of the basic variables concerning national accounts, inflation,
and unemployment, derived from the OECD, the European Commission and NBP,
have been analysed. The conclusions for the rationality tests differ depending on
the applied test. For most analysed variables, the PT test rejects the hypothesis
of rationality of forecasts derived from the European Commission, but not for the
predictions from NBP and OECD. The conclusions are coherent for many variables
derived from a certain source, which seems to make sense in a situation where forecasts
originate from similar models. Particularly as regards NBP, I rejected the rationality
hypothesis more seldom when I compared the predictions to the final reading, which
indicates that the national institution may potentially take final readings as the
forecast target. Finally, it reveals that the extrapolative models, albeit simple and
intuitively interpreted, generally fail to correctly explain the processes of forming the
forecasts of the Polish economy.
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Appendix A Additional charts

Figure A.1: Distribution of the intercept in the Hbias
0 test for the extrapolative model

(h=4)
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Distribution of the intercept in the Hbias0 test for the extrapolative model (h=4) for 1000 Monte Carlo
simulations. Columns correspond to the level of mean measurement error (µψ ∈ {0,−0.1µY , 0.1µY }),
rows to its standard deviation (σψ ∈ {0,

√
µY σY , 2

√
µY σY }). Suboptimal forecast with σξ,h = √µY σY is

assumed.
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Figure A.2: Distribution of α̂ in the Hmodel
0 test for the extrapolative model (h=4,

α = 0.3)
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Distribution of α̂ in the Hmodel0 test for the extrapolative model (h=4, α = 0.3) for 1000 Monte Carlo
simulations. Columns correspond to the level of mean measurement error (µψ ∈ {0,−0.1µY , 0.1µY }),
rows to its standard deviation (σψ ∈ {0,

√
µY σY , 2

√
µY σY }). Suboptimal forecast with σξ,h = √µY σY is

assumed.
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Figure A.3: Distribution of ˆconst in the Hextra
0 test (h=4, α = 0.3)
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Distribution of ˆconst in the Hextra0 test (h=4, α = 0.3) for 1000 Monte Carlo simulations. Columns
correspond to the level of mean measurement error (µψ ∈ {0,−0.1µY , 0.1µY }), rows to its standard
deviation (σψ ∈ {0,

√
µY σY , 2

√
µY σY }). Suboptimal forecast with σξ,h = √µY σY is assumed.
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Figure A.4: Distribution of β̂ in the Hextra
0 test (h=4, α = 0.3)
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Distribution of β̂ in the Hextra0 test (h=4, α = 0.3) for 1000 Monte Carlo simulations. Columns correspond
to the level of mean measurement error (µψ ∈ {0,−0.1µY , 0.1µY }), rows to its standard deviation (σψ ∈
{0,√µY σY , 2

√
µY σY }). Suboptimal forecast with σξ,h = √µY σY is assumed.
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Figure A.5: Distribution of γ̂1 + γ̂2 in the Hextra
0 test (h=4, α = 0.3)
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Distribution of γ̂1 + γ̂2 in the Hextra0 test (h=4, α = 0.3) for 1000 Monte Carlo simulations. Columns
correspond to the level of mean measurement error (µψ ∈ {0,−0.1µY , 0.1µY }), rows to its standard
deviation (σψ ∈ {0,

√
µY σY , 2

√
µY σY }). Suboptimal forecast with σξ,h = √µY σY is assumed.
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Appendix B Set of the Polish macroeconomic
forecasts

Table B.1 includes a description of analysed variables. Below a short description of
the sources of forecasts used in the analyses is also presented.

Table B.1: List of analysed variables

Variable Description

GCF nsa yy Gross capital formation -change (%) in relation to the
corresponding period of the previous year (at constant average
prices of the previous year)

Export nsa yy Export -change (%) in relation to the corresponding period of
the previous year (at constant average prices of the previous
year)

Import nsa yy Import -change (%) in relation to the corresponding period of
the previous year (at constant average prices of the previous
year)

Private cons. nsa yy Private consumption -change (%) in relation to the
corresponding period of the previous year (at constant average
prices of the previous year)

Public cons. nsa yy Public consumption -change (%) in relation to the
corresponding period of the previous year (at constant average
prices of the previous year)

GDP nsa yy Gross domestic product -change (%) in relation to the
corresponding period of the previous year (at constant average
prices of the previous year)

CPI yy (avg) Consumer price index - change (%) in relation to the
corresponding period of the previous year

GDP deflator GDP deflator (%) -based on index measuring the level of prices
of all new, domestically produced, final goods and services in
an economy in a year.

Harm.unemployment rate (%) Harmonized unemployment rate (%), monthly data are
seasonally adjusted

i) NBP
The Economic Institute of the National Bank of Poland prepares forecasts
for the purpose of the Monetary Policy Council, assuming the constant NBP
interest rate. The projection represents a significant contribution into decisions
and communication of the Monetary Policy Council. The projection is prepared
three times a year and is published in March, July, and November in the
Inflation Report. It contains predictions with a horizon of up to three years.
More details can be found on: https://www.nbp.pl/homen.aspx?f=/en/
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publikacje/raport_inflacja/projekcja_inflacji.html. The projection
also encompasses probabilistic forecasts presented on radial charts, but they
are not directly available. Our set reaches back to 2008.

ii) European Commission (EC)
Directorate General of the European Commission prepares economic forecasts
for particular countries with a horizon of up to two years and with regard to
around 180 variables. The predictions are not derived from a single centralised
model but are prepared by teams responsible for particular countries on the
basis of models and expert knowledge. They are published three times a year,
in line with an internal calendar of the European Commission, known as the
European Semester. The data have been available since 2003.

iii) Organisation for Economic Cooperation and Development (OECD)
Twice a year (in June and December) the Organisation for Economic
Cooperation and Development prepares macroeconomic forecasts as part of the
OECD Economic Outlook. Predictions look up to two years ahead and have
been available since 1998. More details concerning the literature utilizing these
data can be found in Batchelor (2000) and Timmermann (2007).
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