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Abstract 
 

The paper presents an experimental confirmation of the fact that if a three-dimensional volume does not contain spherical particles with 

particular size, the Probability Density Function (PDF1) of half-chord lengths has proportional ranges. This fact has been deduced in work 

[1] during the derivation process of the Probability Density Function (PDF3) that maps the particle radii on the basis of data (PDF1) collected 

from flat cross-sections. The experiment has been executed virtually by using a simple computer program written in the C++11 language. 

The computer generation of particles allowed imposing various kinds of known PDF3 and the ranges in which the particles could not be 

created. Next, the virtual nodules have been used to produce sets of chords that served as input data to create histograms that approximated 

the continuous PDF1. Having such histograms, it was possible to reveal proportional scopes of the PDF1. The proportional dependencies 

occurred in the same ranges where the nodules had not been generated. 
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1. Introduction 
 

One of the stereological tasks is the mapping of a volumetric 

size distribution of spherical particles in non-transparent materials 

on the basis of data collected from flat cross-sections. Methods that 

use the data obtained from the cross-sections are usually catego-

rized into three groups. The first group uses, as input data, mark 

radii or diameters of cuts of spherical particles [2-4]. Into the sec-

ond group, methods that use areas of marks of intersected nodules 

can be included [5]. The last group includes solutions that employ 

random chords from a metallographic analysis [6-8]. The thing 

which is common among the aforementioned methods is the fact 

that all of them try to reflect the size distribution of three-dimen-

sional particles, randomly placed in a volume, having only data re-

ceived from flat cross-sections. The data obtained from metallo-

graphic specimens serve as a source to build various histograms 

that represent mark radii, areas of marks, and chord lengths. In turn, 

these histograms are used in equations that approximate the real 

and unknown form of the Probability Density Function of the par-

ticle radii (PDF3). 

In paper [1] a formula that maps PDF3 on the basis of PDF1 

describing half-chord size distributions has been derived. The form 

of the equation is the following: 
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where: 

 f3(x) – probability density function of the particle radii (PDF3), 

 S  – external mean area of the nodules, 
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 f1(x) – probability density function of the half-chord lengths 

(PDF1). 

 

It should be emphasised that both functions f1(x) and f3(x) in 

Eq. (1) are continuous, whereas in practice, we can only approxi-

mate them by histograms built from discrete values obtained from 

metallographic measurements. During the derivation of the func-

tion f3(x) it has been shown in [1] that if any range of the f1(x) has 

a proportional dependency, the function F3(x) must be constant in 

this region and as a consequence f3(x) equals zero: 
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where: 

 F3(x) – cumulative distribution function of the particle radii 

(CDF3). 

 

The zero value of the f3(x) states that the sample space does not 

contain nodules with radii belonging to this scope. 

This paper presents a virtual experiment that proves the con-

clusion of the absence of particles with particular sizes. In order to 

do this, a simple computer program in the C++11 language has 

been written. Having such a program it was possible to generate 

sets of nodules with any imposed PDF3 of their size and with ranges 

of particle sizes where they did not occur. The program also per-

mitted creating random secant that pierced the nodules in order to 

get a set of chords. These chords have been employed to build his-

tograms that approximated the functions f1(x). An analysis of the 

histograms showed that they have proportional dependences ex-

actly in the same ranges in which the virtual sample spaces do not 

contain particles. 

 

 

2. Virtual experiment 
 

The form of the virtual sample space which has been used in 

the experiment is depicted in Fig. 1. In order to perform such an 

experiment, it was necessary to do a few things. The first step was 

a creation of a virtual volume of the shape of a cuboid. The size of 

the volume was WDH. Next, before the drawing of the nodules, 

it was necessary to impose a PDF3 that described the particles’ 

sizes. All generated nodules had to meet a few requirements. Their 

radii were ruled by the chosen PDF3 and the location of their cen-

tres by a uniform real distribution. The nodules could not penetrate 

each other. The total particle count was a random variable. To pro-

vide this assumption the count of all particles was driven by an im-

posed value of max. The parameter max was a maximal volume 

fraction of the nodules which could not be exceeded. 

Having the volume filled by the particles it was possible to in-

sert a random cutting plane into the sample space. This plane split 

some encountered nodules producing marks of their surfaces. In the 

next step, a series of parallel secants has been placed on the cutting 

plane. These secants which intersected the marks produced sets of 

chords with random lengths. 

The algorithm used in the program is presented in a general 

form as a flowchart in Fig. 2. Some of the computational steps have 

been labelled as Stage 1,..,8 in order to give more explanation in 

the text. 

Stage 1: As the first step it is required to set the size of the sample 

volume and the value of max. The parameter max is fixed dur-

ing the whole drawing process. Even though its constant value, 

the exact count of the generated particles is not possible to pre-

dict, because both the nodule sizes and their positions are ran-

dom variables. 

Stage 2: The probability density function of the nodule radii is se-

lected at this stage. To generate random values of the radii, the 

standard C++11 function templates have been incorporated 

into the program. For example, for continuous uniform distri-

bution of the nodule positions, the function that returns such 

values is named std::uniform_real_distribution<float>, and for 

normal distribution std::normal_distribution<float>. Other 

functions that can be included in the program are described in 

[9]. 

 

 
Fig. 1. A scheme of the virtual sample space with randomly gen-

erated nodules and chords 

 

Stage 3: Drawing a random nodule radius and assigning its value 

to the float type. The value is generated according to the distri-

bution selected at stage 2. 

Stage 4: The position of the nodule centre in the sample space is 

ruled by the uniform real distribution. The range in which each 

coordinate is drawn is the following: [0, W], [0, D], [0, H] for 

the x, y, z coordinate, respectively. 

It is important to divide the drawing process of the radius and 

the coordinates into two separate stages. Each volume of a new 

generated particle is checked whether it penetrates the volume of 

any previous one or not. If yes, a new set of random coordinates is 

drawn but the value of an old radius is kept. In case of drawing a 

new value of the radius too, the potential nodules with smaller radii 

find more likely an empty space for their location than the ones 

with larger sizes. This causes that the mean value of the radius of 

all generated particles is significantly lowered in comparison to the 

value imposed at stage 2. 

Stage 5: Checking interpenetration between a currently created 

particle and the volume of all previous ones. 

Stage 6: Each new particle has imax times of attempts to locate itself 

somewhere in an empty space. If this value is exceeded, the 

drawing routine is ended and the program jumps to creating 

chords. This condition protects the program against looping an 

infinite number of times. 
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Stage 7: Checking the value of the current volume fraction of all 

nodules. If this value is less than the value of max, the program 

continues generating new particles until the max or imax is 

reached. 

 

  
Fig. 2. Flowchart of the algorithm used to generate virtual spheri-

cal particles with imposed PDF3 of the radii 

 

Stage 8: When the drawing process is ended, the program produces 

random chords and saves their half-lengths to a file. 

Some parameters of the virtual experiment, listed in Table 1, 

were the same for all imposed PDF3. The denotation “ul” used as a 

unit means any unit of a length. 

 

Table 1.  

Values used in the virtual experiment 

Description Symbol Value Unit 

sample space volume WDH 10001000100 ul 

the maximal volume 

fraction of generated 

nodules 
max 0.15 – 

the maximal number of 

attempts to locate 

a single particle 

imax 1000 – 

scan step (the distance 

between parallel 

secants) 

t 2 ul 

 

 

3. Results 
 

Four series of calculations have been performed for imposed 

distributions of 3D nodules. 

Parameters set in the program and obtained results are listed in 

Table 2. The values written in the normal font have been imposed 

in the program, whereas the outcomes in bold are random results 

obtained from the program. 

 

Table 2.  

Parameters used in calculations and obtained results 

Description Symbol Value Unit 

Constant radius 

Nodule radius R3 50.00 ul 

Total count of drawn nodules Nr 2864 – 

Total count of created chords Nc 110807 – 

Continuous uniform distribution 

Lower bound R3,l 30.00 ul 

Upper bound R3,u 60.00 ul 

Total count of drawn nodules Nr 3546 – 

Total count of created chords Nc 108228 – 

Bimodal continuous uniform distribution 

Left lower bound R3,ll 20.00 ul 

Left upper bound R3,lu 30.00 ul 

Right lower bound R3,rl 50.00 ul 

Right upper bound R3,ru 60.00 ul 

Total count of drawn nodules Nr 3777 – 

Total count of created chords Nc 104881 – 

Bimodal normal distribution 

Left mean μl 30.00 ul 

Left standard deviation σl 1,50 ul 

Right mean μr 60.00 ul 

Right standard deviation σr 3.00 ul 

Total count of drawn nodules Nr 2969 – 

Total count of created chords Nc 94533 – 

Left lower bound R3,ll 25.41 ul 

Left upper bound R3,lu 35.53 ul 

Right lower bound R3,rl 50.49 ul 

Right upper bound R3,ru 69.41 ul 

 

First calculations have been performed for a sample volume 

with nodules having a constant radius. The value of the radius was 
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equal to 50 ul. After creating random chords, the PDF1 histogram 

has been prepared in the form of which is presented in Fig. 3. Equa-

tion (2) states that the histogram’s values should have a propor-

tional dependency in the range from 0 to the minimal nodule radius 

R3. This statement results from the fact that the sample volume did 

not contain nodules with a radius lesser than the value of R3 = 50 

ul. The function CDF3 in Eq. (2) takes zero in this whole range. As 

it is seen, all the values (except the last one) fit well to the regres-

sion line. The coefficient of determination R2 is close to 1. Equation 

(1) also states that this line should pass through the origin point. 

This means that the constant term in the regression equation must 

have the value of 0. The obtained value (0.0009) is practically equal 

to 0. 

 
Fig. 3. The PDF1 histogram obtained from the sample space with 

nodules having a constant radius. The interval width: 1 ul 

 

The second set of generated particles have been created for 

a continuous uniform real distribution. The range in which the nod-

ule radii have been drawn was from R3,l to R3,u ul (see the value in 

Table 1). The histogram that approximates the PDF1 of the half-

chord lengths is depicted in Fig. 4a. The red thick line presents a 

linear regression in the range of x from 0 to R3,l ul in which the 

nodules had not been produced (Fig. 4b). As it is seen the line fits 

very well to the histogram’s values – the coefficient of determina-

tion R2 is close to 1. The constant term is also very close to its the-

oretical value of 0. 

Two afore presented histograms in Figs. 3 and 4 show that the 

values have the proportional dependency in the range from 0 to a 

minimal value of the radius. Equation (2) also states that this de-

pendency should appear in every range where the particle radii do 

not occur. In such ranges, the cumulative distribution function (the 

F3(x) term) has to have a constant value, which also makes the func-

tion f1(x) proportional. In order to check this property next series of 

random nodules has been generated, this time for a bimodal contin-

uous uniform real distribution. The histograms of the half-chord 

lengths and the nodule radii are shown in Fig. 5. The sample space 

contained two separate sets of particles. The first set, named left, 

has been created in the range of the radii from R3,ll to R3,lu ul, in 

turn, the second one, named right, in the range from R3,rl to R3,ru ul. 

Two regression lines in Fig. 5a fit very well to the histogram’s val-

ues where the proportional dependences occur. Both coefficients of 

determination R2
l and R2

r are close to 1. Similarly, as it was in the 

case of the results presented in Figs. 3 and 4a, the constant terms 

are also close to 0. The outcomes obtained for the bimodal contin-

uous uniform real distribution show clearly that the proportional 

dependency of the PDF1 occurs also in the range between the left 

and right sets which are depicted in Fig. 5b. 

 

a)  

b)  
Fig. 4. Histograms created for the sample space ruled by the 

continuous uniform distribution: a) the PDF1; the interval width: 

1.2 ul; b) the real PDF3; the interval width: 0.6 ul 

 

The last set of random chords has been created on the basis of 

the sample space containing nodules with radii ruled by a bimodal 

normal distribution. The parameters such as the mean values and 

the standard deviations for this distribution are listed in Table 2. 

Because the normal distribution does not have strict lower and up-

per bounds of the nodule radii, it was necessary to find manually 

the scopes in which the nodules had not been created. The lower 

and upper bounds for the left and right sets seen in Fig. 6b are pre-

sented in Table 2. Having these values it was possible to add linear 

regressions in the scopes where the particles did not occur. As it is 

seen in Fig. 6a the left line fits well to the proportional scope of the 

PDF1 histogram. The R2
l coefficient is also close to 1 and the con-

stant term close to 0. However, the right regression deviates more 

from the proportionality than the left one. What is more, the scope 

of the right linear regression is not as clearly seen as in the previous 

cases. Probably, this situation may deteriorate if the gap between 

the left and right sets will be narrower. 
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a)  

b)  
Fig. 5. Histograms created for the sample space ruled by the bi-

modal continuous uniform distribution: a) the PDF1; the interval 

width: 1.2 ul; b) the real PDF3; the interval width: 0.8 ul 

 

a)  

b)  
Fig. 6. Histograms created for the sample space ruled by the bi-

modal normal distribution: a) the PDF1; the interval width: 1.37 

ul; b) the real PDF3; the interval width: 0.88 ul 

 

4. Result analysis and conclusions 
 

The presented histograms of the PDF1 and the linear regres-

sions prove that if a sample space does not contain particles with 

particular sizes, the function f1(x) is proportional in this range. 

However, it should be emphasized that the analysis of the histo-

grams was facilitated because the PDF3 distributions of the nodule 

radii were known (they have been imposed in the virtual experi-

ment). This allowed finding accurately the scopes where the nod-

ules did not occur. In practice, such information is not accessible. 

The form of the real PDF3 is mapped e.g. by using Eq. (1) on the 

basis of random chords. But the chord method produces big noise 

on the mapped PDF3 histograms in the range of small chords. This 

fact has been presented in [10]. For this reason, the mapped PDF3 

is useless for the accurate determination of the ranges in which the 

linear regressions can be applied. 

For all analysed distributions of the nodule radii, the propor-

tional dependency is clearly seen on the PDF1 histograms in the 

range from 0 to the smallest particle radius. All the red regression 

lines fit very well to the values and their coefficients (R2 and the 

constant terms) are close to 1 and 0, respectively. In the case of the 

bimodal distributions, in the gap between the left and right sets, the 

proportional dependency is also visible. But for the bimodal normal 

distribution, the proportional range (the green line in Fig. 6b) devi-

ates more from the theoretical behaviour than the previous ones. 

Obtaining in real measurements a histogram having a character 

like the one in Fig. 3 may provide two important things. The first 

one, which has been mentioned in this paper, is the absence of nod-

ules with particular radii. The second one is the fact that we can 

state with a large probability that all particles have the same size. 

The presented method for a finding of the ranges of the nodule 

absence requires further improvement. Some mathematical criteria 

must be elaborated which will permit unequivocally determining 

the ranges where the linear regressions can be used and where not. 

Despite the fact that all calculations have been performed vir-

tually, the method may have practical application in foundry engi-

neering. The authors of the paper published in [11] showed that 

eutectic grains in grey cast iron can nucleate in some cases in two 

separate stages. To prove this, the researchers executed computer 

calculations that were supported by experiments. If a similar phe-

nomenon occurred in the case of the spheroidal graphite nucleation, 

it would have not been possible to detect it by a simple analysis of 

nodules’ cross-sections on a metallographic specimen. It is not pos-

sible to state how big the intersected nodules were having only the 

radii of their sections. The presented analysis of the proportional 

ranges on histograms obtained on the basis of such nodular cast 

iron would allow us to detect a similar proportional scope like in 

Figs. 5a or 6a (marked by the green lines). This would suggest that 

graphite nucleation has been divided into two stages. 
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