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Abstract
This paper proposes a new approach called the Predictive Kalman Filter (PKF) which predicts and compen-
sates model errors of inertial sensors to improve the accuracy of static alignment without the use of external
assistance. The uncertain model error is the main problem in the field as the Micro Electro Mechanical
System (MEMS) inertial sensors have bias which change over time, and these errors are not all observable.
The proposed filter determines an optimal equivalent model error byminimizing a quadratic penalty function
without augmenting the system state space. The optimization procedure enables the filter to decrease both
model uncertainty and external disturbances. The paper first presents the complete formulation of the pro-
posed filter. Then, a nonlinear alignment model with a large misalignment angle is considered. Experimental
results demonstrate that the new method improves the accuracy and rapidness of the alignment process as
the convergence time is reduced from 550 s to 50 s, and the azimuth misalignment angle correctness is
decreased from 52′′ ± 47′′ to 4′′ ± 0.02′′.
Keywords: predictive filter, nonlinear alignment, model error, optimization, MEMS inertial sensors.
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1. Introduction

The initial alignment method is the process of determination of initial orientation angles
between stationary Strap-down inertial navigation systems (SINS) fixed to a carrier and the
navigation frame. The precision of initial alignment guarantees an excellent starting status for the
navigation phase. Traditionally, the alignment process is divided in two stages; coarse alignment
and fine alignment [1]. After the analytic coarse alignment, if the misalignment is small, the
error equation of the SINS can be approximated as a linear equation and the precise alignment
can be completed using the Extended Kalman Filter (EKF) to estimate these small misalignment
angles [2]. Unfortunately, due to big random drifts of the gyroscopes inMicro ElectroMechanical
System (MEMS) inertial sensors, the misalignment angles become too large. Thus, the assumption
that the angles are small cannot accurately describe the error statics in the linear alignment
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model [3]. Hence, it is important to investigate the nonlinear alignment representation when
the misalignment angles are not small. However, the EKF, which is used for nonlinear system
state estimation, needs to recognize noise statistics (mean and variance). On other hand, noise
statistics, in most applications, are unknown. Further, the EKF resolves the nonlinear system
state by converting the nonlinear system to a linear system. Therefore, the linearization error will
decrease the filtering performance [4].

Several nonlinear alignment models and filtering algorithms are investigated in the literature
to estimate the large heading angle error of SINS. A robust multiplicative quaternion Kalman
filter [5] is applied for increasing the reliability of the SINS alignment process, the filter is robust to
sensor error uncertainties. Nevertheless, it requires zones of uncertainty and covariance of sensor
errors and it does not estimate the deterministic sensor errors. To recover the initial orientation
of SINS, [6] proposes a Cubature Kalman filter (CKF) with multiple fading factors to correct
the process and the measurement noise covariance. A similar CKF approach with a nonlinear
alignment model was used in [7] to estimate the in-motion alignment angles. A comparable
method is recommended in [8] for SINS alignment on a swing base. [9] proposes a filter based
on an unscented Kalman filter (UKF) to handle the uncertain noise during determining the
initial misalignment angles. However, the computational cost of this method is higher than in
the other nonlinear filters. Moreover, the adaptive unscented particle filter (UPF) is adopted
in [10]. The UPF can decrease the impact of model errors and the uncertainty of the sensor
noises to improve the accuracy of the alignment but the computational load of this method is
high. [11] reports a smoother filter to enhance the estimation of SINS misalignment angles;
however, the filter requires stored data to achieve smoothed attitudes. The estimation of initial
large attitudes of SINS in the case of an inaccurate model and non-Gaussian noises can be
improved by using external measurements. For example, to enhance the alignment accuracy, a
nonlinear alignment model is used in [12] for SINS with a large heading misalignment angle
coupled with measurements from a Global Positioning System (GPS). An alignment algorithm,
based on multiple algorithms which run simultaneously, is proposed in [13] for a complex
operating environment. Nevertheless, in the articles above, no details were provided as to the
initial alignment of stationary SINS without any external aids. An interesting study is [14] where
a gradient descent optimization method is used to overcome the disturbances of the inertial sensor
by optimizing a cost function for the initial alignment of a stationary SINS without using the
latitude information.

This paper proposes a new predictive Kalman filter (PKF) for the nonlinear alignment model
of stationary SINS. The concept of the PKF strategy comes from the theory of predictive control
(PC) [15]. The filter is formulated as a real-time optimization processwhich automatically predicts
equivalent model error by minimizing a quadratic penalty function. The equivalent model error
covers both the unknown time-varying statistics and the modelling errors such as linearization
errors. In other words, this equivalent model error describes the uncertainty of SINS model errors
including bias, scale factors, and misalignment angles of the inertial sensors. Consequently, the
equivalent model error is estimated to compensate for the inertial sensor errors. The optimization
procedure enables the PKF to decrease model uncertainty and external disturbances. Therefore,
this method improves the navigation alignment process.

The paper is organized as follows. Section 2 introduces the problem statement. Then, the
formulation details of the novel predictive Kalman filtering are addressed in Section 3. Section 4
presents the nonlinear alignment model; nonlinear attitude equations, velocity error equations,
and the measurement model. Section 5 explains the experimental results. Finally, Section 6
summarizes the main outcomes of the research and provides the conclusions.
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2. Problem definition

In real-life situations, if the azimuth misalignment angle is large, then the system becomes
highly nonlinear. Due to linearization and systemmodel errors, the traditional EKF algorithm does
not offer any convergence guarantee. In this paper, to solve the nonlinear alignment model, the
following mathematical formula of the discrete-time nonlinear stochastic systems is considered:




xk+1 = f (xk, k) + wk ,

yk+1 = Hk+1xk+1 + vk+1 .
(1)

In (1), k describes the step time, xk is the state vector of a nonlinear systemmodel f (xk, k), the
output vector yk+1 and the measurement matrix Hk+1 describe the linear measurement equation.
The system noise wk and measurement noise vk+1 are uncorrelated, zero-mean, Gaussian white
noise with unknown covariance matrices Qk and Rk , respectively. The first approximation of the
Taylor expansion around the optimal state estimate is used to convert (1) to a linear equation as
follows:

f (xk, k) = f (x̂k, k) +
∂ f (x̂k, k)

∂x̂k
[xk − x̂k] + H.O.T. (2)

The term H.O.T. represents the higher-order terms in the expansion. Denoting the Jacobian

matrix
∂ f (x̂k, k)

∂x̂k
as Fk and substituting (2) into (1) we obtain the following linear model:




xk+1 = Fkxk + ∆Lk + wk ,

∆Lk = f (x̂k, k) − Fk x̂k + H.O.T.
(3)

The term ∆Lk contains the linearization error and the unknown high order in the Taylor
expansion. We supposing that (3) is a system with unknown model error ∆Fk . Therefore, even
if the noise statistics are known, the model error of the system will make the traditional Kalman
filter performance worse. However, a linear model can replace the nonlinear model (1). It includes
an equivalent model error mk and has the following form:

xk+1 = (Fk + ∆Fk )xk + ∆Lk + wk

= Fkxk +mk + wk .
(4)

The following relation formulates the unknown equivalent model error mk :

mk = ∆Fkxk + ∆Lk = ∆Fkxk + f (x̂k, k) − Fk x̂k + H.O.T. (5)

The equivalent model error mk covers the unknown process noise statistics and the system
model error. The SINSmodel error includes bias, scale factor, and misalignment angles ofMEMS
inertial sensors (the gyroscopes and accelerometers). Therefore, the filtering problem of the real
nonlinear system (1) is transformed to a linear system with unknown time varying noise which
must be identified and compensated for. To solve this problem, the presented PKF filter is designed
for predicting the future values (in finite horizon p) of the unknown equivalent model error using
a quadratic penalty function which minimizes the weighted squares of the measurement residual
term and the model error increment term as follows:

Jk+1 (xk,∆mk ) = min
∆mk,p

(


ŷk+p − y
r
k+p





2
Re
+




∆mk+p−1





2
Qm

)
subject to: xk+1 = f (xk,mk ) + wk, yk+1 = Hxk+1 + vk+1 and mk = mk−1 + ∆mk .

(6)

The penalty function optimizes the unknown increment model error ∆m at each step. The
following sections describe the principle of the PKF filter.
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3. Predictive Kalman Filter

This section will present the fundamental background of the PKF necessary for the discussion
of this paper. We will start with the derivation steps of the subspace of the prediction equation
which forms the core of the PKF approach. Next, the formulation of the model error and PKF
equations are presented.

The Predictive Kalman Filter is a new real-time estimation approach based on the optimization
problem. The filter applies a quadratic penalty function to predict the future values of an equivalent
model error which optimizes the future output of the system at each sampling time. The penalty
function penalizes both the measurement error and the model error. After that, the designed filter
compensates for themodel error in the state space equations and corrects the noisedmeasurements.
The prediction part in Fig. 1 explains the methodology for predicting the future of the optimal
equivalent model error within a finite horizon.

Fig. 1. Optimization methodology for model error.

After the optimization process, only the first element of the predicted model error is consid-
ered. In every time step, the prediction horizon is moved and the optimization process is repeated.
This iterative optimization procedure compensates for the equivalent error of the filter model.

3.1. Subspace of prediction

The discrete-time state-space (4) for a linear time-variant (LTV) system is described in the
incremental form for t = k + 1 as follows:{

∆x̂k+1/k = Fk∆x̂k + ∆m̂k ,

x̂k+1/k = H∆x̂k+1/k .
(7)

In (7), the terms ∆x̂k = x̂k − x̂k−1 and ∆m̂k = m̂k − m̂k−1 are the incremental form of the
states and the model error. Supposing the sampling time is small and the system matrix Fk is
invariant during the prediction horizon, then, at time t = k +2, the state space (7) can be rewritten
as follows:

∆x̂k+2/k = Fk∆x̂k+1/k + ∆m̂kk+1/k . (8)
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By substituting (7) in (8) to eliminate x̂k+1/k , the following relation is obtained:




∆x̂k+2/k = F2
k∆x̂k + Fk∆m̂k + ∆m̂k+1/k ,

x̂k+2/k = HF2
k∆x̂k +HFk∆m̂k +H∆m̂k+1/k .

(9)

In step time t = k + p, the predicted state variables and the output take the following form:




∆x̂k+p/k = Fp
k
∆x̂k +

p∑
i=1

Fp−i
k
∆m̂k+i−1 ,

x̂k+p/k = HFp
k
∆x̂k +

p∑
i=1

HFp−i
k
∆m̂k+i−1 .

(10)

Collecting the previous prediction results for t ∈ {k+1 · · · k+p} will give the following
formulation for the subspace of prediction:




Xk+1,p = Ap∆x̂k + Bp Mk,p−1 ,

Yk+1,p = Cp∆x̂k + Dp Mk,p−1 .
(11)

Where the vectors and the matrices are defined according to the following relations:




Xk+1,p =
[
∆x̂k+1/k ∆x̂k+2/k . . . ∆x̂k+p/k

]T
(np×1)

,

Yk+1,p =
[
x̂k+1/k x̂k+2/k . . . x̂k+p/k

]T
(mp×1)

, Mk,p−1 =
[
∆m̂k ∆m̂k+1 . . . ∆m̂k+p−1

]T
(np×1)

,

Ap =
[
Fk F2

k F3
k . . . Fp

k

]T
(np×n)

, Cp =
[
HFk HF2

k HF3
k . . . HFp

k

]T
(mp×n)

,

Bp =



In×n 0 0 . . . 0
Fk In×n 0 . . . 0
F2
k Fk In×n . . . 0
...

...
... . . . 0

Fp−1
k

Fp−2
k

Fp−3
k

. . . In×n

 (np×np)

, Dp =



H 0 0 . . . 0
HFk H 0 . . . 0
HF2

k HFk H . . . 0
...

...
... . . . 0

HFp−1
k

HFp−2
k

HFp−3
k

. . . H

 (mp×np)

.

(12)
In (11), the future output of the system is predicted in terms of past state variables increment

and future model error increment values. The coefficients of the matrices of this subspace (Ap ,
Bp , Cp and Dp) are obtained directly from the data at t = k.

3.2. Predictive filter algorithm

The predictive algorithm requires a penalty function in its optimization process. For the
SINS self-alignment, the penalty function penalizes the weighted norm of the current innovation
measurement states and the norm of the model error according to the following form.

Jk+1 =
(
Ŷk+1,p − r

)T
Re

(
Ŷk+1,p − r

)
+ ∆MT

k,p−1Qm∆Mk,p−1 . (13)

The second term in the above penalty function is added to reduce the cost of model error. The
measurement equation contains the pseudo horizontal velocity measurements δvN = δvE = 0
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used as a direct measure of the errors, in this case r = 0. The diagonal positive definite matricesRe

andQm are the weighting matrices of measurement error and model error increment, respectively.
Thesematrices are the tuning parameters of the filter. After some calculations, the penalty function
can be expressed as follows:

Jk+1 = ∆MT
k,p−1

[
DT

pCT
pReCpDp +Qm

]
∆Mk,p−1

+ 2
[(
CpAp∆x̂k

)T
ReCpDp

]
∆Mk,p−1 +

(
CpAp∆x̂k

)T
Re

(
CpAp∆x̂k

)
. (14)

The optimization problem is solved by minimization of the penalty function using the least-
squares method, which allows analytical solution for an unconstrained problem and penalizes
larger errors more than smaller errors. After differentiating the penalty function Jk+1 for∆Mk,p−1,
the optimal solution ∆M∗k,p−1 is as follows:

∆M∗k,p−1 = KPF∆x̂k , (15)

where the algorithm gain equals:

KPF = −
[
CT

pDT
pReDpCp +Qm

]−1
CT

pDT
pReCpAp . (16)

Since optimization takes place at each sampling interval, only the first elements ∆m∗
k
of the

sequence ∆M∗k,p−1 are considered, thus:




∆m∗k = −
[
In×n 0 . . . 0

]T
KPF∆x̂k ,

mk = mk−1 + ∆m∗k .
(17)

At the next time step, a new output is measured and, again, a new optimalmodel error sequence
∆m∗

k
is applied to the system. Then, the computed model error mk is used to compensate for

the output measurement (in this case is the bias of the inertial sensors). This method provides
more compatibility for the estimation of the state space variables, due to the existence of tuning
parameters, which are the weighting matrices (Re and Qm) and the prediction horizon p. By
adjusting these parameters the specific stability and performance can be guaranteed for the
system. Fig. 2, shows the principle of the proposed approach for the alignment process.

Fig. 2. The principle of the PKF approach for the alignment process.
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4. Nonlinear alignment model

The precise alignment mode is chosen to determine the azimuth error through purely inertial
measurements. Unfortunately, the linear alignment model is offered for small angles only. But, in
most situations, the initial orientation errors are very large. Therefore, it is necessary to consider
a nonlinear alignment model. In this section, a nonlinear approach is presented which does
not require rough alignment, and the azimuth misalignment is assumed to be large. The PKF
filter algorithm is used for initial attitude estimation. The simplified PKF algorithm is illustrated
in Fig. 3.

Fig. 3. PKF algorithm.

4.1. Nonlinear attitude error equation

The alignment process for a SINS determines the direction cosine matrix (DCM) or the matrix
Cn

b , The SINS measurements in the body frame are resolved into the navigation NED frame (the
geographic north, east and down coordinate system). The trueCn

b is defined in the NED frame as:

Cn
b =



cθ sψ sφ sθ cψ − cφ sψ cφ sθ cψ + sφ sψ
cθ sψ sφ sθ sψ + cφ cψ cφ sθ sψ − sφ cψ
−sθ sφ cθ cφ cθ


, (18)

where c and s denote the cosine and the sine functions. θ, φ and ψ are the pitch, roll and azimuth
angles, respectively.
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The derivative of the transformationmatrix can bewritten according to the following equation:

Ċn
b = Cn

bΩb
nb = Cn

bΩb
ib −Ωn

inC
n
b , (19)

where the matrixΩb
ib
represents the skew-symmetric matrix form ofωb

ib
; the true angular velocity

of the body frame relative to an inertial frame. The matrix Ωn
in represents the skew-symmetric

matrix of ωn
in; the true angular velocity of the navigation frame relative to an inertial frame. The

IMU measurements mixed with errors lead to a transformation matrix Cn′

b , where the n′-frame is
assumed to be the computed version of the true navigation NED frame. The difference between
n′-frame and n-frame is the initial misalignment error which needs to be compensated for by the
alignment process. The derivative of the transformation matrix Cn′

b is written according to the
following equation:

Ċn′

b = Cn′

b Ω̂b
nb = Cn′

b Ω̂b
ib − Ω̂n′

inC
n
b . (20)

The output of the gyroscopes or the measured rate ω̂b
ib is related to the true rate ωb

ib
by the

following equation:
ω̂b
ib = ω

b
ib + δω

b
ib . (21)

The error δωb
ib

contains all drift errors of the gyroscopes. A new transformation matrix Cn
n′

can be defined to express the difference between n′-frame and n-frame as follows:

Cn
b = Cn

n′C
n′

b . (22)

Assuming that the horizontal angles are small and there is a large angle in azimuth between
n′-frame and n-frame, the matrix Cn

n′ is:

Cn
n′ =



cϕD −sϕD ϕEcϕD + ϕN sϕD
sϕD cϕD ϕE sϕD − ϕN cϕD
−ϕE ϕN 1


, (23)

where ϕN and ϕE are the small horizontal misalignment angles of roll and pitch, respectively, ϕD
is the large azimuth angle. After some rearrangement (see Appendix A), the SINS misalignment
angles satisfy the following equation:

ϕ̇ =
(
I − Cn′

n

)
ωn
in + δω

n
in − C

n′

b δω
b
ib . (24)

Vectorϕ =
[
ϕN ϕE ϕD

]T
denotes themathematical SINSmisalignment angles expressed

in n′-frame. In the stationary alignment, the position is known and fixed. Therefore, the value of
angular velocity of n-frame relative to earth frame ωn

en being equal to zero, then:




ωn
in = ω

n
ie + ω

n
en = ω

n
ie =

[
ωe cos ϕ 0 −ωe sin ϕ

]T
,

δωn
in =

[
δvE

r
,
−δvN

r
,
−δvE

r
tan ϕ

]T
.

(25)

Vector ωn
in is the angular velocity of n-frame relative to the inertial frame, the vector δωn

in is
the perturbation of ωn

in, ω
n
ie is the earth rotation rate relative to inertial frame, ωn

en is the angular
rate of the reference frame relative to the earth frame. Parameterωe is the earth’s angular velocity,
δvN and δvE are the north and east components of the velocity error, r is the earth radius and ϕ
is the geodetic latitude. The transformation matrix between the true n-frame and the computed
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n′-frame (Cn′

n ) can be calculated from (23) as Cn′

n =
(
Cn

n′

)T
. From (24) and (25) the nonlinear

attitude error equations can be described as:




ϕ̇N = (1 − cϕD )ωN + ϕEωD + δv
n′

E /r − ∆ωN ,

ϕ̇E = ωN sϕD − ϕxωD − δv
n′

N/r − ∆ωE ,

ϕ̇D = −(ϕEcϕD + ϕN sϕD )ωN − δvE tan ϕ/r − ∆ωD .

(26)

In (26), we denoted ωD = −ωe sin ϕ and ωN = ωe cos ϕ for simplicity, the symbols c and s
denote the cosine and the sine functions, ∆ωN , ∆ωE and ∆ωD are the components of gyro bias
expressed in n′-frame and they are equal to the components of the vector Cn′

b δω
b
ib

(see (24)),
where vector δωb

ib
denotes the gyroscopes bias.

4.2. Nonlinear Velocity error equation

In the case of static alignment, the SINS position remains constant and there is no velocity
drift direction, the expression of the navigation equation in the NED frame can be written as
follows [1, 16]:

v̇ne = Cn
bf

b −
(
2ωn

ie + ω
n
en

)
× vne + gn, (27)

where vector fb is the true specific force vector, Cn
b denotes the attitude matrix from the body

frame to the n-frame, vne is the velocity of n-frame relative to the earth, and gn is the gravity
vector. For stationary SINS, ωn

en is equal to zero, therefore, (27) is rewritten as follows:

v̇ne = Cn
bf

b − 2ωn
ie × v

n
e + gn, (28)

Based on the previous equation, the measured velocity in n′-frame can be written as:

v̇n
′

e = Cn′

b f̂
b
− 2ω̂n

ie × v
n′

e + gn
′

, (29)

where vector f̂b is the specific force vector measured by the accelerometers, the measured f̂b is
related to the true fb by f̂b = fb+δfb . Vector δfb contains all bias errors of the accelerometers,Cn′

b

denotes the transformation matrix from the body frame to n′-frame; Cn′

b = Cn′

n Cn
b , and vector v

n′
e

the velocity of n′-frame relative to the earth frame. By subtracting (28) from (29) and assuming
gn′ = gn (small horizontal misalignment angles), the velocity differential equation of SINS is:

δv̇n
′

= v̇n
′

e − v̇ne =
(
Cn′

n − I
)
Cn

bf
b − 2ωn

ie × δv
n′ + Cn′

b δf
b . (30)

Equation (30) represents the nonlinear velocity error model of SINS. With no vertical deflec-
tion error (δvn

′

D = 0) and zero nominal velocity (vn
′

D = 0) thus (30) is:




δv̇n
′

N = (1 − cϕD ) f n
′

N + sϕD f n
′

E + 2ωDδv
n′

E − (ϕEcϕD + ϕN sϕD ) f n
′

D + ∆ fN ,

δv̇n
′

E = −sϕD f n
′

N + (1 − cϕD ) f n
′

E − 2ωDδv
n′

N + (−ϕE sϕD + ϕN cϕD ) f n
′

D + ∆ fE .
(31)

In (31) f n
′

N , f n
′

E and f n
′

D denote the components of fb transformed to n′-frame, ∆ fN and ∆ fE are
the north and east accelerometer bias expressed in n′-frame and they are equal to the first two
components of vector Cn′

b δf
b (see (30)).
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4.3. Measurement model

In this paper model error is included in the process model as correction to compensate for
additive systematic error. The unknown value of the correction can be determined with the PKF
algorithm. The correction uncertainty contributes to the uncertainty associated with the estimated
variables and they are quantified by covariance or standard deviation.

When the vehicle is static, the zero-velocity information in navigation frame is used as ex-
ternal reference and the measurement vector can be constructed as yt =

[
vn
′

N − 0 vn
′

E − 0
]T
=

[
δvn

′

N δvn
′

E

]T
, where δvn′N and δvn

′

E are the measurement variables equal to vn
′

N and vn
′

E , re-
spectively. In the alignment mode, the SINS is stationary relative to the earth and the velocity
components should be zero, any external motion will be treated as measurement noise. The linear
relation between observations and states is given by:

yt = Hxt + νt ,

H =
[
1 0 0 0 0
0 1 0 0 0

]
,

(32)

where: νt is the white measurement noise with covariance R (This input quantity value and
uncertainty is brought into the measurement from the datasheet of the sensors), matrix H is the
relationship between the measured vector and state vector xt =

[
δvn

′

N δvn
′

N ϕN ϕE ϕD
]T
.

4.4. Nonlinear alignment model for the PKF algorithm

From (26), (31) and (32), the continuous nonlinear alignment model is formulated as:

ẋt+1 = f
(
xt, m′t

)
+ wt ,

yt+1 = Hxt+1 + νt+1 .
(33)

In (33) t describes the step time. The state variables needed to define in n′-frame are the
horizontal velocity errors and the orientation errors (misalignment angles of roll, pitch and yaw).
Therefore, the state vector is xt =

[
δvn

′

N δvn
′

N ϕN ϕE ϕD
]T
. Vector m′t is the model error

(residual bias of gyroscopes and accelerometers transformed to n′-frame). The vector of the
model error is defined as: m′t =

[
∆ fN ∆ fE ∆ωN ∆ωE ∆ωD

]T
, where ∆ fN and ∆ fE are

the north and east components of accelerometer bias. ∆ωN , ∆ωE and ∆ωD are the components
of gyroscopes drifts. The nonlinear model of the errors is defined as a nonlinear function:

f
(
xt, m′t

)
:




δv̇n
′

N = (1 − cϕD ) f n
′

N + sϕD f n
′

E + 2ωDδv
n′

E − (ϕEcϕD + ϕN sϕD ) f n
′

D + ∆ fN ,

δv̇n
′

E = −sϕD f n
′

N + (1 − cϕD ) f n
′

E − 2ωDδv
n′

N + (−ϕE sϕD + ϕN cϕD ) f n
′

D + ∆ fE ,

ϕ̇N = (1 − cϕD )ωN + ϕEωD + δv
n′

E /r − ∆ωN ,

ϕ̇E = ωN sϕD − ϕxωD − δv
n′

N/r − ∆ωE ,

ϕ̇D = −(ϕEcϕD + ϕN sϕD )ωN − δvE tan ϕ/r − ∆ωD .

(34)
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The Jacobian matrix is given as follows:

Ft =
∂f(xt )
∂xt

=



0 2ωD −sϕD f n
′

D −cϕD f n
′

D f n
′

E cϕD+ f n
′

N sϕD+(ϕE sϕD−ϕN cϕD ) f n
′

D

−2ωD 0 cϕD f n
′

D −sϕD f n
′

D f n
′

E sϕD− f nN cϕD−(ϕEcϕD+ϕN sϕD ) f n
′

D

0 1/r 0 ωD ωN sϕD
−1/r 0 −ωD 0 ωN cϕD

0 − tan ϕ/r −ωN sϕD −ωN cϕD (−ϕN cϕD + ϕE sϕD )ωN



.

(35)

The discrete time form of the continuous nonlinear alignment model (33) is identical to (1).
From the considerations in Section 2, the linearized model includes an equivalent model errormk .
The equivalent model error covers the unknown process noise statistics and the system modelling
error, such as linearization as described in (5). Here, mk is as follows:

mk = m′t + ∆Lk ≈ m′k + f
(
x̂k,m′k

)
− Fk x̂k + H.O.T. (36)

The SINS model error includes gyroscope and accelerometer biase projected in n′-frame and
the linearization errors. Therefore, the filtering problem of the nonlinear alignment model (33) is
transformed to linear system xk+1 = Fkxk +mk + wk , with unknown equivalent modelling error
mk which must be identified and compensated for. To estimate mk , first we construct the subspace
of prediction in incremental form as ∆x̂k+1/k = Fk∆x̂k +∆m̂k (see (7)). Where the discreet system
matrix is Fk = I + Ft∆t; ∆t is the sampling time. After forming the vectors and the matrices
(12), the PKF algorithm (Section 3.2) calculates the optimal incremental model error ∆m∗

k
.

Therefore, the unknown equivalent model error mk = mk−1 + ∆m∗k is transformed to the body
frame using the transformation matrix Cb

n′ = (Cn′

b )T , to correct the output of the gyroscope and
accelerometer measurements. Please, note that the linearized model (7) is used only for finding
the equivalent modelling error, while the state vector xk+1 =

[
δvn

′

N δvn
′

N ϕN ϕE ϕD
]T

is
estimated by using the proposed PKF algorithm as is shown in Fig. 3, after resolving the unknown
equivalent modelling error mk . The state vector contains the estimated errors (misalignment
angles and horizontal velocity errors) which are used to provide feedback to the strapped down
mechanization to correct the velocity and attitude vectors (see Fig. 2).

5. Experimental results and analysis

The performance of alignment plays a crucial role in the rapidity and convergence of the
alignment process. When the azimuth angle is large, the convergence time of the traditional
static alignment using the EKF becomes large. In addition, external disturbance can reduce the
performance of the EKF method significantly. Hence, in this experiment, the SINS is fixed to
a stationary vehicle with its engine running to produce some external disturbances to examine
the effectiveness of the proposed alignment method. Moreover, if prior information about the
measurement uncertainty matrix R is not specified accurately, it can cause the divergence of the
EKF algorithm. Therefore, the effect of increasing the measurement covariance R in the conver-
gence performance of the proposed approach and the traditional EKF (10-state filter algorithm)
is examined. The convergence time for the EKF is relatively long, while the convergence time for
the proposed method is short. Accordingly, we made the tests of the PKF in the post-processing
process based on saved real data only to validate the proposed PKF algorithm performance when

683

https://doi.org/10.24425/mms.2021.137702


H.M. Alhassan, N.A. Ghahremani: A NEW PREDICTIVE FILTER FOR NONLINEAR ALIGNMENT MODEL . . .

the measurement covariance is increased. The PKF is compared to the EKF using the same
data; the results demonstrate the effeteness of the PKF in terms of speed and accuracy of the
convergence.

5.1. Experiment equipment

In this test, the location of the tested SINS in a stationary car (Fig. 4a) and the hardware
consists of an MEMS inertial sensor model AIDS16488A (Fig. 4b), this IMU is fixed to a
stationary vehicle body to measure its linear acceleration and its angular rate. The Raspberry pi3
processor is used to store the test data, it communicates with the IMU via an RS-422 serial port.
The stored data is used as input to software implementation. Table 1 gives the main specifications
of this IMU [17].

a) b)

Fig. 4. (a) Test location, (b) Hardware adopted in the experiment.

Table 1. ADIS16488A specifications.

Parameters Misalignment
Axis

Bias
Repeatability

Bias
Stability

Random
Walk

Output
Noise

Noise
Density

Gyroscopes ± 0.05◦ ± 0.2◦/s 5.1◦/hr 0.26◦/
√
hr 0.135◦/s 0.0059◦/s/

√
Hz

Accelerometers ± 0.035◦ ± 16 mg 0.07 mg 0.029 m/s/
√
hr 1.29 mg 0.063 mg/

√
Hz

5.2. Results of the alignment test

The alignment process is performed using static SINS data. The test is run as an offline
simulation based on saved real data, the test time is 1200 seconds with a sample rate of 125 Hz.
To analyse the performance of the designed filter, The PKF is compared to the EKF using the
same measured data from the SINS output. In this experiment, a prediction horizon of 10 is used
in the PKF.

Table 2 and Table 3 show the results of the influence of increasing themeasurement covariance
R in the convergence performance of the proposed approach and the traditional EKF (10-state
filter algorithm).We assume three values for the standard deviation of themeasured velocity, these
values are σR = 10−3 m/s (This uncertainty is taken from datasheets of sensors), σR = 10−2 m/s
and σR = 10−1 m/s. It can be seen that the rate of convergence has increased in the proposed new
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method. The convergence performance of the PKF does not vary significantly with increasing
the uncertainty of the measurements, but the EKF is not robust enough if measurement noise
covariance is increased and its convergence time increases significantly. Accordingly, as the
covariance changes more and more, the PKF gains more and more performance relative to
the EKF.

Table 2. Results of the alignment experiment for roll and pitch misalignment angles.

PKF EKF

TEST No.
Roll misalignment Pitch misalignment Roll misalignment Pitch misalignment
RMS

(arc.sec)
STD

(arc.sec)
RMS

(arc.sec)
STD

(arc.min)
RMS

(arc.sec)
STD

(arc.sec)
RMS

(arc.sec)
STD

(arc.sec)

1 (σR = 10−3) 0.32 0032 0.3 0.3 0.24 0.23 0.23 0.22

2 (σR = 10−2) 0.035 0.035 0.042 0.029 0.56 0.51 0.73 0.67

3 (σR = 10−1) 0.044 0.005 0.17 0.005 2.35 2.15 1.68 1.56

mean 0.265 0.12 0.17 0.11 1.05 0.96 1.52 1.41

Table 3. Results of the alignment experiment for azimuth misalignment angle.

TEST No.
PKF EKF

RMS
(arc.min)

STD
(arc.min)

Convergence
Time (sec)

RMS
(arc.min)

STD
(arc.min)

Convergence
Time (sec)

1 (σR = 10−3) 0.39 0.14 8 1.12 0.91 150

2 (σR = 10−2) 2.67 0.003 20 11.38 10.42 400

3 (σR = 10−−1) 4.087 0.019 50 52.009 47.96 524

mean 2.38 0.054 21.5 19.76

In the following simulation results of implementing the PKF are shown. The solid lines
represent the results of the proposed method and the dashed lines represent the results of the EKF.
Fig. 5 illustrates the convergence of both PKF and EKF with respect to three different elements of
the measurement noise covariance for initial roll and pitch misalignment angles estimation task.
In the case of σR = 10−1 m/s, PKF estimation accuracy of the roll and pitch misalignment angles
is approximately 0.044′′ and 0.17′′, respectively, while EKF estimation accuracy of the roll and
pitch misalignment angles are approximately 2.35′′ and 1.68′′, respectively. Accordingly, it can
be seen in Fig. 5 that the performance of the PKF is better than that of the EKF There is much
improvement achieved using a PKF, the new algorithm converges more rapidly and accurately
than the EKF filter.

Fig. 6a illustrates the convergence of the both PKF and EKF with respect to three different
elements of the measurement noise covariance for initial azimuth misalignment angles estimation
task. In the case of σR = 10−1 m/s, the PKF estimation accuracy of the azimuth misalignment
angles are approximately 4.087′ ± 0.019′, while the EKF estimation accuracy of the azimuth
misalignment angles is approximately 52′ ± 48′. However, it is evident from Fig. 6 that the new
filter converges rapidly (less than 50 sec) and steadily during its estimation of the azimuth angle,
while the EKF filter has a steady state error and a long convergence time (about 524 sec). In
the conditions when there are uncertainties in noise covariance, the performance of the EKF is
expected to be degraded Simulation results prove this theory.
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Fig. 5. Comparing the convergence of roll and pitch angles for both PKF and EKF as a function of 3 elements of R.

a) b)

Fig. 6. Results for both PKF and EKF. (a): the convergence of azimuth angle. (b) the errors covariance.

Fig. 6b displays the results of the robustness of both PKF and EKF against uncertainty in
measurement noise covariance. The figure shows a significant increase in error covariance of
the EKF estimated azimuth misalignment. Therefore, the EKF is not robust with the changes
of measurement noise covariance. In conclusion, if prior information about the measurement
uncertainty matrixR is not specified accurately, it can cause the divergence of the EKF algorithm,
while the proposed PKF is robust.

Fig. 7 shows a comparison of results between the PKF and the EKF for the estimated north and
east velocity errors for the various changes in the measurement noise covariance. As expected,
the new algorithm converges more rapidly than the EKF filter.

Fig. 8 and Fig. 9 show the predicted model errors values of the horizontal accelerometers
and the three gyroscopes, these errors are predicted using the proposed filter without augmenting
the state variables. Therefore, the observation matrix of the PKF is full rank and all the five
state variables are observable, while the ten-state variables of the EKF are not all observables.
Therefore, the PKF has an appropriate specification which makes it more suitable for the SINS
alignment process without an external aiding.

In this paper, the traditional EKF needs 10-states (the horizontal velocity, misalignment
angle and accelerometer and gyroscope bias), while the proposed PKF method has full rank
observability. The PKF has 5-states only (the horizontal velocity and misalignment angles), the
accelerometer and gyroscope bias is predicted by (17). Therefore, using a fast processor, the
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Fig. 7. Comparison of results between the PKF and the EKF for the estimated north and east velocity errors.

Fig. 8. The predicted model error of the horizontal accelerometers using both PKF and EKF.

PKF can be executed in real-time. On the other hand, the variations of model errors of the
sensors are very slow with time. Therefore, the sample time of the optimization process can be
increased. Fig. 10a, Fig. 10b and Fig. 10c presents results of the estimated roll, pitch and azimuth
misalignment angles, respectively, for real-time PKF static alignment (alignment time equal to
60s and the sampling time equal to 50 ms).

To explain the filter stability, Fig. 11 shows the behaviour of the penalty function values
within the prediction horizon; its value does not increase along the system’s trajectories via each
prediction step. Therefore, the norm of the state is forced to decrease with time and the stability
result is reached.
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Fig. 9. The predicted model error of the gyroscopes using the PKF and gyroscopes drift using the EKF.

a) b) c)

Fig. 10. Real-time PKF, the estimated roll (a), pitch (b) and azimuth (c) misalignment errors.

Fig. 11. Values of the penalty function via the prediction horizon (p = 10) for 100 sampling time.
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6. Conclusions

This paper presents a novel predictiveKalman filter to decrease the static alignment time and to
improve the convergence performance during the two phases. First, the PKF algorithm is designed
to accurately predict INS errors to adjust the uncertain noise of MEMS-INS. Therefore, the INS
errors can be correctly compensated foe. Then an EKF is proposed to fuse the information of
MEMS-INS and zero velocity error to estimate the INS misalignment angles and velocity errors
to correct the velocity and attitude information of the navigation algorithm using a nonlinear
alignment model. To solve the EKF limitations, the proposed PKF approach determines model
error sequence which can match a predicted future of observations within a finite horizon. This
approach can compensate the predicted equivalent model error without augmenting the system
state space. This ensures the stability of the PKF and leads to an accurate and fast SINS alignment
process.

A real-life experiment was conducted to check the performance of the proposed algorithm
for the static alignment process with a large azimuth angle. The results indicate that the PKF
improves the rapidity and the convergence of the whole alignment process and the robustness
of the PKF against uncertainty in measurement noise. It can be inferred that the PKF has an
appropriate specification which makes it more suitable for the SINS alignment process than the
traditional EKF method.
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APPENDIX A: The nonlinear attitude equation derivation

In (19), the time rate of change of direction cosine matrix (DCM) Cn
b is linked to angular

velocity matrix Ωb
nb

via [1]:

Ċn
b = Cn

bΩb
nb = Cn

b (Ωb
ib −Ωb

in), (A1)

where matrix Ωb
nb

is the skew-symmetric form of ωb
nb
; the body rate relative to navigation frame

resolved in the body frame; vector ωb
nb

is ωb
nb
= ωb

ib
− Cb

nω
n
in. Also, matrix Ωb

ib
is the skew-

symmetric form of ωb
ib
, which is the true angular rate of the body frame relative to the inertial

frame, resolved in the body frame. Matrix Ωb
in represents the skew-symmetric matrix of true
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angular rate ωb
in of the navigation frame relative to the inertial frame coordinated in the body

frame. The computed version of (A1) is [16]:
˙̂C
n

b = Ĉn
b (Ω̂b

ib − Ω̂b
in). (A2)

In this paper, the error analysis uses perturbation method to linearize the nonlinear system
differential equation (A2). Perturbation analysis involves the substitution Ĉn

b = Cn′

b = Cn
b + δC

n
b ,

where matrix Ĉn
b is the computed DCM matrix, denoted as Cn′

b , matrix Cn
b is the true DCM and

δCn
b is the computed DCM matrix error. Therefore,

δCn
b = Cn′

b − C
n
b (A3)

or
δCn

b = (I − Cn
n′ )C

n′

b . (A4)

Since Ċn
b = Cn

bΩb
nb
= Cn

bΩb
ib
− Ωn

inC
n
b [16], then Ċn′

b
= Cn′

b Ω̂b
nb
= Cn′

b Ω̂b
ib
− Ω̂n

inC
n′

b , the
derivative of (A3) gives the following formula:

δĊn
b= Ċn′

b − Ċn
b = Cn′

b Ω̂b
ib − Ω̂n

inC
n′

b − C
n
bΩb

ib +Ωn
inC

n
b . (A5)

Similarly, the derivative of (A4) gives the following formula:

δĊn
b= −Ċn

n′Cn′

b + (I − Cn
n′ )Ċ

n′

b = −Ċn
n′Cn′

b +
(
I − Cn

n′

) (
Cn′

b Ω̂b
ib − Ω̂n

inC
n′

b

)
. (A6)

The perturbation method gives Ω̂b
ib
= Ωb

ib
+ δΩb

ib
, and the two equations (A5) and (A6) are

equivalent Thus, the following equation is obtained:

Cn
n′Ω

n′

nn′C
n′

b + C
n
bδΩb

ib +Ωn
inC

n
b − C

n
n′Ω̂

n
inC

n′

b = 0. (A7)

Right multiplying Cb
n′ and left multiplying Cn′

n to the above equation gives:

Ωn′

nn′ + C
n′

b δΩb
ibC

b
n′ + C

n′

n Ωn
inC

n
n′ − Ω̂n

in = 0. (A8)

Because the skew-symmetric matrices transform under the similarity transformation [1], then,
Ωn′

in = Cn′

n Ωn
inC

n
n′ and δΩn′

ib
= Cn′

b δΩb
ib
Cb

n′ . Therefore (A8) is rewritten as:

Ωn′

nn′ + δΩn′

ib +Ωn′

in −Ωn
in − δΩn

in = 0 (A9)

The matrix form of (A9) is converted to vectors form as follows:

ωn′

nn′ = ω
n
in − ω

n′

in + δω
n
in − δω

n′

ib =
(
I − Cn′

n

)
ωn
in + δω

n
in − C

n′

b δω
b
ib . (A10)

Vector ϕ =
[
ϕN ϕE ϕD

]T denotes the misalignment angles between the computed
navigation frame and the real navigation frame. If horizontal misalignment angles ϕN and ϕE
are small and azimuth misalignment angle ϕD is large, the SINS attitude error rate changes is
modelled as follows:

ϕ̇ ≈ ωn′

nn′ = (I − Cn′

n )ωn
in + δω

n
in − C

n′

b δω
b
ib , (A11)

where vectors ϕ̇ and ωn′

nn′ denote the angular rate between the computed navigation frame and
the real navigation frame, matrix I ∈ R3 is the unity matrix, matrix Cn′

n =
(
Cn

n′

)T
takes the form

of (23), the angular rate of navigation frame ωn
in and its perturbation error δωn

in are given as
presented in (25), matrixCn′

b is calculated as followsCn′

b = Cn′

n Cn
b , vector δω

b
ib
is the gyroscopes

model error.
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