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Horizontal gene transfer (HGT) is a process that allows genetic material to flow between even distantly related 
organisms. It is primarily observed in bacteria and protists but also in different lineages of eucaryotes. The first 
HGT cases in plants were discovered at the beginning of the 21st century and have been intensively studied ever 
since. Researchers have placed particular emphasis  on the plant kingdom, especially parasitic plants. This 
review presents the current state of knowledge about this phenomenon in plants, with a special focus on parasitic 
plants. 
Among the described factors facilitating HGT, close physical contact between organisms is believed to be one of 
the most important. It is noted especially in the case of parasitism and similar relationships. For that reason, 
reported occurrences of this phenomenon in holoparasites, hemiparasites, and mycoheterotrophic plants are 
compared. The mechanisms responsible for HGT in plants still remain unclear, however, the studies described 
here suggest that both DNA and RNA may play a role as a carrier in that process. Also, the transfer between 
genomes of different organelles in the cell, intracellular gene transfer (IGT), and its relationships with HGT are 
described. The occurrence of the HGT and IGT phenomena concerning different genomes: nuclear, 
mitochondrial, and plastid is discussed in the review. Finally, some future areas of research in the field are 
proposed.  
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INTRODUCTION 

Horizontal gene transfer (HGT), also known as 
lateral gene transfer, is usually described as 
a  process in which genetic material is passed 
between organisms in other ways than from parent 
to offspring, which can be regarded as “vertical”. 
Contrary to crossing, in which generally only DNA 
from closely related species may be joined in one 
organism, HGT allows pieces of genomes or even 
whole genomes to move between organisms belong-
ing to distant evolutionary lines. The phenomenon 
of horizontal gene transfer was initially described in 
bacteria and protists and is believed to be the most 
common and the main source of novel genes in 
these groups (Griffith, 1928; Freeman, 1951; 

Lawrence and Roth, 1996; Ochman et al., 2000; 
Koonin et al., 2001; Gogarten et al., 2002; Gogar-
ten, 2003; Keeling and Palmer, 2008).  

Later studies found many examples of its 
occurrence and importance in the evolution of 
multicellular eukaryotes, including fungi, plants, 
and animals (Koonin et al., 2001; Soucy et al., 
2015; Wickell and Li, 2020). Considering plants, 
several evolutionary improvements were probably 
realized via HGT, for example, the adaptation of 
ferns to low-light conditions (Li et al., 2014) and 
high insect resistance (Li et al., 2018), C4 photo-
synthesis in the grass lineage Alloteropsis (Christin 
et al., 2012), or even the synthesis of flavonoids and 
lignin, which was crucial for adaptation to terres-
trial environments (Emiliani et al., 2009).  
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Previous studies on HGT were conducted on 
particular genes and sequences, but the rapid 
development of new techniques such as NGS 
(Next-Generation Sequencing) enabled genome- 
wide insight into the HGT process (examples 
described below).  

The main aim of our paper is to summarize 
and review the current state of studies and knowl-
edge about the occurrence and significance of 
horizontal gene transfer with a focus on parasitic 
plants. 

HGT AND LIFESTYLE OF PLANTS 

Unicellular organisms are more susceptible to 
incorporation of foreign genes and more likely to 
pass them on to the next generations because when 
a gene is introduced into the cell’s genome it is 
simply transferred to the descendant cells/organ-
isms. It is more complicated in multicellular 
organisms because the transferred sequence must 
be included in the germline (at least when sexual 
reproduction is involved). Inheritance of the trans-
ferred gene is more likely when spores, zygotes, 
embryos, etc. are exposed to the environment, as 
was proposed in the “weak-link model” by Huang 
(2013). In other cases, as described below, other 
types of close contact between organisms may 
create opportunities for transfers. 

One of the most striking examples of HGT in 
plants was found in Amborella trichopoda which 
has an enormous, 3.9-megabase mitochondrial 
genome. Detailed studies revealed traces of many 
HGT events; most of its mitochondrial genes have 
one or more copies acquired from green algae, 
mosses, and other angiosperms. Furthermore, 
according to the authors, many of these transfers 
were large, including whole mitochondria followed 
by mitochondrial fusion and genome recombina-
tion (Bergthorsson et al., 2004; Rice et al., 2013). 
The authors associate the reason why A. trichopoda 
is such a good receptor for alien-genes with the 
lifestyle of the plant. Growing in tropical forests, it 
is frequently covered by many species of epiphytes, 
including bryophytes. The close plant-to-plant con-
tact, as in the case of epiphytism, may facilitate the 
transfer of genes between them (Bergthorsson et al., 
2004).  

Recent papers focusing on grasses revealed 
multiple HGT events between species belonging to 
that group. Possible mechanisms facilitating the 
movement of genes between grasses propounded by 

the authors include large pollen dispersal (that may 
result in contact of pollen tubes, belonging to 
different species, growing on the same stigma) 
and direct contact of plants growing close together, 
especially by root-to-root inosculation in perennial 
plants (Dunning et al., 2019; Hibdige et al., 2020).  

Indeed, considering conditions enabling the 
transfer of genetic material between multicellular 
organisms belonging to different species, close 
physical contact between them seems to be an 
important factor. Such a close connection is 
observed also between parasites and their hosts. 
Cell-to-cell contact with their hosts is the main 
reason why parasites are regarded as especially 
probable recipients (less frequent donors) of genes 
(Wijayawardena et al., 2013). Except for the small 
group of endophytic holoparasites that grow inside 
their hosts, parasitizing plants usually develop 
outside their hosts and are connected to them by 
haustoria. In some cases, they infiltrate the host’s 
roots in other cases - its shoots (Davis and Xi, 
2015). For some species, parasitism is indispen-
sable for survival and development (obligatory 
parasites), in other cases it is optional (facultative 
parasites). Due to the type of dependence on their 
hosts, parasites may be divided into hemiparasites 
and holoparasites. The first group includes photo-
synthesizing plants that uptake mainly water and 
mineral nutrients from the host, however, they may 
also get some organic substances. The latter have 
lost the ability of photoautotrophy, so due to lack of 
chlorophyll, they are not green and depend on their 
hosts for water, mineral nutrients, and organic 
ingredients. The uptake of organic substances 
requires a direct connection to the living cells of 
the host, which may also facilitate the movement of 
genetic material fragments between cells and, 
consequently, organisms. For that reason, holopar-
asites seem to be a good subject for identifying HGT 
cases and studying the mechanisms of the process 
(Davis and Xi, 2015; Schneider et al., 2018). 

Plant parasites use different parts of their 
bodies to connect with the hosts, which may decide 
whether the transferred genes become inherited by 
the next generations. Yang et al. (2019) in their 
research, observed a higher rate of HGT events in 
Cuscuta (Convolvulaceae) compared to holopara-
sitic Orobanchaceae, and proposed that it may be 
caused by the type of connection between the 
parasite and the host. Whereas Orobanchaceae 
are connected by haustoria attached to roots, 
Cuscuta forms haustorial stem connections. This 
is an important difference because in the latter 
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case, there is a shorter distance from the haustoria 
to flowers, and consequently, to cells that form 
gametes. The presence of the transferred gene in 
the gamete is indispensable to pass them on to the 
next generations of parasites. Although Oroban-
chaceae form haustoria at the early stages of their 
development (Joel et al., 2013) and so, initially the 
distance between the connection and the apical 
meristem, which eventually builds the stem and 
flowers is not distant, this timeframe may be too 
short to be as effective as the permanently close 
placement of haustoria and floral meristematic 
tissues observed in Cuscuta. 

Mycoheterotrophs are another group of hetero-
trophic plants. They do not obtain nutrients from 
other plants directly like parasites, but via a fungus. 
Despite HGT being very common in parasitic plants 
and the recent publication of a number of mito-
chondrial and nuclear genomes of mycohetero-
trophs (see references in Petersen et al., 2020; 
Shtratnikova et al., 2020), there is almost no 
indication of horizontal gene transfer in those 
plants. Because they both share some morphologi-
cal features and have a limited or nonexistent 
ability of photosynthesis, plant parasites and 
mycoheterotrophs are often grouped together. The 
nature of their interaction and connection with the 
host is, however, profoundly distinct. Mycohetero-
trophs do not form any structures similar to 
haustorium that would integrate them with the 
host plant tissues. There is also no evidence of 
transfer of RNA through mycorrhizal connections 
(Shtratnikova et al., 2020), contrary to the bidirec-
tional flow of nucleic acids observed in parasitic 
plants (Kim and Westwood, 2015).  

Mycoheterotrophic plants’ genomes could, in 
theory, contain transfers of foreign genetic material 
from both the fungus and the plant, that is the 
indirect donor of carbon. However, because in that 
case the plant to plant HGT would require two 
plant-fungal HGTs, it seems unlikely that mycohe-
terotrophs will show higher rates of foreign plants 
DNA than the autotrophic plants (Petersen et al., 
2020). HGT from a fungus requiring just a single 
step event seems more probable, although, for 
years the only examples of fungal HGT found in the 
angiosperms have involved the cox1 intron (Vaughn 
et al., 1995) and some linear plasmids (see 
references in Sinn and Barrett, 2020). This may 
be explained by possible barriers between angios-
perms and fungi, as was suggested by Richards 
et al. (2009). A new paper published by Sinn and 
Barrett in 2020 describes the first example of 

a genome-scale HGT between fungi and angiosperm 
plants (ancestors of the orchids). Interestingly, the 
fungi that were most probably the donors of the 
horizontally transferred genes were parasites them-
selves and not the species involved in mycoheter-
otrophic relations with orchids. Sinn and Barrett 
propose that while mycoheterotrophic organisms 
are establishing mycorrhizal connections, they may 
have a diminished defense response, which may 
make them less resistant to fungal infection and 
increase the probability of HGT. 

Fungi are also frequently involved in symbiotic 
relationships with plants, which opens another 
opportunity for different plant species that share 
the same fungal symbiont. This is one of the 
possible explanations of HGT between parasitic 
Loranthaceae and the fern Botrychium virginia-
num, suggested by Davis et al. (2005).  

Grafting is another method of a direct connec-
tion between plants, which may facilitate the move-
ment of genetic material. First, the possibility of 
transfer was reported for plastids (Stegemann and 
Bock, 2009; Stegemann et al., 2012), and later, 
experiments on Nicotiana grafts showed that 
nuclear genomes accompanied by plastid and 
mitochondrial ones may also be transferred be-
tween species, eventually even leading to new 
species formation (Fuentes et al., 2014). 

Finally, it has been suggested that a close 
evolutionary relationship, which is important for 
genetic compatibility, may play an important role in 
HGT and the fixation of alien sequences (Skipping-
ton and Ragan, 2012; Soucy et al., 2015). 

HGT BETWEEN PARASITIZING PLANTS 
AND THEIR HOSTS 

Parasitism in angiosperms has evolved indepen-
dently at least 11 (Barkman et al., 2007) or (most 
probably) even 12 times (Westwood et al., 2010; 
Zervas et al., 2019; Nickrent, 2020). Genetic 
studies of plant parasites are frequently focused 
on plastid and mitochondrial genomes. Plastid 
genomes often show signs of degradation, espe-
cially of genes connected with photosynthesis, and 
mitochondrial genomes, as explained below, are 
regarded as good receivers of alien DNA (Wicke 
et al., 2013; Cusimano and Wicke, 2015; Arimura, 
2018). Because parasitic plants are believed to be 
a promising model for HGT studies due to their 
intimate contact with hosts, horizontal gene trans-
fer in that group has been the subject of numerous 

Current studies on HGT in parasitic plants 19 



studies since the first decade of the 21st century 
(Davis and Xi, 2015). Below we summarize the 
studies on horizontal gene transfer in different 
species and groups with the focus on hemiparasites 
and holoparasites. 

Hemiparasites are not as dependent on their 
hosts as holoparasites and uptake less substances 
from them. Consequently they may be considered 
as less frequent HGT recipients. Several studies 
seem to confirm this hypothesis. About a decade 
ago Yoshida et al. (2010) used large-scale ex-
pressed sequence tag analysis to search for grass- 
like genes in the nuclear genome of Striga 
hermonthica. This member of the Orobanchaceae 
family is a parasite of species belonging to the 
Poaceae family, including crops such as Sorghum 
bicolor and Oryza sativa. They found a gene 
(ShContig9484) that encodes a 448-amino acid 
protein with an unknown function that was 
probably transferred from sorghum or a related 
grass species to the common ancestor of S. her-
monthica and S. gesnerioides. This sequence was 
probably transferred as mRNA, then reverse 
transcribed to DNA, and finally integrated into 
the nuclear genome. 

Five years later, a complex analysis of the 
mitochondrial genome of hemiparasitic Viscum 
scurruloideum was completed and published by 
Skippington et al. (2015). The authors described 
many interesting features of that mitogenome, 
including its reduction and gene loss. They also 
tried to find sequences that could have been 
horizontally transferred, but the only evident case 
was the cox1 intron, which was probably acquired 
recently.  

The mitochondrial cox1 intron is a sequence 
frequently found in different species as transferred 
from other lineages. It was probably originally 
transferred from fungi and then transferred many 
times independently in different angiosperm 
lineages (Sanchez-Puerta et al., 2008; Sanchez- 
Puerta, 2014). Detailed studies on parasitic plants 
showed that it is common in the examined species 
(with few exceptions), but not related to the 
parasitic style of life (Barkman et al., 2007; Fan 
et al., 2016). 

Also in 2015, the mitogenome of  V. album was 
published (Petersen et al., 2015). The results 
indicate that in this species the mitochondrial 
genome is also very divergent and multiple genes 
were lost. However, later studies (Skippington et al., 
2017) on V. album revealed evidence of a recent 
acquisition of matR and ccmB genes via horizontal 

gene transfers, probably from two different donors 
(Ericales and Santalales). 

In 2016, a study reported HGT findings in four 
members of Orobanchaceae with an increasing 
degree of parasitic dependence, including two 
hemiparasites: S. hermonthica and Triphysaria 
versicolor (Yang et al., 2016). The study, which 
focused on the nuclear genome, showed that 
transfers were found in all tested species, and what 
is especially interesting, as host dependence in-
creased, so did the number of transfers. More of 
them were identified in the holoparasite Pheli-
panche aegyptiaca (32 cases) than in the obligate 
hemiparasite S. hermonthica (10); in the faculta-
tive hemiparasite T. versicolor two transfers were 
found, and only one case in the free-living Linden-
bergia.  

In a similar study, two holoparasites (Oro-
banche minor and Aeginetia indica) and three 
facultative parasites (Pedicularis keiskei, Phtheir-
ospermum japonicum, and Melampyrum roseum) 
from the Orobanchaceae family were examined to 
check for HGT cases in the nuclear genome (Kado 
and Innan, 2018). Whereas in holoparasites, a total 
of 106 transferred genes was found (22 in O. minor 
and 84 in A. indica), there were no traces of HGT in 
the facultative parasites. In addition, the latest 
analysis of the non-nuclear genomes of Aeginetia 
indica conducted by Choi and Park (2021) showed 
that the atpI gene within the mitochondrial genome 
and the atpH gene within the plastid genome were 
obtained via HGT, with the host plant as the 
probable atpI donor. They also found intracellular 
transfer of two genes (ndhB and cemA) from the 
plastid genome to the mitogenome.  

Other studies focused on holoparasite Cuscuta 
where multiple transfers were detected through 
analyses of genomes and transcriptomes (Vogel 
et al., 2018; Yang et al., 2019) (see below).  

Because parasites uptake nutrients from 
hosts, it could be assumed that genes are only 
transferred from host to parasite. However, the 
opposite direction is also possible. In the early 
years of HGT studies which focused on plants, such 
a phenomenon was reported for two transfers of 
the atp1 gene to Plantago from their parasites 
Cuscuta and Bartsia (Mower et al., 2004). More 
detailed studies found two more mitochondrial 
genes (in addition to the previously found atp1), 
atp6 and matR, transferred from Cuscuta to the 
common ancestor of Plantago coronopus, 
P. macrorhiza, and P. subspathulata (Mower et al., 
2010). The authors suppose that these genes were 
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transferred as a rather long DNA string, maybe 
even a complete genome, and shortly afterwards the 
genes degenerated into pseudogenes. Likewise, 
studies on the evolution of the Geranium mitogen-
ome revealed many genes that derived via HGT 
from parasitic plants (mainly Cuscuta and Bartsia) 
(Park et al., 2015). 

DILEMMA: RNA OR DNA? 

Considering the possible mechanisms of horizontal 
gene transfer, one of the most fundamental ques-
tions is what kind of genetic information carrier is 
responsible for HGT. Generally, there are two 
possibilities: DNA and (m)RNA. In the first case, 
fragments of DNA strands or even whole genomes 
(see Amborella case above) are transferred from 
plant to plant and integrated with the recipient’s 
genome. The second possibility is a movement of 
mRNA from donor to recipient, followed by reverse 
transcription and insertion in the target DNA.  

The key to understanding the HGT mechan-
ism, at least in the case of host-parasite interac-
tion, may be the observation of which molecules 
are transferred through the host-parasite connec-
tion. Such studies were reported for several 
parasites, such as Cuscuta (C. reflexa, C. penta-
gona, and C. campestris) (Haupt et al., 2001; 
David-Schwartz et al., 2008; Westwood et al., 
2009; Kim and Westwood, 2015; Shahid et al., 
2018) where, besides other molecules, many 
mRNAs were found. 

Another way to resolve the “DNA or RNA?” 
question is to analyze the genes acquired by HGT. 
Some of their features may indicate their origins. 
The clue in this case may be the presence of 
introns. If a gene is found as an undivided strain 
of exons and was composed of exons and introns in 
the donor genome, then it may be regarded as 
reverse-translated mRNA. Other features may also 
indicate the mRNA-origin of a gene, like traces of 
poly-A tail, such as in the ShContig9484 sequence 
in Striga hermonthica (Yoshida et al., 2010), or 
enhanced nucleotides by mRNA edition.  

Later studies on Cuscuta (Yang et al., 2019), 
which based on genome sequencing, indicate that 
due to the presence of introns, at least functional 
genes (108 cases) received by HGT were trans-
ferred via DNA, rather than as retroprocessed 
RNA. More examples of DNA-mediated transfers 
were reported, e.g., for Rafflesia cantleyi (Xi et al., 
2012), species of Orobanche, Phelipanche, and 

Cuscuta (Zhang et al., 2013; Zhang et al. 2014) and 
some Orobanchaceae members (Yang et al., 2016; 
Kado and Innan, 2018). 

ROLE OF HGT IN PARASITE-HOST 
INTERACTION 

Studies on gene transfers between organisms 
inevitably lead to another important question: Do 
sequences acquired by HGT play an adaptive role? 
That question may be formulated more specifically 
when relationships between hosts and parasites are 
considered: Can sequences obtained by parasites 
play an important role in their parasitism?  

The transcriptome analysis of R. cantleyii (Xi 
et al., 2012) revealed that this holoparasite prob-
ably acquired several dozens of transcribed genes 
from its host Tetrastigma rafflesiae. In the 
authors' opinion, the raised rate of unidirectional 
HGT could indicate that it may be beneficial for the 
parasite. They hypothesize that host-originated 
genes that are expressed in Rafflesia may be 
engaged in “genomic deception” that aims to 
minimize the ability of the host to detect the 
parasite and mount a defense against it. This is 
undoubtedly an interesting idea, however, as the 
authors suggest, it needs  further confirmation. 

One of the most interesting discoveries in this 
field was made by Yang et al. (2019) in their study 
on Cuscuta campestris. They found that many of 
the genes acquired by HGT are expressed in 
haustoria and are involved in the defense response 
and amino acid metabolism. That may indicate that 
horizontal transfer plays an adaptive role in para-
site-host interaction. Also, their observations, to-
gether with previous results reported by Shahid 
et al. (2018), imply that HGT may be a source of 
mobile small RNAs that influence the host's gene 
expression. Such observations correspond with 
other reports regarding RNA flow between patho-
gens and hosts that have been observed, even 
between kingdoms. Generally, gene silencing via 
RNAs in pathogen-hosts relationships has already 
been described for many organisms, including 
plants, and is used by both hosts against parasites 
and pathogens to confer the host’s resistance (for 
reviews see e.g., Weiberg et al., 2014; Weiberg and 
Jin, 2015). In most cases, it includes one-way RNA 
flow, but there are exceptions. Pathogen fungi 
Botrytis cinerea and Verticillium dahliae deliver 
small RNAs to host plants to silence their immunity 
genes, while also uptaking the hosts’ RNAs (Wei-
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berg et al., 2013; Wang et al., 2016). Because this 
phenomenon concerns nucleic acids transfer be-
tween organisms, it may be an interesting subject in 
HGT studies, however, it is probably restricted to 
a narrow set of genes. 

Another interesting conclusion of the study on 
Cuscuta (Yang et al., 2019) is that 18 functional 
genes, that were acquired by this parasite through 
HGT, belong to the same gene families as the 
sequences that were independently horizontally 
transferred to parasites belonging to the Oroban-
chaceae family (Yang et al., 2016). Moreover, most 
of these genes are expressed in the haustoria of 
these two groups of parasites. All these observa-
tions strongly support the possibility of an adaptive 
role of HGT in the parasitic style of life. 

Recently, Cai et al. (2021) analyzed the genome 
of endoparasite Sapria himalayana (Rafflesiaceae) 
and found that at least 1.2% of its content, 
including both genic and intergenic sequences, 
was transferred via HGT from the host. The 
authors suggest that some of transferred genes 
are potentially adaptive for parasitism. 

SOURCE AND TARGET GENOMES OF HGT 

Plant cells possess three genomes that can be 
potential sources and/or targets of gene transfer: 
nuclear, mitochondrial, and plastid; each has 
different features and different abilities to be the 
donor or recipient of foreign genes. Since the 
beginnings of their endosymbiotic coexistence, 
many gene transfers have occurred between these 
organelles. This process, similar to HGT in which 
DNA is moved between different genomes of the 
cell, e.g., between mitochondria and nucleus, is 
called intracellular gene transfer (IGT). Generally, 
IGT is restricted to a single species (organism), 
however, it is possible that the sequence trans-
mitted by HGT may be transferred not only between 
species but also between different types of organella 
(Bergthorsson et al., 2003).  Considering three 
organelles, there are six theoretically possible 
transfer directions. Mainly, during evolution genes 
have migrated from mitochondria and plastids to 
the nucleus, which allowed, for example, a better 
coordination of gene expression in cells (Woodson 
and Chory, 2008; Kleine et al., 2009; Wolf, 2009). 
Both plastid and mitochondrial genomes resemble 
those of prokaryotes, because of their bacterial 
origins (Sagan, 1967). That similarity may suggest 
that the frequency of IGT and HGT events is 

comparable in these organelles, but such an 
assumption would be misleading due to several 
fundamental differences between them. The most 
important is that whereas mitochondria frequently 
fuse, fission, and recombine, plastids do it only in 
rare exceptions (Arimura et al., 2004; Stegemann 
et al., 2012; Arimura, 2018). Moreover, angio-
sperm mitochondria have more noncoding DNA 
(72-89%) than plastids (40-45%), which provides 
more space where alien sequences may be inte-
grated without disrupting the function of present 
genes (Rice and Palmer, 2006). Consequently, 
mitochondria are reported as frequent internal 
gene recipients (Koulintchenko et al., 2003; Zhao 
et al., 2019; Petersen et al., 2020), contrary to 
plastids. Comprehensive studies of 136 diverse 
species conducted by Gandini and Sanchez-Puerta 
(2017) revealed almost 1400 sequences transferred 
from plastids to mitochondria. The authors 
hypothesized that the plastid sequences were 
probably transferred by IGT from plastid to mito-
chondria in the same taxon and later between 
mitochondria of different species. 

However, some examples of IGT to plastids 
were also described. Studies on the mitochondrial 
and plastid genomes of Daucus (Iorizzo et al., 
2012a, 2012b) showed that a mitochondrial se-
quence was transferred to the plastid by a retro-
transposon. Other examples of IGT to plastids were 
reported in Asclepias syriaca (Straub et al., 2013), 
bamboos (Ma et al., 2015), and Paspalum (Burke 
et al., 2016).  

Mitochondrial genomes, as mentioned above, 
are regarded as quite good targets of alien genes, so 
it is not surprising that HGT events are also 
frequently reported in these organelles. The first 
reports of HGT in plants that did not involve mobile 
genetic elements or cox1 intron were reported for 
mitochondrial genes: atp1 (in Amborella), rps2 (in 
Actinidia), and rps11 (one case in Sanguinaria, 
second in Caprifoliaceae and one possible in 
Betulaceae) (Bergthorsson et al. 2003). One year 
later, a massive HGT was described in A. trichopo-
da (Bergthorsson et al., 2004), in which 20 of 31 
mitochondrial genes tested had one or more copies 
acquired from other species, mostly Angiosperms, 
but also from other groups of plants, including 
mosses. Later studies brought other reports of 
HGT to non-parasitic plants, but we will focus on 
parasites.  

The first report of HGT to mitochondria of 
parasitic plants (Davis and Wurdack, 2004) re-
ferred to Rafflesiaceae from plants of the order 
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Malpighiales. The analyses showed that, whereas 
phylogenetic trees based on mitochondrial matR 
and nuclear 18S ribosomal DNA and PHYC loci 
place Rafflesiaceae in Malphigiales, on the nad1B-C 
tree they are grouped with Vitaceae, close to 
Tetrastigma, which is their obligate host. Also, 
studies published in the same year (Nickrent et al., 
2004) suggested that matR and atp1 genes were 
transferred to Rafflesiaceae. 

HGT of a mitochondrial gene in Orobancha-
ceae was first reported by Kwolek et al. (2017). 
Orobanche coerulescens, and probably three spe-
cies of Phelipanche, contain atp6 genes acquired in 
two independent events from Asteraceae. The gene 
sequences suggest that the currently existing atp6 
genes in these species are the result of recombina-
tion of the original parasite gene and the one 
received from the host. While O. coerulescens 
sequences contain rather long fragments of the 
alien gene, the transferred segment of the gene 
found in the Phelipanche species is short and 
located in the terminal region of the analyzed DNA 
sequence. 

Some interesting studies were recently con-
ducted on Cynomorium coccineum, which is one 
of the most widespread (from western China to 
the Canary Islands) parasitic flowering plants 
and parasites species from at least 10 angiosperm 
families from different orders (Bellot et al., 2016; 
Cusimano and Renner, 2019). The tested samples 
belonged to different populations spread along 
its range. The authors found 10 horizontal trans-
fers of five mitochondrial genes (atp1, atp8, 
cox1, cox2, and ccmFn) that occurred at different 
stages of the species evolution. They reported 
different types of HGT gene integration or their 
coexistence with the original copies. Some alien 
and native copies coexisted and both remained 
functional. Moreover, more than one copy, inde-
pendently acquired from different hosts, may 
accompany the original, working gene. Other 
transferred genes remained alone, replacing the 
native copies. Recently, Sanchez-Puerta et al. 
(2019) sequenced the mitochondrial genome of 
Lophophytum mirabile (Balanophoraceae). The 
authors found that in nine of 60 circular-mapping 
chromosomes, over 80% DNA is of alien origin, 
probably acquired by HGT from legumes. 

As mentioned previously, plastids are consid-
ered as less receptive targets for HGT than 
mitochondria. However, some reports indicate that 
this phenomenon may also be observed for these 
organelles. Although so far most known cases have 

not concerned parasites, we report them shortly to 
demonstrate the possibility of such a process.  

The first possibility of a plastid genome 
transfer is a process called “organelle capture” in 
artificial and natural grafts (Stegemann and Bock, 
2009; Stegemann et al., 2012). As a result, whole 
plastid genomes may be transferred between 
species, however, to our knowledge, this has not 
been yet observed in plant parasites. The transfer 
of individual genes requires other mechanisms. 
Additionally, smaller parts of plastid genome may 
be transferred as shown by Rice and Palmer 
(2006), who reported the transfer, replacing the 
original, of the bacterial rpl36 gene to the chlor-
oplast in algae, which, in the author's opinion, 
required homologous recombination.  

Studies on Orobanche and Phelipanche spe-
cies by Park et al. (2007) suggest that the latter 
might have a horizontally acquired plastid region 
including the rps2, trnL-trnF, and rbcL plastid 
genes from the former, however, the target genome 
was not determined, and the vector remained 
speculative. The results of later studies concerning 
the plastid genome evolution (Wicke, 2013) suggest 
that the transferred fragment does not reside in the 
plastid genome.  

The nuclear genome, the largest of the three, is 
also involved in HGT. The studies on Striga 
hermonthica (Yoshida et al., 2010) mentioned 
above were the first discovery of such cases in 
parasitic plants. During the next years, other 
reports revealed more examples, including the 
previously described analysis of transcriptomes of 
holoparasite Rafflesia cantlei (Xi et al., 2012). In 
2013 Zhang et al. demonstrated a transfer of a gene 
encoding albumin 1 KNOTTIN-like protein from 
legumes to Phelipanche aegyptiaca and related 
species. Moreover, they found an independent 
transfer of that gene to Cuscuta pentagona. A year 
later, two independent transfers of strictosidine 
synthase-like (SSL) genes from Brassicaceae were 
described in P. aegyptiaca and Cuscuta australis 
(Zhang et al., 2014). 

Nowadays, such studies mainly rely on tech-
niques, such as NGS, that allow analyzing com-
plete genomes or transcriptomes. These methods 
allow to investigate all genes in the genome, 
indicate the length of the transferred sequences, 
estimate the frequency of the process, study other 
aspects of HGT, genome structure and evolution. 
This approach was used, for example, in studies on 
members of Orobanchaceae family (Kado and 
Innan, 2018), which were described above. 
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Furthermore, many cases of HGT were detected 
with the use of these techniques for Cuscuta. Vogel 
et al. (2018) found 64 high confidence HGT 
candidates in holoparasitic C. campestris. Yang 
et al. (2019) reported in their study 108 tran-
scribed and probably functional HGT events in 
C. campestris and related species, accompanied 
by 2 regions with host-derived transposons, pseu-
dogenes, and noncoding sequences. Also, recent 
studies on Sapria himalayana showed that at 
least 1.2% of its the genome was acquired by HGT 
(Cai et al., 2021).  

FINAL QUESTIONS AND THOUGHTS 

As described above, the phenomenon of horizontal 
gene transfer in parasitic plants (and non-parasitic 
plants) was in the past decades and is presently the 
subject of many studies that focus on different 
aspects of this phenomenon. Our knowledge of the 
topic is growing every year, but many aspects are 
still unexplained, and what is more, some of them 
are yet untouched. One of the most fundamental 
questions is why HGT occurrences are relatively 
frequent in some species and rare in others. Some 
organism features mentioned here, such as the type 
of connection between plants or the level of 
parasitism appear to facilitate HGT, but perhaps, 
we should also look for other causes, even beyond 
the organismal level.  

The transfer of the alien gene to the organism’s 
cell, its integration into the cellular genome, and the 
transfer to the next generation are just first steps 
and do not guarantee the spread and fixation of the 
newly acquired gene in the population and in the 
species. If such changes are beneficial to the 
carrier, its frequency should be increased in the 
next generations due to natural selection, just as 
other types of advantageous mutations. However, 
especially in the case of neutral genetic changes, 
genetic drift may play an important role. This 
mechanism is particularly strong in small popula-
tions, so they may be liable to fixation of different 
genetic changes from point mutation to wider 
genome changes (Lynch, 2007; Fontdevila, 2011). 
This phenomenon may also be important in the 
spread of HGT events, so it is worth examining 
whether there is a connection between the fre-
quency of transfers in genomes and the population 
sizes of their carriers. However, such studies would 
be practically difficult and rather restricted to 
recent HGT events. 

Genetic drift may also be considered at the 
subcellular level. In that case particular mitochon-
dria or plastids may be regarded as individuals in 
the population of organelles. When a genetic change 
occurs in mitochondrial or plastid DNA, whether 
from HGT or by other means, it starts in just 
a single organelle; one of dozens, hundreds or 
thousands. Therefore, the outcome depends on 
spreading of organelles in the population where 
evolutionary mechanisms such as natural selection 
and genetic drift work as well. It is worth remem-
bering that mitochondrial and plastid numbers 
may significantly differ between tissues and cells 
and may be inherited from only one of the parents 
(Cole, 2016 and citations herein).  
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