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Abstract

We develop and study in detail a new family of distributions called Half-
logistic Odd Power Generalized Weibull-G (HLOPGW-G) distribution, which
is a linear combination of the exponentiated-G family of distributions. From
the special cases considered, the model can fit heavy tailed data and has
non-monotonic hazard rate functions. We further assess and demonstrate the
performance of this family of distributions via simulation experiments. Real
data examples are given to demonstrate the applicability of the proposed model
compared to several other existing models.
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1 Introduction
Lately, more work has been done in developing new families by adding extra shape
parameters to achieve better fits and more flexibility in modelling practical data. Such
works include generalizations of the half logistic distribution that can fit skewed data
and also model non-monotonic hazard function. Bagdonavicius and Nikulin (2002)
developed an extension of the Weibull distribution, namely power generalized Weibull
(PGW) distribution and also proposed a chi-square statistic for testing the validity
of the PGW distribution and presented its application to censored survival times for
cancer patients. Lai (2018) described the PGW as one of the extensions of Weibull
distribution that can exhibit non-monotonic hazard rates. Nikulin and Haghighi
(2009) obtained maximum likelihood estimates (MLEs) of the parameters and the
importance of the model was illustrated using Efron’s head-and-neck cancer clinical
trial data, see Efron (1988). The PGW family can be used as a possible alternative
to the Exponentiated Weibull family for modelling lifetime data. The other model
that has been widely considered in modelling lifetime data is the Nadarajah-Haghighi
(NH) distribution developed by Nadarajah and Haghighi (2011) and the distribution
is a generalization of the exponential distribution.
Extensions of the half logistic distribution include work by Afify et al. (2017), Cordeiro
et al. (2014, 2016), El-sayed and Mahmoud (2019), Torabi and Bagheri (2010),
Sumeet et al. (2010), Balakrishnan and Aggarwala (1996), Kumar et al. (2015),
Balakrishnan and Wong (1994), Balakrishnan and Chan (1992) and Muhammad
(2017). The development of generalized-G (G-G) families led to the advent of flexible
models that can handle heavy skewed and heavy tailed data well compared to some
of the baseline distributions. The generalized models can also fit both non-monotonic
and monotonic hazard rate functions. Some of the work on G-G families include work
by Marshall and Olkin (1997), Eugene et al. (2002), Cordeiro and de Castro (2011)
and Chipepa et al. (2019a, 2019b), to mention a few.
Cordeiro et al. (2016), developed the type I half-logistic family of distributions with
the cumulative distribution function (cdf) given by

F (x;λ, ξ) =
∫ − ln(1−G(x;ξ))

0

2λ exp{−λx}
(1 + exp{−λx})2 dx =

=
1− [1−G(x; ξ)]λ

1 + [1−G(x; ξ)]λ , (1)

where G(x; ξ) is the cdf of the baseline distribution, λ > 0 is the shape parameter
and ξ is the vector of parameters. If we set λ = 1 in Equation (1), then the type I
half-logistic family of distributions reduces to half-logistic-G (HL-G) model, with cdf
and pdf given by

F (x; ξ) =
G(x; ξ)

1 +G(x; ξ)
, (2)
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and
f(x; ξ) =

2g(x; ξ)
(1 +G(x; ξ))2

, (3)

respectively.
Generalizations of the half logistic distribution produced very flexible distributions
that fit well to data with varying levels of skewness and kurtosis. It is due to this
motivation that we developed the Half Logistic Odd Power Generalized Weibull-
G (HLOPGW-G) family of distributions which is versatile and more flexible in
fitting data. The proposed model is considered under a situation where the baseline
distribution has an extra shape parameter. The new distribution also has interesting
tractability properties which can be traced back to the exponentiated-G (Exp-G)
family of distributions.
The new family of distributions can model highly skewed and tailed data better than
some of the baseline distributions. The flexibility of the new model applies to data sets
with varying skewness and kurtosis including data that has non-monotonic hazard rate
functions. The distribution can be expressed as an infinite linear combination of the
exponentiated-G distribution, which easily allows for the derivation of its statistical
properties. Furthermore, the new family of distributions contains several known and
new sub-models and some of the existing sub-families include type I half-logistic and
half-logistic-G families given by Equations (1) and (2), respectively. Finally, the
development of this new family of distributions is necessitated by the need to model
various forms of lifetime data to include, economics, engineering, survival analysis
and finance with models that takes into consideration not only shape and scale but
also skewness, kurtosis and tail variation. Consider a random variable X having the
cdf given by G(x; ξ), where ξ, is a vector of parameters, then the survival function of
X is given by Ḡ(x; ξ) = 1 − G(x; ξ) with the pdf defined by g(x; ξ) = dG(x; ξ)/dx.
The odd power generalized Weibull-G (OPGW-G) family has its cdf and pdf defined
by

F (x) = 1− exp

1−
[

1 +
(
G(x; ξ)
G(x; ξ)

)α]β (4)

and

f(x) = αβ

[
1 +

(
G(x; ξ)
G(x; ξ)

)α]β−1

exp

1−
[

1 +
(
G(x; ξ)
G(x; ξ)

)α]β×
×
(
G(x; ξ)

)α−1 (
G(x; ξ)

)−(α+1)
g(x; ξ), (5)

respectively for α, β > 0 and ξ as vector of parameters from the baseline distribution
(see Moakofi et al. 2020).
In this article, we develop the new family of distributions namely the Half Logistic Odd
Power GeneralizedWeibull-G (HLOPGW-G) family of distributions. The organization
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of this paper is as follows: Section 2 presents the new generalized family of
distributions with series expansion of the density, quantile and hazard rate functions.
Some of the special cases of the HLOPGW-G family of distributions are presented
in Section 3. Structural properties including the distribution of order statistics,
Rényi entropy, moments, probability weighted moments and generating functions
are presented in Section 4. Section 5 presents the maximum likelihood estimates.
Monte Carlo simulations are performed to study the behaviour of maximum likelihood
estimators for some selected parameters under Section 6 We run some applications
of this model to real datasets under Section 7 and finally give concluding remarks in
Section 8.

2 Half-logistic odd power generalized Weibull-G
model

A new family of distributions, namely, the Half Logistic odd Power Generalized
Weibull-G (HLOPGW-G) distributions is developed and studied in this section. Series
representation of this new family of distributions is also presented. We combine and
extend the results by Cordeiro et al. (2016) (see Equations (2) and (3)) and Equations
(4) and (5), to derive the HLOPGW-G family of distributions with cdf and pdf given
by

F (x;α, β, ξ) =
1− exp

{
1−

[
1 +

(
G(x;ξ)
G(x;ξ)

)α]β}

1 + exp
{

1−
[
1 +

(
G(x;ξ)
G(x;ξ)

)α]β} (6)

and

f(x;α, β, ξ) = 2αβ
[

1 +
(
G(x; ξ)
G(x; ξ)

)α]β−1

exp

1−
[

1 +
(
G(x; ξ)
G(x; ξ)

)α]β×
×
(
G(x; ξ)

)α−1 (
G(x; ξ)

)−(α+1)×

×

1 + exp

1−
[

1 +
(
G(x; ξ)
G(x; ξ)

)α]β
−2

g(x; ξ), (7)

respectively, for α, β > 0 and parameter vector ξ. Note that by fixing some of the
parameters, we obtain new sub-families of the HLOPGW-G family of distributions
given by Table 1.
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Table 1: New Sub-families of HLOPGW-G family of Distributions

Distribution α β

Half-Logistic Odd Weibull-G (HLOW-G) - 1
Half-Logistic Odd Nadarajah Haghighi-G (HLONH-G) 1 -
Half-Logistic Odd Exponential-G (HLOE-G) 1 1
Half-Logistic Odd Rayleigh-G (HLOR-G) 2 1

2.1 The hazard rate and quantile functions
This subsection presents the hazard rate function (hrf) and quantile function (qf)
for the HLOPGW-G family of distributions. The hrf for the HLOPGW-G family of
distributions is given by

h(x;α, β, ξ) =
αβ

[
1 +

(
G(x;ξ)
G(x;ξ)

)α]β−1 (
G(x; ξ)

)α−1
g(x; ξ)

(
G(x; ξ)

)α+1
(

1 + exp
{

1−
[
1 +

(
G(x;ξ)
G(x;ξ)

)α]β}) ,
for α, β > 0 and parameter vector ξ. The qf is derived by inverting the cdf given by
Equation (6). We invert the function

1− exp
{

1−
[
1 +

(
G(x;ξ)
G(x;ξ)

)α]β}

1 + exp
{

1−
[
1 +

(
G(x;ξ)
G(x;ξ)

)α]β} = u,

for 0 ≤ u ≤ 1, which simplifies to

1− u = (1 + u) exp

1−
[

1 +
(
G(x; ξ)
G(x; ξ)

)α]β ,

and can be written as(
[1 + ln(1 + u)− ln(1− u)]1/β − 1

)1/α

=
(
G(x; ξ)
G(x; ξ)

)
,

which simplifies to

G(x; ξ) =
([

(1 + ln(1 + u)− ln(1− u))]1/β − 1
]−1/α

+ 1
)−1

.
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The quantiles of the HLOPGW-G family of distributions may be determined by
solving the equation

x(u) = G−1

[([
(1 + ln(1 + u)− ln(1− u))]1/β − 1

]−1
α + 1

)−1 ]
, (8)

using iterative methods.

2.2 Expansion of the density function
Series expansion of the HLOPGW-G family of distributions is presented under
this subsection. By applying Equation (7) and using series representation
(1− x)−2 =

∑∞
n=1 nx

n−1, for |x| < 1, we obtain

1 + exp

1−
[

1 +
(
G(x; ξ)
G(x; ξ)

)α]β
−2

=

=
∞∑
n=1

(−1)n−1n

[
exp

1−
[

1 +
(
G(x; ξ)
G(x; ξ)

)α]β
]n−1

so that

f(x;α, β, ξ) = 2αβ
∞∑
n=1

(−1)n−1n

[
1 +

(
G(x; ξ)
G(x; ξ)

)α]β−1

×

× exp

n
1−

[
1 +

(
G(x; ξ)
G(x; ξ)

)α]β×
×
(
G(x; ξ)

)α−1 (
G(x; ξ)

)−(α+1)
g(x; ξ).

Applying the exponential series expansion ex =
∑∞
n=0

xn

n! and the binomial expansion
(x+ y)n =

∑∞
m=0

(
n
m

)
xmyn−m, n ≥ 0, an integer or |x/y| < 1, we can write

exp

n
1−

[
1 +

(
G(x; ξ)
G(x; ξ)

)α]β =
∞∑

q,k=0

nq

q!

(
q

k

)
(−1)k

[
1 +

(
G(x; ξ)
G(x; ξ)

)α]βk
,
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so that

f(x;α, β, ξ) = 2αβ
∞∑
n=1

∞∑
q,k=0

nq+1

q!

(
q

k

)
(−1)k+n−1

[
1 +

(
G(x; ξ)
G(x; ξ)

)α]β(k+1)−1

×

×
(
G(x; ξ)

)α−1 (
G(x; ξ)

)−(α+1)
g(x; ξ).

Considering the generalized binomial expansion, we get[
1 +

(
G(x; ξ)
G(x; ξ)

)α]β(k+1)−1

=
∞∑
m=0

(
β(k + 1)− 1

m

)(
G(x; ξ)
G(x; ξ)

)αm
,

for β(k + 1) > 1 and β > 1 such that

f(x;α, β, ξ) = 2αβ
∞∑
n=1

∞∑
q,k,m=0

(
β(k + 1)− 1

m

)
nq+1

q!

(
q

k

)
(−1)k+n−1 ×

×
(
G(x; ξ)

)α(m+1)−1 (
G(x; ξ)

)−(α(m+1)+1)
g(x; ξ).

Now applying the series expansion

[G(x; ξ)]−(α(m+1)+1) =
∞∑
l=0

(
−α((m+ 1) + 1)

l

)
(−1)lGl(x; ξ),

we have

f(x;α, β, ξ) = 2αβ
∞∑
n=1

∞∑
q,k,m,l=0

(
−α((m+ 1) + 1)

l

)(
β(k + 1)− 1

m

)
×

× nq+1

q!

(
q

k

)
(−1)l+k+n−1 (G(x; ξ)

)l+α(m+1)−1
g(x; ξ).

We can therefore write the series expansion of Equation (7) as

f(x;α, β, ξ) =
∞∑
p=0

vpgp(x; ξ), (9)

where

vp = 2αβ
∞∑
n=1

∞∑
q,k,m=0

(
−α((m+ 1) + 1)

l

)(
β(k + 1)− 1

m

)
nq+1

q!

(
q

k

)
(−1)l+k+n−1

p+ α(m+ 1)
(10)
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for β(k + 1) > 1, β > 1 and gp(x; ξ) = pg(x; ξ)[G(x; ξ)]p−1 is an Exp-G with power
parameter p. The HLOPGW-G distribution is a linear combination of Exp-G densities
and the mathematical properties of the HLOPGW-G family of distributions can be
readily obtained directly from the Exp-G family of distributions.

3 Some special cases
This section presents some special cases of the HLOPGW-G family of distributions.
The baseline distributions considered are restricted to at most two parameter models
to avoid the problem of over-parametrization.

3.1 Half logistic odd power generalized Weibull-uniform
(HLOPGW-U) distribution

Let the uniform distribution be the baseline distribution with pdf and cdf given by
g(x) = 1/λ and G(x;λ) = x/λ, respectively, for 0 < x < λ. We obtain the cdf, pdf
and hrf of the HLOPGW-U distribution which are given by

F (x;α, β, λ) =
1− exp

{
1−

[
1 +

(
x

λ−x

)α]β}
1 + exp

{
1−

[
1 +

(
x

λ−x

)α]β} , (11)

f(x;α, β, λ) = 2αβ
λ

[
1 +

(
x

λ− x

)α]β−1

exp
{

1−
[
1 +

(
x

λ− x

)α]β}(x
λ

)α−1
×

×
(

1− x

λ

)−(α+1)
(

1 + exp
{

1−
[
1 +

(
x

λ− x

)α]β})−2

(12)

and

h(x;α, β, λ) =
αβ
[
1 +

(
x

λ−x

)α]β−1 (
x
λ

)α−1

λ
(
1− x

λ

)α+1
(

1 + exp
{

1−
[
1 +

(
x

λ−x

)α]β}) ,
respectively for α, β, λ > 0. The pdf and hrf plots for the HLOPGW-U distribution
are given in Figures 1 and 2.
Figures 1 and 2 demonstrate the flexible nature of the HLOPGW-U distribution for
some parameter values. The pdfs of the HLOPGW-U distribution can take various
shapes that include reverse-J, uni-modal, left or right skewed shapes. Furthermore,
the HLOPGW-U distribution exhibit decreasing, increasing, upside down bathtub,
bathtub followed by upside down bathtub shapes for the hrf.
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Figure 1: pdf plots for the HLOPGW-U distribution
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Figure 2: hrf plots for the HLOPGW-U distribution
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The corresponding quantile function (qf) for the half logistic odd power generalized
Weibull-Uniform (HLOPGW-U) distribution is derived by inverting the cdf given by
Equation (11) as follows:
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F (x;α, β, λ) =
1− exp

{
1−

[
1 +

(
x

λ−x

)α]β}
1 + exp

{
1−

[
1 +

(
x

λ−x

)α]β} = u,

for 0 ≤ u ≤ 1, which implies

1− u = (1 + u) exp
{

1−
[
1 +

(
x

λ− x

)α]β}
,

and we can write (
1− u
1 + u

)
= exp

{
1−

[
1 +

(
x

λ− x

)α]β}
,

such that

ln
(

1− u
1 + u

)
=
(

1−
[
1 +

(
x

λ− x

)α]β)
.

Consequently, after some few algebra, we can write the quantile function for
HLOPGW-U distribution as

x(u) = λ


([1− ln

(
1− u
1 + u

)] 1
β

− 1
) 1
α

−1

+ 1


−1

,

and may be determined using iterative methods. The quantile values for the
HLOPGW-U distribution are given in Table 2.

Table 2: Table of Quantiles for Selected Parameters of the HLOPGW-U Distribution

u (0.4,0.6,1.0) (0.5,0.6,1.0) (0.2,0.8,1.0) (0.5,0.5,1.0) (0.9,0.6,1.0)

0.1 0.0704 0.1126 0.0010 0.1632 0.2411
0.2 0.3374 0.3682 0.0402 0.4875 0.4256
0.3 0.6276 0.6029 0.2780 0.7244 0.5577
0.4 0.8089 0.7603 0.6713 0.8533 0.6550
0.5 0.9029 0.8561 3.8921 0.9205 0.7292
0.6 0.9505 0.9140 0.9670 0.9565 0.7881
0.7 0.9752 0.9497 0.9902 0.9767 0.8365
0.8 0.9884 0.9724 0.9973 0.9883 0.8786
0.9 0.9957 0.9873 0.9994 0.9953 0.9185
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3.2 Half logistic odd power generalized Weibull-Lomax
(HLOPGW-Lx) distribution

Consider the Lomax distribution as the baseline distribution having shape parameters
a > 0, b > 0 having cdf and pdf G(x) = [1 + x

b ]−a and g(x) = (ab )[1 + x
b ]−a−1,

respectively. The cdf, pdf and hrf of the HLOPGW-Lx distribution are given by

F (x;α, β, a, b) =

1− exp

1−
[

1 +
( [

1 + x
b

]−a
1−

[
1 + x

b

]−a)α
]β

1 + exp

1−
[

1 +
( [

1 + x
b

]−a
1−

[
1 + x

b

]−a)α
]β

, (13)

f(x;α, β, a, b) =
2αβ

[(
1 + x

b

)−a]α−1
[

1 +
( [

1 + x
b

]−a
1−

[
1 + x

b

]−a)α
]β−1

1 + exp

1−
[

1 +
( [

1 + x
b

]−a
1−

[
1 + x

b

]−a)α
]β

2 ×

× exp

1−
[

1 +
( [

1 + x
b

]−a
1−

[
1 + x

b

]−a)α
]β×

×
[
1−

(
1 + x

b

)−a]−(α+1)(
a

b

)(
1 + x

b

)−a−1

h(x;α, β, a, b) =
αβ
(
a
b

) [(
1 + x

b

)−a]α−1
[

1 +
( [

1 + x
b

]−a
1−

[
1 + x

b

]−a)α
]β−1

[
1−

(
1 + x

b

)−a]α+1 (
1 + x

b

)a+1
×

×

1 + exp

1−
[

1 +
( [

1 + x
b

]−a
1−

[
1 + x

b

]−a)α
]β

−1

,

respectively for α, β, a, b > 0. The pdf and hrf plots for the HLOPGW-Lx distribution
are given in Figures 3 and 4.
Figures 3 and 4 illustrate the flexible nature of the HLOPGW-Lx distribution for
some parameter values. The pdfs of the HLOPGW-Lx distribution can take various
shapes that include reverse-J, uni-modal, left or right skewed shapes. Furthermore,
the HLOPGW-Lx distribution exhibit reverse-J, decreasing, increasing, bathtub and
upside down bathtub shapes for the hazard rate function.
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Figure 3: pdf plots for the HLOPGW-Lx distribution
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Figure 4: hrf plots for the HLOPGW-Lx distribution
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Similarly, we derive the quantile function for the HLOPGW-Lx distribution by
inverting Equation (13) as follows:
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F (x;α, β, a, b) =

1− exp

1−
[

1 +
( [

1 + x
b

]−a
1−

[
1 + x

b

]−a)α
]β

1 + exp

1−
[

1 +
( [

1 + x
b

]−a
1−

[
1 + x

b

]−a)α
]β

= u,

for 0 ≤ u ≤ 1 and

1− u = (1 + u) exp

1−
[

1 +
( [

1 + x
b

]−a
1−

[
1 + x

b

]−a)α
]β ,

such that [
1 +

( [
1 + x

b

]−a
1−

[
1 + x

b

]−a)α
]

= [1 + ln(1 + u)− ln(1− u)]1/β .

Furthermore, we can write[
1 + x

b

]−a
1−

[
1 + x

b

]−a =
(

[1 + ln(1 + u)− ln(1− u)]
1
β − 1

)1/α
,

that is to say [
1 + x

b

]a
=
(

[1 + ln(1 + u)− ln(1− u)]
1
β − 1

)−1/α
+ 1.

Finally, the quantile values for the HLOPGW-Lx distribution are obtained by solving
the equation

x(u) = b

{[(
[1 + ln(1 + u)− ln(1− u)]

1
β − 1

)−1/α
+ 1
]1/a

− 1
}
,

using iterative methods.

3.3 Half logistic odd power generalized Weibull-Beta
(HLOPGW-B) distribution

Let the Beta distribution be the baseline distribution having shape parameters
a, b > 0 having the cdf and pdf G(x) = Ix(a, b) = (1/B(a, b))

∫ x
0 ta−1(1 − t)b−1dt

and g(x) = (1/B(a, b))xa−1(1− x)b−1, for 0 < x < 1, respectively. The cdf, pdf and
hrf of HLOPGW-B distribution are given by

13 P. O. Peter et al.
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F (x;α, β, a, b) =
1− exp

{
1−

[
1 +

(
Ix(a, b)

1− Ix(a, b)

)α]β}

1 + exp
{

1−
[
1 +

(
Ix(a, b)

1− Ix(a, b)

)α]β} , (14)

f(x;α, β, a, b) =
2αβ [Ix(a, b)]α−1

[
1 +

(
Ix(a, b)

1− Ix(a, b)

)α]β−1

xa−1(1− x)b−1

B(a, b)
(

1 + exp
{

1−
[
1 +

(
Ix(a, b)

1− Ix(a, b)

)α]β})2 ×

× exp
{

1−
[
1 +

(
Ix(a, b)

1− Ix(a, b)

)α]β}
(1− Ix(a, b))−(α+1)

and

h(x;α, β, a, b) =
αβ [Ix(a, b)]α−1

[
1 +

(
Ix(a, b)

1− Ix(a, b)

)α]β−1

xa−1(1− x)b−1

B(a, b) [1− Ix(a, b)]α+1

(
1 + exp

{
1−

[
1 +

(
Ix(a, b)

1− Ix(a, b)

)α]β}) ,

respectively for α, β, a, b > 0. The pdf and hrf plots for the HLOPGW-B distribution
are given in Figures 5 and 6.
Figures 5 and 6 present good illustration on the flexibility of the HLOPGW-B
distribution for selected parameter values. The pdfs of the HLOPGW-B distribution
exhibits various shapes that include reverse-J, uni-modal, left or right skewed shapes.
The shapes of HLOPGW-B hrf are decreasing, reverse-J, bathtub, bathtub followed
by upside down bathtub shape.
The quantile function for the HLOPGW-B distribution is derived by inverting
Equation (14), such that

F (x;α, β, a, b) = u, 0 ≤ u ≤ 1,

and therefore we can write

1− u = (1 + u) exp
{

1−
[
1 +

(
Ix(a, b)

1− Ix(a, b)

)α]β}
,

P. O. Peter et al.
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Figure 5: pdf plots for the HLOPGW-B distribution
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Figure 6: hrf plots for the HLOPGW-B distribution
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such that

Ix(a, b)
1− Ix(a, b) =

(
[1 + ln(1 + u)− ln(1− u)]

1
β − 1

) 1
α

,

15 P. O. Peter et al.
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which simplifies to

Ix(a, b) =
{[

(1 + ln(1 + u)− ln(1− u))
1
β − 1

]−1/α
+ 1
}−1

.

Finally, we can write the quantile function for the HLOPGW-B distribution as

x(u) = Q−1

{
a, b

[(
[1 + ln(1 + u)− ln(1− u)]

1
β − 1

)−1/α
+ 1
]−1

}
,

which can be solved using iterative methods.

3.4 Identifiability of some special cases
In this subsection, we prove the identifiability property for all the special cases
considered in this study. Identifiability is a statistical property that a model must
satisfy for precise inference to be possible. To prove the identifiability property for
special cases studied in this work, we will show that the transformation which maps
the prediction function is one-to-one for all sets of parameters. A model that fails to be
identifiable is said to be non-identifiable if two or more parameters are observationally
equivalent.

i) The HLOPGW-Uniform (HLOPGW-U) case
Let the random variable X ∼ HLOPGW − U(ξ), where ξ = (α, β, λ)T is a
vector of model parameters. Consider ξ

i
= (αi, βi, λi)T and ξ

j
= (αj , βj , λj)T

as the two vectors of model parameters having cdfs given by G(x;αi, βi, λi) and
G(x;αj , βj , λj), respectively, for all ξ

i
= ξ

j
, with i = j and i, j ≥ 1, then by

defination of identifiability, we have

G(x; ξ
i
) = G(x; ξ

j
).

Note that by the above definition and using Equation (11), we can write

1− exp
{

1−
[
1 +

(
x

λi − x

)αi]βi}

1 + exp
{

1−
[
1 +

(
x

λi − x

)αi]βi} =
1− exp

{
1−

[
1 +

(
x

λj − x

)αj]βj}

1 + exp
{

1−
[
1 +

(
x

λj − x

)αj]βj} ,

that is to say
F (x; ξ

i
) = F (x; ξ

j
),

for ξ
i

= ξ
j
, and therefore the HLOPGW-U distribution is identifiable.

P. O. Peter et al.
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ii) The HLOPGW-Lomax (HLOPGW-Lx) case
Applying the same approach used under the HLOPGW-Uniform case, we can
show that if X ∼ HLOPGW − Lx(α, β, a, b) with ψ1 = (α1, β1, a1, b1)T and
ψ2 = (α2, β2, a2, b2)T as vectors of model parameters having cdfs given by
G(x;α1, β1, a1, b1) and G(x;α2, β2, a2, b2), respectively. Let ψ1 = ψ2, then by
Equation (13), we can write

F (x;ψ1) = F (x;ψ2) =

1− exp

1−
[

1 +
( [

1 + x
b1

]−a1

1−
[
1 + x

b1

]−a1

)α1
]β1


1 + exp

1−
[

1 +
( [

1 + x
b1

]−a1

1−
[
1 + x

b1

]−a1

)α1
]β1


=

=

1− exp

1−
[

1 +
( [

1 + x
b2

]−a2

1−
[
1 + x

b2

]−a2

)α2
]β2


1 + exp

1−
[

1 +
( [

1 + x
b2

]−a2

1−
[
1 + x

b2

]−a2

)α2
]β2

,

and finally we can conclude that the HLOPGW-Lx distribution is identifiable.

iii) The HLOPGW-Beta (HLOPGW-B) case
Let Ω1 = (α1, β1, a1, b1)T and Ω2 = (α2, β2, a2, b2)T be the two vector
of parameters from the HLOPGW-B distribution with cdfs given by
G(x;α1, β1, a1, b1) and G(x;α2, β2, a2, b2), respectively, then by definition of
identifiability, we have

G(x;α1, β1, a1, b1) = G(x;α2, β2, a2, b2),

such that using Equation (14), we have

1− exp
{

1−
[
1 +

(
Ix(a1, b1)

1− Ix(a1, b1)

)α1]β1
}

1 + exp
{

1−
[
1 +

(
Ix(a1, b1)

1− Ix(a1, b1)

)α1]β1
} =

=
1− exp

{
1−

[
1 +

(
Ix(a2, b2)

1− Ix(a2, b2)

)α2]β2
}

1 + exp
{

1−
[
1 +

(
Ix(a2, b2)

1− Ix(a2, b2)

)α2]β2
} .
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Note since we have Ω1 = Ω2, then the HLOPGW-B distribution is identifiable.

4 Mathematical and statistical properties
In this section, some statistical properties of the HLOPGW-G family of distributions,
namely: order statistics, entropy, moments, incomplete moments, probability
weighted moments (PWMs) and generating functions are derived.

4.1 Distribution of order statistics
The use of order statistics is critical in the study of probability and statistical
inference. It has wider applications in various studies, namely: hypothesis testing,
theory of estimation, reliability, and statistical quality control. The pdf of the ith
order statistics can be obtained using Equation (15):

fi:n(x) = f(x)
B(i, n− i+ 1)

n−j∑
j=0

(
n− i
j

)
F (x)j+i−1, (15)

where B(·, ·) is the beta function. Substituting Equations (6) and (7) into Equation
(15), and applying the generalized binomial series expansion used under the density
expansion, we can write the pdf of the ith order statistic from the HLOPGW-G family
of distributions as

fi:n(x) = 2αβ
B(i, n− i+ 1)

(
n− i
j

) ∞∑
m,n,p,k,q,w=0

(
−(α(q + 1) + 1)

w

)
(−1)w×

×
(
β(k + 1)− 1

q

)
(m+ n+ 1)p(−1)k+n

p!

(
p

k

)(
j + i− 1

n

)(
−(j + i+ 1)

m

)
×

×
(
G(x; ξ)

)w+α(q+1)−1
g(x; ξ) =

=
∞∑

w,q=0
v∗w,qgw,q(x; ξ), (16)

after some algebra, where gw,q(x; ξ) = (w + α(q + 1))g(x; ξ)[G(x; ξ)]w+α(q+1)−1 is an
Exp-G distribution with power parameter w + α(q + 1) and

v∗w,q = 2αβ(−1)w

B(i, n− i+ 1)

(
n− i
j

) ∞∑
m,n,p,k=0

(
−(α(q + 1) + 1)

w

)(
p

k

)
×

×
(
β(k + 1)− 1

q

)
(m+ n+ 1)p(−1)k+n

p!(w + α(q + 1))

(
j + i− 1

n

)(
−(j + i+ 1)

m

)
.

Finally, the pdf of the ith order statistics from the HLOPGW-G family of distributions
can be expressed as a linear combination of Exp-G densities.

P. O. Peter et al.
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4.2 Entropy
An entropy is a measure of variation for uncertainty on a random variable X with
the probability distribution f(x). There are two common types of entropy, namely,
Rényi entropy (Rényi 1960) and Shannon entropy (Shannon 1951). Shannon entropy
is a special case of Rényi entropy. In this paper, we derive the Rényi entropy (IR(ν))
of the HLOPGW-G family of distributions as follows

IR(ν) = (1− ν)−1 log
[∫ ∞

0
fν(x)dx

]
, v 6= 1, v > 0. (17)

Using Equation (7), fν(x) can be written as

fν(x) = (2αβ)ν
[

1 +
(
G(x; ξ)
G(x; ξ)

)α]ν(β−1)

exp

ν
1−

[
1 +

(
G(x; ξ)
G(x; ξ)

)α]β×
×
(
G(x; ξ)

)−ν(α+1)

1 + exp

1−
[

1 +
(
G(x; ξ)
G(x; ξ)

)α]β
−2ν

×

×
(
G(x; ξ)

)ν(α−1)
g(x; ξ)ν .

Applying the generalized binomial expansion, used in Section 2.2, the Rényi entropy
for the HLOPGW-G family of distributions can be written as

IR(ν) = (1− ν)−1 log
[ ∞∑
m=0

wme(1−ν)IREG

]
, v 6= 1, v > 0, (18)

after some mathematical simplifications, where

wm =
∞∑

j,i,k,p,s=0

(
−α((ν + z) + ν)

m

)
(−1)m (ν + j)i

i!

(
i

k

)(
−2ν
j

)
(2αβ)ν ×

×
(
ν(α− 1) + αz +m

p

)(
p

s

)
(−1)s+p+k( s

ν
+ 1
)−ν

, (19)

and IREG = (1− ν)−1 log
∫∞

0
[(
s/ν + 1

)
g(x; ξ)[G(x; ξ)] sν

]ν
dx is Rényi entropy of

Exp-G distribution with parameter s/ν + 1. Lastly, the Rényi entropy of the
HLOPGW-G family of distributions can be obtained directly from Rényi entropy
of Exp-G distribution.
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4.3 Moments
The rth ordinary moment can be derived using Equation (9) as follows:

µ′r = E(Xr) =
∞∑
p=0

vpE(Y rp ), (20)

where Yp follows an Exp-G distribution with power parameter p and vp is given in
equation (10). The sth central moment of X is given by

µs =
s∑
r=0

(
s

r

)
(−µ′1)s−rE(Xr) =

s∑
r=0

∞∑
p=0

vp

(
s

r

)
(−µ′1)s−rE(Y rp ).

The cumulants of X follow recursively from

ks = µ′s −
s−1∑
r=0

(
s− 1
r − 1

)
krµ
′
s−r,

where k1 = µ′1, k2 = µ′2 − µ′21 , k3 = µ′3 − 3µ′2µ′1 + µ′31 , etc. Ordinary moments may
also be used to calculate the measures of dispersion, namely, variance, skewness and
kurtosis.
The rth incomplete moment of X is given by

φr(z) =
∫ z

−∞
xrf(x)dx =

∞∑
p=0

vp

∫ z

−∞
xrgp(x; ξ)dx. (21)

The incomplete moment is very useful and can be used to estimate some important
quantities such as Lorenz and Bonferroni curves. These quantities have a
wide application in demography, economics, insurance, medicine and reliability.
Mathematically, the Lorenz and Bonferroni curves for a given probability p are given
by L(p) = φ1(q)/µ′1 and B(p) = φ1(q)/(pµ′1), respectively, where µ′1 is given by
Equation (20), with r = 1 and q = Q(p) is the quantile function of X at p. The
incomplete moment (Equation (21)) can be expressed as

φr(z) =
∞∑
p=0

vpHp(z), (22)

where Hp(z) =
∫ z
−∞ xrgp(x; ξ)dx is the rth incomplete moment of the Exp-G

distribution.
We present the first five moments with the standard deviation (SD or σ), coefficient
of variation (CV), coefficient of skewness (CS) and coefficient of kurtosis (CK) for the
HLOPGW-U distribution for some parameter values (see Table 3 for details).
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Table 3: Moments of the HLOPGW-U distribution for some parameter values

(0.5,0.7,1.2) (0.6,0.5,1.1) (0.2,0.9,1.1) (0.4,0.8,1.4) (0.8,0.7,1.5)

E(X) 0.2897 0.3378 0.1941 0.1932 0.2698
E(X2) 0.2125 0.2651 0.1401 0.1314 0.1963
E(X3) 0.1715 0.2233 0.1137 0.1015 0.1560
E(X4) 0.1451 0.1948 0.0971 0.0834 0.1301
E(X5) 0.1263 0.1738 0.0853 0.0710 0.1118

SD 0.3585 0.3886 0.3200 0.3067 0.3514
CV 1.2372 1.1501 1.6486 1.5873 1.3021
CS 0.7689 0.5396 1.4263 1.3791 0.8385
CK 1.9504 1.5610 3.4527 3.4072 2.0670

4.4 Probability Weighted Moments
Probability Weighted Moments (PWMs) are very useful in estimating parameters
of distributions which are not in closed form. The (j, i)th PWM, say ηj,i of
X ∼ HLOPGW-G (α, β; ξ) distribution is defined by

ηj,i = E(XjF (X)i) =
∫ ∞
−∞

xjf(x)F (x)idx.

Using Equation (16), we can write

f(x)F (x)i = 2
∞∑
m=0

∞∑
n=0

∞∑
p,k,q,w=0

(
−(α(q + 1) + 1)

w

)
(−1)w

(
β(k + 1)− 1

q

)
×

× (m+ n+ 1)p(−1)k+n

p!

(
p

k

)(
i− 1
n

)(
−(i+ 1)

m

)
αβ ×

×
(
G(x; ξ)

)w+α(q+1)−1
g(x; ξ),

which simplifies to

f(x)F (x)i =
∞∑

w,q=0
h∗w,qgw,q(x; ξ),

where

h∗w,q = 2αβ
∞∑
m=0

∞∑
n=0

∞∑
p,k=0

(
−(α(q + 1) + 1)

w

)
(−1)w

(
β(k + 1)− 1

q

)
×

× (m+ n+ 1)p(−1)k+n

p!

(
p

k

)(
i

n

)(
−(i+ 2)

m

)
×

×
(
G(x; ξ)

)w+α(q+1)−1
g(x; ξ)
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and gw,q(x; ξ) = (w + α(q + 1))g(x; ξ)[G(x; ξ)]w+α(q+1)−1 is an Exp-G distribution
with power parameter w + α(q + 1). The PWM is therefore given by

ηj,i =
∞∑

w,q=0
h∗w,q

∫ ∞
−∞

xjgw,q(x; ξ)dx =
∞∑

w,q=0
h∗w,qE(T jw,q),

where T jw,q is jth power of an Exp-G distributed random variable having power
parameter w + α(q + 1).

4.5 Moment generating functions

The moment generating function (mgf) of HLOPGW-G family of distributions is given
by

Mx(t) = E(etX) =
∞∑
p=0

vpMp(t),

where Mp(t) is the mgf of Exp-G with power parameter p. The mgf of HLOPGW-G
family of distributions can be derived directly from that of the Exp-G distribution.

5 Maximum likelihood estimation
Let Xi ∼ HLOPGW − G(α, β; ξ), for i = 1, ...n, with parameter vector
∆ = (α, β; ξ)T . The log-likelihood for ` = `(∆) from a random sample of size n
is given by

` = n ln(2αβ) + (β − 1)
n∑
i=1

ln
[

1 +
(
G(xi; ξ)
G(xi; ξ)

)α]
+

+
n∑
i=1

ln

1−
[

1 +
(
G(xi; ξ)
G(xi; ξ)

)α]β+

+ (α− 1)
n∑
i=1

ln
(
G(xi; ξ)

)
− (α+ 1))

n∑
i=1

ln
(
G(xi; ξ)

)
+

n∑
i=1

ln(g(xi; ξ)) +

− 2
n∑
i=1

ln

1 + exp

1−
[

1 +
(
G(x; ξ)
G(x; ξ)

)α]β
 .
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The score vector U = ( ∂`∂α ,
∂`
∂β ,

∂`
∂ξ
k

) has elements given by:

∂`

∂α
= n

α
+ (β − 1)

n∑
i=1

(
G(xi;ξ)
G(xi;ξ)

)α
ln
(
G(xi;ξ)
G(xi;ξ)

)
[
1 +

(
G(xi;ξ)
G(xi;ξ)

)α] +

−
n∑
i=1

β

(
G(xi;ξ)
G(xi;ξ)

)α
ln
(
G(xi;ξ)
G(xi;ξ)

)[
1 +

(
G(xi;ξ)
G(xi;ξ)

)α]β−1

(
1−

[
1 +

(
G(xi;ξ)
G(xi;ξ)

)α]β) +

+
n∑
i=1

ln
(
G(xi; ξ)

)
−

n∑
i=1

ln
(
G(xi; ξ)

)
+

+ 2
n∑
i=1


β

(
G(xi;ξ)
G(xi;ξ)

)α
ln
(
G(xi;ξ)
G(xi;ξ)

)[
1 +

(
G(xi;ξ)
G(xi;ξ)

)α]β−1

(
1 + exp

{
1−

[
1 +

(
G(x;ξ)
G(x;ξ)

)α]β}) ×

× exp

1−
[

1 +
(
G(x; ξ)
G(x; ξ)

)α]β
 ,

∂`

∂β
= n

β
+

n∑
i=1

ln
[

1 +
(
G(xi; ξ)
G(xi; ξ)

)α]
+

−
n∑
i=1

[
1 +

(
G(xi;ξ)
G(xi;ξ)

)α]β
ln
[
1 +

(
G(xi;ξ)
G(xi;ξ)

)α]
(

1−
[
1 +

(
G(xi;ξ)
G(xi;ξ)

)α]β) +

+ 2
n∑
i=1

[
1 +

(
G(xi;ξ)
G(xi;ξ)

)α]β
ln
[
1 +

(
G(xi;ξ)
G(xi;ξ)

)α]
exp

{
1−

[
1 +

(
G(x;ξ)
G(x;ξ)

)α]β}
(

1 + exp
{

1−
[
1 +

(
G(x;ξ)
G(x;ξ)

)α]β})
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and

∂`

∂ξ
k

= (β − 1)
n∑
i=1

α

(
G(xi;ξ)
G(xi;ξ)

)α−1 [
∂G(xi;ξ)
∂ξ
k

G(xi; ξ)−
∂G(xi;ξ)
∂ξ
k

G(xi; ξ)
]

[
1 +

(
G(xi;ξ)
G(xi;ξ)

)α]
G

2(xi; ξ)
+

+
n∑
i=1

1
g(xi; ξ)

∂g(xi; ξ)
∂ξ

k

+

−
n∑
i=1


αβ

[
1 +

(
G(xi;ξ)
G(xi;ξ)

)α]β−1(
G(xi;ξ)
G(xi;ξ)

)α−1

(
1−

[
1 +

(
G(xi;ξ)
G(xi;ξ)

)α]β)
G

2(xi; ξ)
×

×

[
∂G(xi; ξ)
∂ξ

k

G(xi; ξ)−
∂G(xi; ξ)
∂ξ

k

G(xi; ξ)
]]

+

+ (α− 1)
n∑
i=1

∂G(xi;ξ)
∂ξ
k(

G(xi; ξ)
) − (α+ 1)

n∑
i=1

∂G(xi;ξ)
∂ξ
k(

G(xi; ξ)
) +

+ 2
n∑
i=1


αβ

[
1 +

(
G(xi;ξ)
G(xi;ξ)

)α]β−1(
G(xi;ξ)
G(xi;ξ)

)α−1

(
1 + exp

{
1−

[
1 +

(
G(x;ξ)
G(x;ξ)

)α]β})
G

2(xi; ξ)
×

×

[
∂G(xi; ξ)
∂ξ

k

G(xi; ξ)−
∂G(xi; ξ)
∂ξ

k

G(xi; ξ)
]
×

× exp

1−
[

1 +
(
G(x; ξ)
G(x; ξ)

)α]β
 ,

respectively. These functions are not in closed form and can only be solved using
iterative methods from applicable softwares. The maximum likelihood estimates
of the parameters, denoted by ∆̂ is obtained by solving the nonlinear equation
(∂`/∂α, ∂`/∂β, ∂`/∂ξ)T = 0, using a numerical method such as Newton-Raphson
procedure. To obtain confidence intervals for model parameters (α, β, ξ), and test
hypothesis concerning these parameters, the observed information matrix is required
and is given by

J(∆) =

Jαα(∆) Jαβ(∆) Jαξ(∆)
Jβα(∆) Jββ(∆) Jβξ(∆)
Jξα(∆) Jξβ(∆) Jξξ(∆)

 ,
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where Jrs = −∂2`(∆)/∂r∂s, for r, s = α, β, ξ. Under the usual regularity
conditions, ∆̂ is asymptotically normal distributed, (see Ferguson 1958), that
is ∆̂ ∼ N3(0, I−1(∆)) as n → ∞, where I(∆) is the expected information matrix.
The asymptotic behavior remains valid if I(∆) is replaced by J(∆̂), the observed
information matrix evaluated at ∆̂. It must be noted that the asymptotic distribution
is not always trivariate normal for all the HLOPGW-G families as this depends on
the dimension of the baseline parameter vector, ξ.

6 Monte-Carlo simulations
In this section, Monte-Carlo simulation study is conducted using the R package
to evaluate and examine consistency of the maximum likelihood estimators. We
replicate N=1000 times for sample size n=35, 50, 100, 200, 400, 800 and 1000 from
the HLOPGW-U distribution. The simulation results are given in Table 4. From
these results, we deduce that as the sample size increases, the mean estimates of the
parameters tends to be closer to the true parameter values, since RMSEs and average
bias converges towards zero in all instances.

7 Applications
The HLOPGW-U model is applied to two real data examples to show the applicability
of the proposed distribution when compared to other known non-nested distributions.
The best performing model is examined using the goodness-of-fit statistics, namely,
-2loglikelihood (-2 log L), Akaike Information Criterion (AIC), Consistent Akaike
Information Criterion (AICC), Bayesian Information Criterion (BIC), Cramer von
Mises (W ∗) and Andersen-Darling (A∗) as given under Chen and Balakrishnan (1995).
The model that gives smaller values of these statistics is deemed to have the best fit.
The R software is used to estimate model parameters through the nlm function. The
results for these Model parameter estimates together with their standard errors (in
parenthesis) and the goodness-of-fit-statistics are given in Tables 5 and 6. The fitted
densities and observed probability plots (see Chambers et al. 1983) that demonstrate
how best these model fits the observed data sets are shown in Figures 7 and 8.
The HLOPGW-U distribution was compared to other competing three parameter
non-nested models, namely the Marshall-Olkin Log-logistc (MO-LLoG) distribution
by Wenhao (2013), exponentiated-Fréchet (EFr) distribution by Nadarajah and Kotz
(2003), Marshall-Olkin extended inverse Weibull (IWMO) by Pakungwati et al.
(2018), Marshall-Olkin extended Fréchet (MOEFr) by Barreto-Souza et al. (2013),
exponentiated Weibull (EW) by Pal et al. (2006) and Exponentiated Half-Logistic
Exponential (EHLE) by (2018). The pdfs of these models are as follows:
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f
IWMO

(x;α, θλ) = αλθ−λx−λ−1e−(θx)−λ

[α− (α− 1)e−(θx)−λ ]2
,

for α, θ, λ > 0,

f
EFr

(x;α, λ, δ) = αλδλ
[
1− e−(δ/x)λ

]α−1
x−(1+λ)e−(λ+1)(δ/x)λ ,

for α, λ, δ > 0,

f
MOEFr

(x;α, λ, δ) = αλδλx−(λ+1)e−(δ/x)λ

[1− ᾱ(1− e−(δ/x)λ)]2
,

for α, λ, δ > 0,
f
EW

(x;α, β, δ) = αβδxβ−1e−αx
β

(1− e−αx
β

)δ,

for α, β, δ > 0,

f
MO−LLoG(x;α, β, γ) = αββγxβ−1

(xβ + αβγ)2 ,

for α, β, γ > 0

and

f
EHLE

(x;λ, α, a) = 2aλα exp (−αλx)(1− exp−αλx)a−1

(1 + exp (−αλx))a+1 ,

for λ, α, a > 0.

7.1 Half-way house data (failure times in days: 49 cases)
The first data set presents failure times in days (49 cases) for half-way house parolees
in the District of Columbia and it was first studied by Stollmack and Harris (1974).
The data is given by: 13, 16, 20, 22, 22, 25, 32, 45, 49, 59, 64, 70, 88, 8, 89, 93, 95,
10, 112, 116, 122, 147, 150, 151, 177, 179, 190, 204, 207, 221, 233, 240, 245, 247, 264,
267, 272, 283, 291, 301, 307, 320, 337, 343, 352, 362, 367, 396, 421.
It is noted that the HLOPGW-U distribution gives a better fit to the half-way house
data set compared to other non-nested models considered in this paper. In addition,
from the fitted density plots (see Figure 7), we confirm that the proposed model fits
the heavy-tailed data well.

7.2 Leukemia data
The second data set relates to lifetimes in days of forty three (43) blood patients who
had leukemia and was first collected from one hospital in Saudi Arabia and reported
by Abouammoh et al. (1994). The data is as follows: 115, 181, 255, 418, 441, 461,
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Figure 7: Fitted pdfs and observed probability plots for half-way house data
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Figure 8: Fitted pdfs and probability plots for leukemia data
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Furthermore, from the results shown in Table 6 that the HLOPGW-U distribution
fit the leukemia data set better than other non-nested models. The HLOPGW-U
distribution gives smaller values of the the goodness-of-fit statistics that is A∗, W ∗
and SS. Furthermore, according to the fitted density plots (see Figure 8), we note that
the HLOPGW-U model fit the relief times data better than the selected non-nested.

8 Conclusions
A new family of generalized distribution namely the Half Logistic odd Power
Generalized Wiebull-G (HLOPGW-G) family of distributions. The new distribution
is a linear combination of the exponentiated-G distribution. The maximum likelihood
estimation technique is used to estimate the model parameters. We applied the
HLOPGW-U to two data sets that are heavily-skewed. Our new proposed model
performs better than the selected equal-parameter non-nested models. Lastly, we
hope that the new family of generalized distributions will find wider applicability
in various disciplines such as finance, economics, engineering, reliablity and survival
analysis just to mention a few.
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