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CONTROL AND INFORMATICS

Estimation of the angular position of a two–wheeled
balancing robot using a real IMU with selected filters

Krzysztof LADDACH , Rafał ŁANGOWSKI ∗∗∗ , and Tomasz ZUBOWICZ

Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland

Abstract. A low–cost measurement system using filtering of measurements for two–wheeled balancing robot stabilisation purposes has been
addressed in this paper. In particular, a measurement system based on gyroscope, accelerometer, and encoder has been considered. The measure-
ments have been corrected for deterministic disturbances and then filtered with Kalman, α–β type, and complementary filters. A quantitative
assessment of selected filters has been given. As a result, the complete structure of a measurement system has been obtained. The performance
of the proposed measurement system has been validated experimentally by using a dedicated research rig.
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1. INTRODUCTION
A two–wheeled balancing robot is a single–axle mobile vehicle
with a centre of mass located above the wheel rotation axis en-
abling tilt in only one axis [1, 2]. This type of construction has
been gaining popularity in recent years, especially in the field
of commercial applications, which include, e.g., segway, hov-
erboard, etc. The basic functionality (the main control goal) of
a two–wheeled balancing robot is to enable its movement (con-
trol of linear velocity) while stabilising it – keeping a robot in a
vertical position (control of angular position) [1–5]. Fundamen-
tally, the goal of a two–wheeled balancing robot control coin-
cides with an inverted pendulum control problem. Thus, many
of the approaches used in solving an inverted pendulum stabili-
sation problem are applicable to a two–wheeled balancing robot
control, e.g., [6–12].

In order to enable the basic functionality of a two–wheeled
balancing robot an adequate control system is needed. This con-
trol system, apart from the use of a suitable control technique,
depends on the information provided by the measurement sys-
tem (measuring devices) and requires a properly selected actu-
ator system, typically electric drives. Hence, one of the crucial
factors which should be considered during control system de-
sign is the availability and quality of measurement information.
Thus, this paper focuses on measuring issues in a control feed-
back loop for two–wheeled balancing robot stabilisation pur-
poses.

To accomplish the stabilisation control objective, at least an
angular position of a two–wheeled balancing robot, i.e. the
value of the angle of tilt of a two–wheeled balancing robot from
the vertical axis must be known. This information is provided to
a feedback loop by the measurement system. The measurement
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system can be interpreted as an assemblage of (hard) sensors,
and (optionally) algorithms used to enhance or augment the in-
formation provided, e.g., by applying filters or estimators (soft–
sensors) [13–16]. Typically, a measurement system that pro-
vides high–quality measurements is an expensive investment.
This issue is particularly important in the case of mentioned
commercial applications. A typical solution to this problem is
based on using a cheaper or fewer number of sensors. Unfor-
tunately, in both cases, the resulting quality of provided mea-
surements can be significantly decreased and in consequence
insufficient for control purposes. Clearly, the measurement in-
formation can be influenced by measurement noise or errors.
The widespread approach to cope with this problem is based on
the use of estimation (filtration). Hence, by exploiting the soft–
sensor approach it is possible to find a trade–off between the
cost of a measurement system and the quality of measurement
information. Thus, in this paper, a low–cost measurement sys-
tem using filtering of measurements for two–wheeled balancing
robot stabilisation purposes is further considered.

In the considered application domain, typically an Inertial
Measurement Unit (IMU) is a core of the measurement sys-
tem. An IMU usually is composed of various configurations
of gyroscopes, accelerometers, and magnetometers. In this pa-
per, the IMU consists of gyroscopes and accelerometers. Thus,
the required information regarding the angular position of a
two–wheeled balancing robot is determined based on mea-
surements from the gyroscopes and accelerometers. The gy-
roscope delivers measurements of the angular velocity of a
two–wheeled balancing robot. Moreover, these measurements
can be integrated in time, assuming the knowledge of the ini-
tial conditions, which allows computing the gyroscope’s ori-
entation [17–20]. The precision gyroscopes, e.g., those based
on optical phenomena such as ring laser [21], are too expen-
sive and bulky for aforementioned applications including two–
wheeled balancing robots. Therefore, the cheaper gyroscopes
of the type Micro Electrical Mechanical Systems (MEMSs)
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are commonly used [21, 22]. Besides its low purchase and op-
erating costs, MEMS is characterised by a solid construction
with small size and weight. In addition, these sensors are low
power consumption, short start–up time, and high–reliability.
Moreover, MEMS gyroscopes and accelerometers are capable
of providing inertial–grade measurements of angular velocity
and acceleration even for long–range navigation systems [21].
However, these are also characterised by a lower quality of the
measurements provided. Also, the integration of measurement
errors leads to accumulating an error in the calculated orien-
tation, which prevents the proper measurement of the absolute
orientation of gyroscope [23]. Hence, an additional accelerom-
eter (or magnetometer) is required to measure a gravitational
(respectively magnetic) field vector with known orientation in
space. However, these measurements are subject to the inter-
ference of accelerometer non-ideal characteristics (or impreci-
sion) and a two–wheeled balancing robot motion. Therefore,
besides the appropriate collection of measurements from con-
sidered sensors, the filtration and correction of measurements
are necessary [24]. The aim of filtration is to remove stochastic
measurements interference whereas the purpose of correction
is to improve measurements by removing deterministic inter-
ference. Hence, correction of measurements consists of taking
into account the accelerations resulting from sensor movement,
and identifiable measurement errors such as non-linearity or
bias [24]. In the literature, various models of stochastic interfer-
ence can be found; nevertheless, the most widespread seems to
be Gauss–Markov model [25–28]. Naturally, this also involves
an extensive volume of literature on filtration [23, 24, 28–34].
The most common types of filters used in this task are: Kalman
filter [29, 35, 36], α–β filter and its extensions [32], and com-
plementary filter [31, 35]. The popularity of complementary
and α–β filters is due to their simplicity and computational ef-
ficiency, which translates into their performance and reduced
need for microprocessor power. Whereas, Kalman filter pro-
vides the optimal estimates of the angle of a two–wheeled bal-
ancing robot tilt from the vertical axis, but only if certain as-
sumptions are met [21, 29]. In turn, works in the correction of
interference of measurements made by accelerometer and gy-
roscope can be found in, e.g., [25–27, 37–42].

In this paper, correction of measurements uses an additional
measurement of a two–wheeled balancing robot’s (progressive)
linear position provided by the encoder. It should be noticed
that, in the case of balancing robots, this does not introduce
an additional cost for the measurement system, because most
control systems use this information anyway. Whereas for the
filtering of the measurements the following are used: Kalman
filter, a family of α–β filters, and complementary filter. Thus,
a novelty presented in the paper is a comparison of the use of
correction and distinct filtration of measurements mechanisms
in a single measurement system. Hence, the main contribution
of this paper is to investigate a low–cost measurement system
with correction and filtration of provided measurements for sta-
bilisation of a two–wheeled balancing robot purposes. More-
over, a performance comparison of selected filters including at-
tention to the ‘miss-use’ of the ‘classical’ Kalman filter is pre-
sented. Each filter has been designed and then implemented in

the constructed two–wheeled balancing robot. To that goal, op-
timised (minimum covariance) infinite impulse response filters
have been put against a minimum covariance, linear, and un-
biased filtering implemented using recursive Kalman filter. In
the case of the former solutions, this involves α–β type filters
and complementary filter. The obtained results have been quan-
titatively assessed using a typical measure, i.e. mean square er-
ror (MSE).

The paper is organised as follows. The problem statement
is presented in Section 2. Section 3 includes the description of
the measurement system. Next, the experimental framework the
results obtained are widely discussed in Section 4. The paper is
concluded in Section 5.

2. PROBLEM STATEMENT
Consider y, ỹ, y, ym, u∗, and u∗∗ to denote the vectors of: real
measurements, sensors outputs, corrected measurements, mea-
surements provided by the measurement system (after correc-
tion and filtration), control signals generated by the stabilisation
control system, and control signals applied to a two–wheeled
balancing robot, respectively. The general structure of a two–
wheeled balancing robot stabilisation control system is shown
in Fig. 1.

Fig. 1. General structure of the two–wheeled balancing robot
stabilisation control system

As it can be noticed in Fig. 1 the measurement system con-
sists of two main parts. The first (physical/hardware layer) in-
cludes sensors, most notably gyroscopes and accelerometers.
As it has been mentioned in Section 1 these are made in MEMS
technology. In turn, the second (software layer) includes cor-
rection and filtration mechanisms, primarily. The physical layer
of the measurement system is described by the so–called mea-
surement equation, which, in general form, yields:

ỹ(k) = y(k)+ f(k)+g(k), (1)

where: k is the discrete time instant; f(k) represents determinis-
tic measurements interference; g(k) represents stochastic mea-
surements interference.

Thus, measurements ỹ are assumed to be disturbed by de-
terministic and stochastic interference. This necessitates their
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correction and implies the existence of the second layer of
measurement system. The software layer of the measurement
system comprises correction and filtration. A detailed descrip-
tion of the measurements correction, which is based on the
adopted model of deterministic interference, is presented in
Sections 3.1–3.3. Signal filtering, on the other hand, is per-
formed using a selected filter, the design of which is presented
in Section 3.4. Thus, as a result of the above operations, the
measurement system will provide measurements ym. It is easy
to notice that in this case the vector ym is an estimate of the
two–wheeled balancing robot’s angular position, which is the
necessary measurement information for the stabilisation con-
trol system.

A continuous–time non–linear mathematical model of the
two–wheeled balancing robot is given by [43]:(

In +mnl2)
φ̈(t) = mnl (gsin(φ(t))− ẍ(t)cos(φ(t)))

+2kR
(
krkeẋ(t)− krφ̇(t)− τ(t)

)
,

wẍ(t) = mnl
(
φ̇

2(t)sin(φ(t))− φ̈(t)cos(φ(t))
)

+2kRkr
(
−krkeẋ(t)+ keφ̇(t)+ τ(t)

)
,

(2)

where: w =
2Ik

r2 +2mk+mn; kR =
km

R
; kr =

k
r

; φ(t) denotes the
angle of tilt of a two–wheeled balancing robot from the verti-
cal axis (angular position); φ̇(t) signifies the angular velocity;
φ̈(t) stands for the angular acceleration; ẋ(t) and ẍ(t) denote the
linear velocity and linear acceleration of a two–wheeled bal-
ancing robot, respectively; τ(t) is the voltage applied to a two–
wheeled balancing robot’s DC motor; In and Ik are the moments
of inertia of construction and wheel of a two–wheeled balanc-
ing robot, respectively; mn and mk denote the masses of a two–
wheeled balancing robot and its wheel, respectively; l signifies
the distance to a two–wheeled balancing robot of gravity; km
stands for the torque constant; k is the gear ratio; ke signifies
the electro-mechanical constant, r stands for the wheel radius;
R is the winding resistance; g denotes the gravitational acceler-
ation.

Hence, (2) stand for a cognitive model of considered robot.
In turn, the deliberations in the following sections of the
manuscript have been obtained under the following condi-
tions. For the purpose of estimation (filtration), the following
model of two–wheeled balancing robot kinematics has been
adopted [44]:

φ(t) = φ0 + φ̇(t)t +
φ̈(t)t2

2
,

φ̇(t) = φ̇0 + φ̈(t)t,

φ̈(t) = φ̈(t),

(3)

where φ0 and φ̇0 are the initial angular position and initial an-
gular velocity of a two–wheeled balancing robot.

In this research work, it is assumed that the angular posi-
tion φ(·) represents the real value of the angle of tilt of a two–
wheeled balancing robot from the vertical axis.

Given the real angular acceleration of a two–wheeled balanc-
ing robot is not known, considering (1) and taking into account

that the filtration system operates in discrete time, (3) is discre-
tised, by the Euler method, assuming constant angular acceler-
ation in subsequent time–steps, what gives:

φ(k) = φ(k−1)+ φ̇(k−1)∆t +
φ̈(k−1)∆t2

2
,

φ̇(k) = φ̇(k−1)+ φ̈(k−1)∆t,

φ̈(k) = φ̈(k−1),

(4)

where ∆t is the discretisation time–step.
As it has been aforementioned, the performance of selected

filters, which consequently translates into the quality of the in-
formation provided by the measurement system, is quantita-
tively assessed using the mean square error of estimation, which
is expressed by:

MSE =
1
m

m

∑
k=1

(φ(k)− φ̂(k))2, (5)

where ˆ(·) denotes the estimate of a given variable and m signi-
fies a number of discrete time instants.

To summarise, a low–cost measurement system with correc-
tion and filtration of provided measurements for stabilisation
of a two–wheeled balancing robot is obtained. The entire mea-
surement system has been implemented in the constructed two–
wheeled balancing robot.

3. MEASUREMENT SYSTEM
The detailed structure of the developed measurement system is
shown in Fig. 2. As it can be noticed, besides the aforemen-
tioned sensors, i.e. gyroscopes and accelerometers (MEMS),
and encoder, and filters it also includes several other elements.
Their detailed description is provided in this section. As it has
been mentioned, at the output of the measurement system there
are estimates (φ̂(·)) of the angular position of the two–wheeled
balancing robot.

3.1. Gyroscope
The simplified structure of the MEMS gyroscope is shown in
Fig. 3. The particular symbols used in it denote the follow-
ing: C denotes the capacity, ~Fe is the Euler force (the ‘ficti-
tious’ tangential force caused by the variation of the angular
velocity of the inner frame axis) [45], ~Fc denotes the centrifu-
gal force [45], ~V signifies the horizontal velocity of vibrating
mass, and ~ω stands for angular velocity of the sensor. The mea-
surements of the angular velocity of the two–wheeled balancing
robot from this gyroscope are calculated by measuring the ca-
pacity C, which changes due to the motion of the inner frame
relative to the outer frame. In the inner frame, the Coriolis force
acts on the moving (oscillating, vibrating) proof mass, which
causes movement of the inner frame. The inner frame can move
only orthogonally to the direction of proof mass vibration. To
eliminate the influence of inertia forces acting on the oscillating
mass, which results from the gyroscope’s progressive motion in
the vibration direction, there are two sets of frames in the sen-
sor in which mass vibrates in the anti-phase to each other. Then
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Fig. 2. The detailed structure of the measurement system

Fig. 3. The internal structure of the MEMS gyroscope

signals from both sets are added, and the in-phase component
generated by linear acceleration is subtracted [21]. A more de-
tailed description of the gyroscope’s build and operation can be
found in [21, 25].

According to (1), the equation for measuring angular veloc-
ity from a gyroscope in the selected axis can be written as fol-
lows [21]:

˜̇
φz(k) = φ̇z(k)+S

φ̇

(
φ̇z(k)

)
+Mxφ̇x(k)+Myφ̇y(k)

+b
φ̇
+Bzaz(k)+Byay(k)+Bzyaz(k)ay(k)

+ν
φ̇
, (6)

where: ˜̇
φz(k) denotes the measured value of the angular ve-

locity in z axis at time instant k; φ̇z(k), φ̇x(k), φ̇y(k) are the
real values of angular velocities in z, x, and y axes at time in-
stant k, respectively; az(k), ay(k) stand for the accelerations in
z and y axes at time instant k, respectively; b

φ̇
is acceleration–

insensitive bias; Bz, By are acceleration–sensitive bias coeffi-
cients in z and y axes, respectively; Bzy signifies the anisoelastic
bias coefficient; Mx, My denotes the cross–coupling coefficients
in x and y axes, respectively; ν

φ̇
is the zero–mean random bias;

S
φ̇

(
φ̇z(k)

)
stands for the scale–factor error which may be ex-

pressed as a polynomial in φ̇z(k) to represent the scale–factor
non-linearities.

However, for non-pendulous designed MEMS type gyro-
scopes, which are built from three single axis gyroscopes rea-
sonable is to expect that the cross–axis coupling factors and
vibro-pendulous errors would be insignificant [25–27]. More-
over, the scale–factor error arises mainly from temperature
changes, and the resulting changes in the characteristics of the
magnetic materials in the sensor [21]. Assuming that the con-
structed two–wheeled balancing robot will move at a relatively
constant temperature it is possible to neglect the scale–factor
error. Thus, (6) can be re–written as follows:

˜̇
φz(k) = φ̇z(k)+b

φ̇
+ν

φ̇
. (7)

Because in (7) no elements are corresponding to phenomena
in the other axes than z axis, in the further part of this paper the
index of the z axis is omitted.

The bias b
φ̇

is non–zero value of the gyroscope’s output even
despite a lack of applied input rotation. It may be caused by
various effects including the residual torques from flexible leads
within the gyroscope, spurious magnetic fields, and temperature
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gradients. Moreover, this bias is independent of both rotational
and progressive sensor movement [21]. Thus, commonly the
dynamics of b

φ̇
is assumed to zero (the value of bias is assumed

to be constant) [21,25–27]. Hence, the corrected measurements
φ̇(k) of the angular velocity are calculated from:

φ̇(k) = ˜̇
φ(k)−b

φ̇
. (8)

3.2. Accelerometer

The MEMS accelerometer belongs to the group of capacitive
accelerometers. The principle of operation of capacitive ac-
celerometers is analogous to the MEMS gyroscopes (see sec-
tion 3.1), except that the proof mass motion is caused directly
by the inertia force, and the proof mass is not vibrated by
electrical forces. A more detailed description can be found
in [21, 25, 41].

For determining the value of the angle of tilt of the two–
wheeled balancing robot on a two–dimensional plane the mea-
surements of acceleration associated with x′ and y′ axes are suf-
ficient. Clearly, to calculate the angle of tilt, it is necessary to
know the length of the component vectors of gravity acceler-
ation (associated with the force of gravity ~Q), which are pro-
jected on the axes of the two–wheeled balancing robot’s ref-
erence system (x′ and y′). However, in addition to measuring
the components of gravitational acceleration, the accelerome-
ter measures also accelerations resulting from Coriolis, inertial
~Ft , Euler ~Fe and centrifugal ~Fc forces. It is assumed that the ve-
locities of the proof mass occurring in the accelerometer are so
small and their duration is so short (the proof mass stabilises in
the position where the applied forces cancel each other) that the
Coriolis force acting on the proof mass is omitted from the con-
sideration. The rest of the forces are shown in Fig. 4. Whereas
the other symbols, i.e. ~R, ~Vt and ~at stand for position vector,
translational (in x axis) velocity and acceleration of the two–
wheeled balancing robot, respectively.

According to (1), the equation for measuring acceleration
from an accelerometer in the selected axis can be written as

Fig. 4. Distribution of forces on a moving sensor

follows [21]:

ãx′(k) = ax′(k)+Sax′ (ax′(k))+Myay′(k)+Mzaz′(k)

+bax′ +bvax′(k)ay′(k)+νax′ , (9)

where: ãx′(k) is the measured value of the acceleration in x′ axis
at time instant k; ax′(k), ay′(k), az′(k) denote the real values of
accelerations in x′, y′, and z′ axes at time instant k, respectively;
Sax′ (ax′(k)) signifies the scale–factor error, usually expressed in
polynomial form to include non–linear effects; My, Mz are the
cross–coupling coefficients in y and z axes, respectively; bax′

denotes the constant bias; bv stands for the vibro–pendulous
error coefficient; νax′ is the random noise which expected value
is assumed to be zero (see [21]).

However, as for the gyroscope, also for accelerometer based
on MEMS technology, non–pendulous design and consisting of
three single accelerometers (one in each axis) the cross–axis
coupling factors and vibro–pendulous errors would be insignif-
icant [25–27, 42]. Thus, (9) can be re–written as follows:

ãx′(k) = ax′(k)+Sax′ (ax′(k))+bax′ +νax′ . (10)

Next, to compensate a calibration must be made to provide
values of bax′ and Sax′ (ax′(k)). A detailed description of this
operation is contained in Section 4. Hence, the corrected mea-
surements ax′(k) of the acceleration in x′ axis are calculated
from:

ax′(k) = ãx′(k)−bax′ −Sax′ (ãx′(k)−bax′) , (11)

and similarly in the y′ axis from:

ay′(k) = ãy′(k)−bay′ −Say′
(
ãy′(k)−bay′

)
. (12)

3.3. Other components
According to Fig. 2 the corrected value of the angle of tilt of the
two–wheeled balancing robot from the vertical axis (the cor-
rected angular position) can be determined as follows:

φ(k) = arctand

(
ax′(k)+ae(k)+at,x′(k)
ay′(k)+ac(k)−at,y′(k)

)
, (13)

where: φ(k) is the corrected angular position at time instant k
in [◦]; arctand(·) denotes the arc tangent function; ae(k) stands
for the Euler acceleration associated with Euler force (part of
acceleration that is caused by the variation of the angular ve-
locity of the inner frame) at time instant k [45]; ac(k) signifies
the centrifugal acceleration associated with centrifugal force at
time instant k [45]; at,x′(k), at,y′(k) are the accelerations result-
ing from the translational acceleration ~at of the two–wheeled
balancing robot in x′ and y′ axes at time instant k, respectively.

The value of the centrifugal acceleration can be calculated as
follows:

ac(k) = (φ̇ r(k))
2R, (14)

where: φ̇ r(k) =
π

180 φ̇(k) is the corrected measurement φ̇(k) of
the angular velocity at time instant k in [rad/s]; R = 0.135 m
denotes the distance of the sensor from the axis of rotation.
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In turn, the value of the Euler acceleration can be deter-
mined as:

ae(k) = φ̈ r(k)R. (15)

where φ̈ r(k) is the angular acceleration in [rad/s2].
The value of φ̈ r(k) is not measured; therefore, it is calculated

as a discrete derivative of the corrected angular velocity φ̇ r(k)
(see Fig. 2). However, the measurements of the angular velocity
are affected by measurement noise, which excludes calculation
of the derivative. Thus, to determine φ̈ r(k), the value φ̇ r(k) is
first passed through the following discrete first order low–pass
filter:

φ̇ r,f(k) =
φ̇ r(k)∆t + φ̇ r,f(k−1)T

φ̇

∆t +T
φ̇

, (16)

where T
φ̇

is time constant of the low–pass filter (see section 4).

Hence, the value of φ̈ r(k) yields:

φ̈ r(k) =
φ̇ r,f(k)− φ̇ r,f(k−1)

∆t
. (17)

The values of the accelerations at,x′(k) and at,y′(k) are calcu-
lated from the acceleration of the two–wheeled balancing robot
at(k). This acceleration is discretely calculated as a derivative
of the translational velocity Vt(k). It is calculated from the mea-
surements of the additional encoder mounted on the axis of the
two–wheeled balancing robot’s wheels as follows [46]:

Vt(k) =
2πRw

N∆t
n, (18)

where: Rw = 0.0375 m is the radius of the two–wheeled balanc-
ing robot wheel; n denotes the number of counted pulses from
encoder; N stands for the number of signal changes per shaft
rotation.

It should be added that the errors resulting from the en-
coder measurements are not considered in the paper. It is due
to their values are much smaller than the error values of the
other considered sensors. Moreover, it is assumed that the con-
sidered two–wheeled balancing robot control system is tuned
well-enough to avoid wheel slippage. However, the measure-
ments of the progressive displacement have step characteristics.
Indeed, n is the number of counted pulses that is always an in-
teger. Calculation of the derivative from such signal will not
bring useful information. Therefore, the velocity is first filtered
through the following low–pass filter:

Vt,f(k) =
Vt(k)∆t +Vt,f(k−1)TV

∆t +TV
, (19)

where TV is time constant of the low–pass filter (see section 4).
Thus, the value of the translational acceleration is then cal-

culated using a discrete Euler derivative:

at(k) =
Vt,f(k)−Vt,f(k−1)

∆t
. (20)

Knowing the value of the translational acceleration, projec-
tion of it on the axes of the reference system associated with
the sensor must be done. To do so, the corrected angular posi-
tion must be used. Since its current value is just calculated, the
previous value is used as follows:

at,x′(k) = at(k)cos
(
φ(k−1)

)
,

at,y′(k) = at(k)sin
(
φ(k−1)

)
.

(21)

3.4. Selected filters
As it has been aforementioned the Kalman filter, the family of
α–β filters, and complementary filter have been used for the
filtering (estimation) of the measurements. The structure of se-
lected filters is shown in Fig. 5.

Fig. 5. The structure of selected filters – block ‘Selected filter’
in Fig. 2

In turn, the dynamics of selected filter, in a general form, can
be described by equation:

x̂(k) = [A−KCA] x̂(k−1)

+ [B−KCB]u(k−1)+Ky(k), (22)

where: A, B, C are the state, input and output matrices of the
adopted plant model for estimation purposes; x(·) denotes the
vector of adopted state variables; u(·) is the input vector; K is
the gains matrix of the selected filter.

Whereas the estimation error e(k) is defined as follows:

e(k) = x(k)− x̂(k). (23)

It is easy to show that the dynamics of the estimation error
can be written as follows:

e(k) = [A−KCA]e(k−1)+K [ŷ(k)− y(k)] . (24)

To ensure the filter convergence the following must hold:

∀λi∈eig(A−KCA) |λi|< 1, (25)

where λi ∈ eig(·) denotes the ith eigenvalue from the spectrum
of the underlying matrix (·).

Kalman filter
The filtration method, which ensures the optimal value of
MSE of estimation for linear plants was developed by Rudolf
E. Kalman in 1960 [29]. In general, Kalman filter is a discreet
observer in which the gain values of the correction part are cal-
culated in each iteration of the filter in a way that results from
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the solution of the optimisation task. Assuming that the mea-
surements are affected only by Gauss noise this solution pro-
vides a minimal MSE, in considered case between the corrected
angular position and its estimate. It should be noticed that in
fact, Kalman filter has no degrees of freedom, i.e. there are no
adjustable parameters in it. The covariance matrices given when
initialising the filter are derived from the interference character-
istics and should be calculated from the Gauss noise analysis.
However, this task provides many problems, especially when
actual measurements are also affected by other types of inter-
ference, e.g. bias, or when the noise has not clear Gauss charac-
ter, which often results in the empirical tuning of Kalman filter.
A detailed description of Kalman filter can be found in [21,29].

From the point of view of the above, two approaches to
Kalman filter design are taken under consideration in this paper,
‘Kalman’ and ‘Kalman∗’. The first assumes access to the a pri-
ori knowledge on the interference. The second assumes limited
knowledge of the interference characteristics. Hence, in the first
of these, the covariance matrices of the estimated variables Q
and measurements R, respectively are determined by using the
interference analysis. In turn, in the second one (‘Kalman∗’),
the values of particular elements of the matrices Q and R have
been selected by optimisation. It is decided that Kalman filter
will provide estimates of the angular position φ̂(k) and the gy-
roscope bias b̂

φ̇
, whereas the corrected angular velocity mea-

surement φ̇(k) is treated as an input to the kinematics model.
This approach has been taken because it is the most common
for the task of filtering the angle of tilt of a two–wheeled bal-
ancing robot from the vertical axis. Moreover, (4) is simplified
by assuming that φ̈(k) = 0, whereas the dynamics of bias b

φ̇

is assumed to be zero. Thus, the prediction equations can be
written as follows:

x̂(k|k−1) = Ax̂(k−1)+Bφ̇(k−1),

φ̂(k|k−1) = Cx̂(k),
(26)

where:

x̂(·) =

[
φ̂(·)
b̂

φ̇
(·)

]
, A =

[
1 −∆t
0 1

]
,

B =

[
∆t
0

]
, C =

[
1
0

]T

.

(27)

The Kalman (gains) matrix is of the form K =
[
k1 k2

]T
,

and it is calculated in each cycle of filter. For this purpose, a
minimum seeking covariance optimisation task is solved recur-
sively. In the first step the covariance matrix P is calculated as
follows:

P(k|k−1) = AP(k−1)A−1 +Q, (28)

where:

Q =

[
q1∆t 0

0 q2

]
, (29)

and q1, q2 are variances of φ̂(·) and b̂
φ̇
(·), respectively.

Next:

K(k) = P(k|k−1)CT (CP(k|k−1)CT +R
)−1

, (30)

where R = [r], and r is variances of measurements.
Then the vector of estimates and the covariance matrix are

subject to the correction:

x̂(k|k) = x̂(k|k−1)+K(k)
(
φ(k)− φ̂(k|k−1)

)
,

P(k|k) = (I−K(k)C)P(k|k−1),
(31)

where I is an identity matrix of a proper size.
The initial values of elements of matrix P have been calcu-

lated in such a way that in the first iteration of the filter, the
correction gains take the value of the optimal α–β – WB filter
parameters. This has been done because of the similarity of the
assumed kinematic model used in these two filters.

The family of α–β filters
The α–β filter is a particular example of Kalman filter where
the (correction) gains matrix is fixed and calculated outside the
filter algorithm. There are many types of α–β filters; however,
they are based on the same principle: the prediction is based on
the dynamic model equations, and next, the predicted state is
updated by the correction based on measurements. In various
types of α–β filters, in the tasks of estimating orientation, the
difference is the adopted model of kinematics. One of the sim-
plest is α–β filter providing estimates of the angular position
and velocity. This filter is described as first in this section.

i) α−β filter without velocity bias estimation (α−β – WOB)
In this filter, model (4) is simplified by assuming that φ̈(k) =

0. Whereas the estimated variables are the angular position φ̂(k)
and angular velocity ˆ̇

φ(k). Thus, the prediction equations yield:

φ̂(k|k−1) = φ̂(k−1)+ ˆ̇
φ(k−1)∆t,

ˆ̇
φ(k|k−1) = ˆ̇

φ(k−1).
(32)

In turn, in the correction phase, predictions are corrected by
the equations:

φ̂(k|k) = φ̂(k|k−1)+α
(
φ(k)− φ̂(k|k−1)

)
,

ˆ̇
φ(k|k) = ˆ̇

φ(k|k−1)+
β

∆t

(
φ̇(k)− ˆ̇

φ(k|k−1)
)
.

(33)

Once above equations are bound, equation (22) can be ob-
tained in which the vectors and matrices take form:

x̂(k) =

[
φ̂(k)
ˆ̇
φ(k)

]
, A =

[
1 ∆t
0 1

]
, B = [0],

C =

[
1 0
0 1

]
, K =

[
α 0
0 β

]
.

(34)

ii) α–β filter with velocity bias (α–β – WB)
In this filter, model (4) is simplified again by assuming that

φ̈(k) = 0. However, due to the not ideal constancy of the b
φ̇
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value over time, also an estimate of its value is calculated in this
filter. For this purpose, the bias dynamic is assumed as ḃ

φ̇
(t)= 0

which in discrete time gives b
φ̇
(k) = b

φ̇
(k− 1). The estimate

of bias is initialised with the value calculated in section 4. The
direct measurement of the angular velocity is treated as an input
to the model. Thus, the prediction equations yield:

φ̂(k|k−1) = φ̂(k−1)+
(

˜̇
φ(k−1)− b̂

φ̇
(k−1)

)
∆t,

b̂
φ̇
(k|k−1) = b̂

φ̇
(k−1).

(35)

Whereas the correction phase equations take the form of:

φ̂(k|k) = φ̂(k|k−1)+α
(
φ(k)− φ̂(k|k−1)

)
,

b̂
φ̇
(k|k) = b̂

φ̇
(k|k−1)+β

(
φ(k)− φ̂(k|k−1)

)
.

(36)

The vectors and matrices of equation (22) take form:

x̂(k) =

[
φ̂(k)
b̂

φ̇
(k)

]
, A =

[
1 −∆t
0 1

]
, B =

[
∆t
0

]
,

C =
[
1 0

]
, K =

[
α

β

]
.

(37)

One of the ways of using the angular velocity measurement is
to treat it as an input into kinematics equations, which is shown
above. In another filter from the α–β family, the angular veloc-
ity measurement is used differently, which is described in the
next section.
iii) α–β–θ–γ filter

Similar to the α–β filters described previously, also in this
filter the kinematics is simplified by assuming φ̈(k) = 0. Also,
the bias is not estimated. In contrast, this time both measure-
ment values are used only in the correction phase. Thus, the
prediction phase consists of equations:

φ̂(k|k−1) = φ̂(k−1)+∆t ˆ̇
φ(k−1),

ˆ̇
φ(k|k−1) = ˆ̇

φ(k−1).
(38)

Whereas, the correction phase is extended by using both
measurements in both its equations:

φ̂(k|k) = φ̂(k|k−1)+α
(
φ(k)− φ̂(k|k−1)

)
+θ∆t

(
φ̇(k)− ˆ̇

φ(k|k−1)
)
,

ˆ̇
φ(k|k) = ˆ̇

φ(k|k−1)+
β

∆t

(
φ(k)− φ̂(k|k−1)

)
+ γ

(
φ̇(k)− ˆ̇

φ(k|k−1)
)
.

(39)

This filter fits into equation (22) by the following vectors and
matrices:

x̂(k) =

[
φ̂(k)
ˆ̇
φ(k)

]
, A =

[
1 ∆t
0 1

]
, B = [0],

C =

[
1 0
0 1

]
, K =

[
α θ∆t
β

∆t γ

]
.

(40)

iv) α–β–θ filter with acceleration (α–β–θ – WA-a or b)
As it can be noticed in all filters presented above assumed

that the angular acceleration is zero. In contrast in the last filter
from the family, α–β described in this section does not do this,
and the value of angular acceleration also is estimated. Thus,
the prediction equations yields:

φ̂(k|k−1) = φ̂(k−1)+∆t ˆ̇
φ(k−1)+

∆t2

2
ˆ̈
φ(k−1),

ˆ̇
φ(k|k−1) = ˆ̇

φ(k−1)+∆t ˆ̈
φ(k−1),

ˆ̈
φ(k|k−1) = ˆ̈

φ(k−1).

(41)

During the correction phase, the value of the angular accel-
eration can be updated based on the measurement of angular
position or angular velocity [32], what provides to the two fol-
lowing sets of equations, which are different only in the last
one:

φ̂(k|k) = φ̂(k|k−1)+α
(
φ(k)− φ̂(k|k−1)

)
,

ˆ̇
φ(k|k) = ˆ̇

φ(k|k−1)+β

(
φ̇(k)− ˆ̇

φ(k|k−1)
)
,

iv.a) ˆ̈
φ(k|k) = ˆ̈

φ(k|k−1)+
θ

∆t2

(
φ(k)−φ(k|k−1)

)
,

iv.b) ˆ̈
φ(k|k) = ˆ̈

φ(k|k−1)+
θ

∆t

(
φ̇(k)− ˆ̇

φ(k|k−1)
)
.

(42)

The above equations translate into appropriate vectors and
matrices in equation (22):

x̂(k) =

φ̂(k)
ˆ̇
φ(k)
ˆ̈
φ(k)

 , A =

1 ∆t ∆t2

2
0 1 ∆t
0 0 1

 ,
B = [0], C =

[
1 0 0
0 1 0

]
,

iv.a)K =

 α 0
0 β

θ

∆t2 0

 , iv.b)K =

α 0
0 β

0 θ

∆t

 .
(43)

In following part of the paper both possibilities are analysed,
calling them α–β–θ – WA-a and α–β–θ – WA-b, respectively.

Complementary filter
Complementary filters integrate information of the same type
coming from different sources, e.g., the measurements of the
same physical variable from two or more different sensors.
Hence, the purpose of this filtration is to use useful information
while rejecting interference from a given source. This filtration
brings the expected results when the sensors differ in the na-
ture of the interference, particularly in its frequency [47]. This
requirement is met in the analysed example, where the mea-
surements from the accelerometer are affected only by high–
frequency noise, whereas the measurements from the gyroscope
are affected mainly by a slow changing (low–frequency) bias
error [21]. To obtain the value of the angular position φ

φ̇
from
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the measurements of the angular velocity, it has to be integrated,
what in discrete time takes as follows:

φ
φ̇
(k) = φ

φ̇
(k−1)+∆tφ̇(k). (44)

Then the measurements obtained from the gyroscope are sub-
jected to high–pass filtration, whereas the measurements from
the accelerometer are subjected to low–pass filtration. The com-
plementary filter should meet the rule:

l

∑
j=1

G j(s) = 1, (45)

where G j(s) is the transfer functions of jth sub–filter.
There is an infinite number of pairs consisting of high–pass

and low–pass filter that meets (45). However, i.a., in order to
ensure a low computational cost, the simple case has been se-
lected, taking the low–pass filter as first–order inertia:

Gl−p(s) =
1

1+Tcs
, (46)

where Tc is the filter parameter.
Thus, according to (46), (45) requires that the transfer func-

tion of the high–pass filter is as follows:

Gh−p(s) =
Tcs

1+Tcs
. (47)

The output from the complementary filter φ̂(k) is the sum
of output signals of the low–pass and high–pass filters. By us-
ing the inverse Laplace’s transformation and discretising with
the backward Euler method, this sum can be approximated as
follows [47]:

φ̂(k) =
Tc

∆t +Tc
φ̂(k−1)+

∆t
∆t +Tc

φ(k)

+
Tc

∆t +Tc

(
φ

φ̇
(k)−φ

φ̇
(k−1)

)
.

(48)

By inserting (44) into (48) it is obtained:

φ̂(k) =
Tc

∆t +Tc
φ̂(k−1)+

∆t
∆t +Tc

φ(k)

+
Tc

∆t +Tc
∆tφ̇(k).

(49)

Equation (49) can be written as (22) by using the following
vectors and matrices:

x̂(k) =
[
φ̂(k)

]
, u(k) =

[
φ(k) φ̇(k)

]T
,

A =

[
Tc

∆t +Tc

]
, B =

[
∆t

∆t +Tc

Tc∆t
∆t +Tc

]
,

C = [0], K = [0].

(50)

It should be noticed that the inputs u(k) are values from the
current sample k and not the previous one k−1.

The developed a low–cost measurement system with correc-
tion and filtration of provided measurements is characterised by
computational efficiency, and it is easy to automate the proce-
dure of implementation in numerous devices of one type, where
different values of errors can occur, e.g. gyroscope bias, due to
non-identity of the applied sensors of a given type.

4. EXPERIMENTAL FRAMEWORK AND RESULTS
The research rig with constructed two–wheeled balancing robot
is presented in Fig. 6. It should be noticed that besides the afore-
mentioned additional encoder (marked with a red box in Fig. 6)
there is the second encoder (marked with a blue box in Fig. 6).
This encoder is used to acquire reference measurement values
of the angular position of the constructed two–wheeled balanc-
ing robot. In practice, this requires information of the initial
value of the angle of tilt of the two–wheeled balancing robot
from the vertical axis and then the subsequent addition of the
measured values to the current position. In other words, it re-
quires changes in the position of the reference encoder shaft
connected to the two–wheeled balancing robot in the axis of
rotation, which is described by the formula:

φ(k) = φ(k−1)+∆φ(k), (51)

where ∆φ(k) is calculated from encoder measurements as
∆φ(k) = 360n/N, and N = 2000.

In turn, a zero initial value of φ(k = 0) is ensured by position-
ing the two–wheeled balancing robot vertically at the beginning
of the data acquisition process.

Fig. 6. Research rig with two–wheeled balancing robot
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As the IMU, the MPU6050 unit has been chosen [48]. This
unit is equipped with three single–axis accelerometers and three
single–axis gyroscopes in MEMS technology, which are set at
right angles to each other. The configuration of the MPU6050
during the experiments has been as follows. The gyroscopes
and accelerometers scale ranges have been set at ±250◦ and
±2g, respectively. The measurements have been read directly
from the measurement registers without using a low–pass fil-
ter for the accelerometer and a high–pass filter for the gyro-
scope, which are built into the unit. The bias b

φ̇
has been cal-

culated as an average value of data from a two-hour range, in
which the constructed two–wheeled balancing robot has been
stationary. It has been checked if this approach is correct for the
chosen sensor. For this purpose, with a sampling period equal
∆t = 1.508 ms, for about 2 hours 5 · 106 measurements of the
angular velocity have been collected – see Fig. 7. Then the min-
imum and maximum values have been read as −1.41985◦ · s−1

and −2.45802◦ · s−1, respectively. It should be noticed that
some correlations can be found in changes of bias. More specif-
ically, in Fig. 8 the mean values of the trajectory from Fig. 7 in
successive intervals, where each of all has 105 samples are pre-
sented. Despite observable changes in the bias value over con-

Fig. 7. The measurements of angular velocity from gyroscope

Fig. 8. Mean values of the trajectory shown in Fig. 7 in intervals of 105 samples

secutive observation time windows (Fig. 8), its relative change
over a long horizon remains small. Hence, although approaches
that update the bias values, e.g., [25–27] are justified, an ap-
proach based on single value bias estimation remains concur-
rent in the considered case. Hence, in this paper the value of
bias b

φ̇
has been established as −1.91195◦ · s−1.

Similarly, the biases bax′ and bay′ have been calculated
for the accelerometer. For this purpose, for about 2 hours,
the constructed two–wheeled balancing robot has been placed
vertically stationary and measured the accelerations in two
proper axes have been collected. On the basis of the differ-
ence between the minimum values equal to 8.98132 m · s−2

and −0.14610 m · s−2 for y′ and x′ axis, respectively, and the
maximum values equal to 9.39087 m · s−2 and 0.14370 m · s−2

for y′ and x′ axis, respectively the correctness of a constant
values of biases have been assumed (it should be mentioned
that the measurements are affected only by stochastic inter-
ference). Finally, the biases bax′ and bay′ have been calculated
as the mean value of data from a 2-hour range, and they are
−0.02340 m · s−2 and −0.63629 m · s−2, respectively. Then the
search of the scale–factor errors – Say′(·) and Sax′(·) functions
began. To find them the constructed two–wheeled balancing
robot has been deflected from the vertical and stopped in var-
ious angles to collect the values of φ(·). Moreover, when the
two–wheeled balancing robot is stationary, there are no accel-
erations associated with the robot movement, so accelerations
ãy′(·) and ãx′(·) can be measured. Thus, the reference accelera-
tions have been defined as:

aref,x′(k) = gsin(φ(k)) , aref,y′(k) = gcos(φ(k)) .

Next, by solving an optimisation task that searches for func-
tion coefficients that ensure the minimum of MSE between the
calculated corrected and reference acceleration, the parameters
of searched functions are found. For both axes, polynomials
from 1 to 10 degree have been tested. It has been observed that
increase the polynomial degree above 5 brought degradation in
the target function value. In all polynomials, free expression
equal to zero has been assumed, because this value corresponds
to the bias [21].
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The scale–factor error depends on the real acceleration of the
sensor, therefore, the argument of the proposed functions is the
measurement of acceleration corrected by bias, i.e. ãx′ or y′(k) -
bax′ or ay′ . In other words, the measurements of acceleration are
first corrected by the bias. Finally, functions Say′(·) and Sax′(·)
achieving the smallest MSE have been selected (optimisation
has been carried out using fminsearch in MATLAB environ-
ment), which are of the form:

Let : px(k) := ãx′(k)−bax′ ,

Sax′ (px(k)) = 0.04537px(k)−0.00576px(k)2

−0.00143px(k)3 +0.00005px(k)4

+0.00001px(k)5,

(52)

Let : py(k) := ãy′(k)−bay′ ,

Say′
(

py(k)
)
= 0.12723py(k)−0.05823py(k)2

+0.00930py(k)3−0.00068py(k)4

+0.00002py(k)5.

(53)

The trajectories of the real values, the measurements with-
out the scale–factor error correction (bias only), and the val-
ues after correction with the obtained functions of acceleration
are shown in Figs. 9 and 10 for x′ and y′ axis, respectively.
The MSE values between the uncorrected measurements and
the real trajectories are 0.04817 m·s−2 and 0.03465 m·s−2 for
x′ and y′ axis, respectively. Whereas, between the corrected
measurements and the real trajectories are 0.02720 m·s−2 and
0.02898 m·s−2 for x′ and y′ axis, respectively.

In turn, the time constants T
φ̇

and TV of the low–pass filters
have been selected by solving an optimisation task providing

minimum of MSE between the reference trajectory of φ(·) and
the calculated angular position φ(·) for each sampling time sep-
arately (see Table 1).

Table 1
The obtained values for the low–pass filters

∆t
[ms]

T
φ̇

TV

MSE for

φ̂(k) = arctand

(
ãx′(k)
ãy′(k)

) MSE after
correction

φ(k)

2 0.06874 0.04607 150.56951 72.52314

5 0.02392 0.02031 515.27065 222.05807

10 0.02557 0.02045 377.39749 174.45667

20 0.00774 −0.00065 280.23692 110.55792

Next, a noise analysis overlapping φ and φ̇ has been per-
formed to check the performance of the correction part. The
real angle of tilt from the vertical axis of the two–wheeled bal-
ancing robot φ has been subtracted from the corrected angu-
lar position measurement φ . Whereas, for the analysis of φ̇ ,
the trajectory from Fig. 7 has been used, because the real an-
gular velocity of the robot is known for this trajectory, and is
equal to zero. The obtained noise trajectories have been sub-
jected to fast Fourier transform to obtain the spectrum presented
in Fig. 11. Also, the spectrum of the noise calculated directly
from the measurements (without correction) and the real val-
ues are shown in Fig. 11. Part of the spectrum analysis of φ

and arctand

(
ãx′

ãy′

)
− φ overlap, which indicates the influence

of φ on arctand

(
ãx′

ãy′

)
−φ . It can be noticed that the interfer-

Fig. 9. The trajectories of the acceleration in x′ axis
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Fig. 10. The trajectories of the acceleration in y′ axis

ence caused by changes in the angle of tilt of the robot φ has
been rejected by the correction – there is no overlap in φ and
φ − φ . Thus, Fig. 11 together with table 1 testify to the pos-
itive influence of the correction part. Moreover, it can be de-
duced from Fig. 11 that the angular velocity measurement φ̇ is
much less noisy than the angular position measurement φ . The
field under the angular velocity noise trajectory equals 1.13,
while the field under the trajectory of the real angular veloc-
ity φ̇ is equal to 0. Whereas the field under the angular posi-
tion noise trajectory is 11.42, while the signal to noise ratio is
6.3 dB. However, basing the filtering system only or mainly
on angular velocity may lead to long or no convergence of the
angle of tilt estimates φ̂ to the real value in situations where
the initial value of angle of tilt is unknown and its current es-
timate is subject to significant error. The simplest and at the
same time the least computationally expensive method of solv-

Fig. 11. Spectrum of noises

ing this problem is the appropriate filter initialisation. During
the experiments, the values of initial angular position and ve-
locity have been calculated directly from the measurements

as φ̂(k = 0) = arctand

(
ãx′(k = 0)
ãy′(k = 0)

)
, ˆ̇

φ(k = 0) = φ̇(k = 0),

ˆ̈
φ(k = 0) = 0, b̂

φ̇
(k = 0) = b

φ̇
. Whereas the parameters of cor-

rection parts have been initialised by φ̇ r,f(k = 0) = φ̇(k = 0) and
Vt,f(k = 0) = 0.

The entire low–cost measurement system shown in Fig. 2 has
been implemented in research rig presented in Fig. 6. The re-
sults obtained are as follows. Table 1 shows the obtained value
of the low–pass filters constants (equations (16) and (19)) and
obtained values of MSE before and after correction part. The
values of the parameters of the relevant filters and obtained
MSE values (equation (5)) for the trajectory used in solving the
optimisation task (further referred to as ‘Training’) and for the
verification trajectory are shown in Table 2. To investigate the
real operating conditions and to demonstrate a system perfor-
mance during dynamic changes and disturbances of the two–
wheeled balancing robot movement, the training and verifica-
tion trajectories have been registered. This took place while the
robot moved in both (dynamical) progressive and angular mo-
tions. It is worth adding that these trajectories were not signif-
icantly different and both were based on the behaviour of the
two–wheeled balancing robot during its stabilisation under dif-
ferent operational conditions. It allowed the collection of mea-
surements not only during smooth and gentle stabilisation, but
also under the occurrence of different typical situations, e.g.,
robot’s impacts and collisions with obstacles, or moving the
robot over uneven ground. In turn, in order to investigate the
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Table 2
The obtained values for the selected filters

Filter name ∆t [ms] Parameters MSE – ‘Training’ MSE – Verification

α−β – WOB 2 α = 0.00227, β = 1.58242 1.98686 0.82071

5 α = 0.00866, β = 1.12381 6.18150 3.07579

10 α = 0.00103, β = 1.67836 1.60046 11.94604

20 α = 0.00165, β = 1.84408 2.32469 3.34761

α−β – WB 2 α = 0.00185, β =−0.00018 1.93816 0.78603

5 α = 0.00858, β =−0.00007 6.16623 3.05931

10 α = 0.00080, β = 0 1.73683 14.17050

20 α = 0.00171, β = 0 3.07329 4.05407

α−β−θ−γ 2 α = 0.00204, β =−0.00001, θ = 1.07026, γ =−0.00013 0.74852 1.33160

5 α = 0.00668, β =−0.00005, θ = 1.05866, γ = 0.00007 3.91003 2.12875

10 α = 0.00088, β = 0, θ = 1.05141, γ =−0.00002 0.61819 12.05841

20 α = 0.00391, β =−0.00406, θ =−0.04194, γ = 1.87665 2.32142 3.34578

α−β−θ – WA-a 2 α = 0.00169, β = 1.21567, θ = 0 1.94261 0.86258

5 α = 0.00850, β = 1.12964, θ = 0 6.16275 3.07526

10 α = 0.00080, β = 1.67821, θ = 0 1.58494 13.92453

20 α = 0.00165, β = 1.84410, θ = 0 2.32469 3.34753

α−β−θ – WA-b 2 α = 0.00315, β = 0.28647, θ = 0.00673 1.87487 1.12021

5 α = 0.00911, β = 0.32710, θ = 0.01188 5.43600 2.81706

10 α = 0.00104, β = 0.69743, θ = 0.06346 1.33276 11.34403

20 α = 0.00168, β = 1.01622, θ = 0.17281 2.06774 3.07125

Kalman 2 q1 = 0.01076, q2 = 0, r = 0.02792 6.88674 11.08092

5 9.45858 6.80941

10 9.41660 6.79686

20 7.98366 12.38334

Kalman* 2 q1 = 0.00001, q2 = 0, r = 2.30640 1.94297 0.79206

5 q1 = 0.00112, q2 = 0, r = 17.16979 6.17602 3.03979

10 q1 = 0, q2 = 0, r = 2.25847 1.73928 13.73496

20 q1 = 0.00001, q2 = 0, r = 2.92997 3.07025 4.10513

Complementary 2 Tc = 1.06895 2.01177 0.82619

5 Tc = 0.60307 6.39301 3.38819

10 Tc = 9.74413 1.92216 12.33891

20 Tc = 12.40721 3.31344 4.30363

performance of the proposed measurement system (with α–β –
WB filter) the trajectories of the real and estimated angular po-
sition of the two–wheeled balancing robot are shown in Fig. 12.

Moreover, the trajectory of arctand

(
ãx′

ãy′

)
is also presented in

Fig. 12. The α–β – WB filter has been selected for presenta-
tion purposes due to the highest MSE value in verification –
see Table 2. Thus, it has been found that the results obtained
are satisfactory for the two–wheeled balancing robot stabilisa-
tion purposes. It reasons from using the training and verifica-
tion trajectories covering the wide range of typical dynamics of
the two-wheeled balancing robot during practical usage. In gen-
eral, it should be noticed that the values of MSE are relatively

small with respect to the measured values. Also, the differences
in the values of MSE obtained for distinct filters, considering
the experiment conditions do not faver any specific filter selec-
tion. Analysing the results obtained for the discretisation time–
step ∆t = 10 ms it can be observed that for practically all filters
there is a significant degradation in the achieved MSE between
the learning and verification phases. This does not negate the
usefulness of the proposed solution but requires a search for
its causes. One possibility is the appearance of overfitting of
the filter parameters, which may be due to an incorrect learn-
ing trajectory for this discretisation time–step. A more precise
explanation of this phenomenon is under further research. In ad-
dition, comparing the performance of both Kalman filters with
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Fig. 12. The trajectories of the real and estimated angular position of the two–wheeled balancing robot for α–β – WB filter with ∆t = 10 ms

the other filters, it can be seen that it is not satisfactory. It is
because Kalman filter provides optimal estimates under certain
assumptions (see Section 3). Hence, the tests carried out indi-
cate that in the case under consideration these assumptions have
not been met. It is particularly important in the body of numer-
ous applications of the ‘classical’ Kalman filter, e.g., in engi-
neering works in the task of angular position estimation from
MEMS IMU measurements. On the other hand, considering ei-
ther of the non-Kalman filters results in comparable estimate
precision.

5. CONCLUSIONS

In this paper, a low–cost measurement system using filtering
of measurements for the two–wheeled balancing robot stabili-
sation purposes has been investigated. The proposed measure-
ment system includes two layers. First, the physical layer con-
sists of the gyroscopes and accelerometers in MEMS technol-
ogy and the additional encoder. Second, the software layer con-
taining the correction and filtration mechanisms. The measure-
ments correction uses the additional encoder, whereas the se-
lected filters, i.e. Kalman, α–β type, and complementary have
been used as the filtration mechanism. The performance of the
proposed measurement system has been successfully demon-
strated in the experimental setting on the constructed two–
wheeled balancing robot. Moreover, the quantitative assessment
using a typical measure, i.e. mean square error of selected filters
has been provided.

Hence, in general, extensive knowledge about a low–cost
measurement system using filtering of measurements for the
two–wheeled balancing robot stabilisation purposes has been
aggregated in this paper. It can be found interesting and useful

for the relevant community, both in research and engineering
applications.

The future research may be the conditioning of measurement
signals in such a way as to meet the assumptions of Kalman fil-
ter or the use of more complex and computationally expensive
filters, e.g., extended Kalman filter or adaptive-type Kalman fil-
ters.
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